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Abstract

The Working Group of the International Agency for Research on Cancer classified the 

consumption of processed meat as carcinogenic to humans (Group 1), and classified red meat as 

probably carcinogenic to humans (Group 2A); consumption of both meat types is associated with 

an increased risk of colorectal cancer. These classifications are based on a compilation of 

epidemiology data and mechanistic evidence from animal and human studies. The curing of meats 

with nitrite can produce carcinogenic N-nitroso compounds (NOCs), and the smoking of meat 

produces polycyclic aromatic hydrocarbons (PAHs). The high-temperature cooking of meat also 

produces carcinogenic heterocyclic aromatic amines (HAAs). The ingestion of heme from meat 

can catalyze the formation of NOC and lipid peroxidation products (LPOs) in the digestive tract. 

Many of these chemicals form DNA adducts, some of which can induce mutations and initiate 

carcinogenesis. Another recent hypothesis is that N-glycolylneuraminic acid, a non-human sialic 

acid sugar present in red meat, becomes incorporated in the cell membrane, triggering the immune 

response with associated inflammation and reactive oxygen species, which can contribute to DNA 

damage, tumor promotion, and cancer. The mechanisms by which these chemicals in meat induce 

DNA damage, and the impact of dietary and host factors that influence the biological potency of 

these chemicals are highlighted in this updated report.
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1. Introduction

Colorectal cancer (CRC) is the third most commonly diagnosed cancer and the third leading 

cause of cancer death in both men and women in the United States.[1] The risks for 

developing CRC are thought to be attributed to lifestyle factors such as the diet, alcohol and 

tobacco usage, physical exercise, and obesity.[2] The differences in rates of CRC in different 

geographic locations and temporal changes in risk among immigrant populations suggest 

that diet and lifestyle strongly influence the occurrence of CRC, and that inherited genetic 
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mutations account for a minor percentage of CRC incidence.[1, 3] Single nucleotide 

polymorphisms in genes that encode for carcinogen metabolism enzymes that influence the 

biological activity of procarcinogens,[4–6] epigenetic factors, aberrant microRNA activity, 

and chronic inflammation contribute to the development of CRC.[7, 8] Recently, the role of 

the intestinal bacterial flora has emerged as an increasingly important factor in CRC.[9] 

However, the definitive biochemical mechanisms and causative factors contributing to DNA 

damage, mutations, and development of CRC remain unclear.

In 2015, a Working Group convened at the International Agency for Research on Cancer 

(IARC) in Lyon, France, to evaluate the carcinogenicity of the consumption of red meat and 

processed meat. In a report published in Lancet Oncol.,[10] the Working Group reported that 

“On the basis of the large amount of data and the consistent associations of colorectal cancer 

with consumption of processed meat across studies in different populations, which make 

chance, bias, and confounding unlikely as explanations, a majority of the Working Group 

concluded that there is sufficient evidence in human beings for the carcinogenicity of the 

consumption of processed meat.” A large body of epidemiological studies have reported that 

the consumption of processed meats and red meats are risk factors for colorectal cancer 

(CRC).[11–13] Processed meat was classified as carcinogenic to humans (Group 1), and red 

meat was classified as probably carcinogenic to humans (Group 2A). The consumption of 

red meat was also reported to be positively associated with pancreatic and prostate cancer 

and processed meat with gastric cancer. However, the Working Group noted that there was 

inadequate evidence in experimental animals for the carcinogenicity of consumption of red 

meat and of processed meat. The mechanistic evidence was based on genotoxic effects of 

certain processed meats or red meats, or some of their components in experimental rodent 

models.[12, 14–16]

The Working Group defined red meat as unprocessed mammalian muscle meats, including 

beef, veal, pork, lamb, mutton, horse, or goat meat. Red meat is usually consumed cooked. 

Processed meat was defined as meat treated through salting, curing, fermentation, smoking, 

or other processes to enhance flavor or improve preservation. Most processed meats contain 

pork or beef, but might also contain other red meats, offal (for example liver), or meat 

byproducts such as blood.[10]

Several classes of carcinogens formed in processed and cooked red meats are proposed to 

contribute to CRC: N-nitroso compounds (NOCs) in cured meats;[17, 18] heterocyclic 

aromatic amines (HAAs) formed in well-done cooked meats and poultry;[19, 20] and 

polycyclic aromatic hydrocarbons (PAHs) formed in smoked meats and meats cooked under 

flame.[21] In addition, ingested heme can catalyze the nitrosation of endogenous secondary 

amines[14] and exert pro-oxidative effects by catalysis of lipid peroxidation in the 

gastrointestinal tract.[16] All of these chemicals can form DNA adducts, and if not repaired 

by enzyme systems,[22] some of the DNA adducts can induce mutations during cell division 

and lead to the development of cancer.[23] IARC has classified several NOCs and PAHs as 

Group 1 carcinogens, and several HAAs are designated as Group 2A or 2B carcinogens. The 

identification of the causative agents involved in the development of CRC is important since 

the modification of diets or changes in the methods of preparing meats can mitigate some 

chemical exposures that contribute to the cancer burden.[24] Some epidemiologic studies 
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have reported an elevated risk for CRC and other cancers with consumption of meats cooked 

well-done at high temperatures, whereas other studies have not found this association.[25–31] 

Thus, the dietary data have been suggestive but inconsistent. A main limiting factor in 

epidemiological studies is the uncertainty in the quantitative estimates of chronic exposure 

to different types of carcinogens in meat. The concentrations of genotoxicants in meat can 

range over 100-fold, depending on the processing and methods of cooking meat. There is a 

critical need to develop and employ specific and quantitative measurements of stable, long-

lived biomarkers for reliable assessments of exposures, estimation of the biologically 

effective dose, and the DNA damage induced by chemicals in processed and red meats for 

human risk assessment.[32–34] Some of these prototypical chemical carcinogens in meat and 

their mechanisms of DNA damage, and the impact of dietary and host factors that influence 

the biological potency of these chemicals are presented in this updated report.

1.1 Mechanisms of genomic damage and DNA adduct formation by components in 
processed and cooked meat.

The proposed biochemical mechanisms by which genotoxicants and components in 

processed and red meat induce DNA damage in the colorectum are depicted in Figure 1.

N-Nitroso compounds.—Carcinogenic NOCs formed during the curing of meats include 

N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine, N-nitrosodibutylamine, N-

nitrosopyrrolidine, and N-nitrospiperidine. The levels of NOCs in cured meats range from 

less than one part-per-billion (ppb) up to 130 ppb.[17, 18] NOCs undergo metabolic activation 

by cytochrome P450 2E1 expressed in the GI tract.[37] For example, the reactive methylating 

intermediate of NMDA forms N7-methyl-2´-deoxyguanosine (N7-MedG), which leads to 

abasic site formation, DNA strand breaks, and cytotoxicity.[38] Another adduct occurs 

through O6-methylation of deoxyguanosine (dG) to form O6-methyl-2´-deoxyguanosine 

(O6-MedG) (Figure 2).[39]

Recent attention has focused on endogenously formed NOCs, which become elevated in the 

gastrointestinal tract following consumption of processed or red meats.[14] Nitrosated 

glycine, dipeptides, or N-nitroso bile acid conjugates, such as N-nitrosoglycocholic acid, 

form O6-MedG and O6-carboxymethyl-2´-deoxyguanosine (O6-CMdG) (Figure 2),[39] 

which induce G-A transitions and G-T transversions that contribute to the mutations in 

cancer driver genes, including H-ras and K-ras oncogenes and the p53 tumor suppressor 

gene, in the gastrointestinal tract of omnivores.[40, 41] The levels of endogenously produced 

NOCs in feces of healthy human subjects on a fresh red meat- or processed meat diet were 

ten-fold or greater than those levels formed in feces of volunteers on a vegetarian diet, and 

the percentage of colonic exfoliated cells staining positive for O6-CMdG was significantly 

(P < 0.001) higher in feces of subjects on the high red meat diet than those consuming a 

vegetarian diet.[14] However, mutations were not detected in the K-ras gene of exfoliated 

colonocytes.[42]

Heme iron – a pro-oxidant.—The ingestion of heme iron from hemoglobin or 

myoglobin mediates the formation of lipid peroxidation and apparent total NOCs in the 

colon.[13, 16, 36, 42] The feeding of hemin (ferriheme), but not protoporphyrin IX, ferric 
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citrate or bilirubin leads to the formation of cytotoxic and potentially DNA-damaging 

agents, and cell proliferation of the colonic mucosa of rodents.[43] Malondialdehyde (MDA) 

is one product of lipid peroxidation that reacts with dG to form the cyclic adduct 3-(2-

deoxy-β-D-erythropenta-furano-syl)pyrimido[1,2-α]purin-10(3H)-one 2′-deoxyguanosine 

(M1-dG).[44] MDA and other genotoxic lipid oxidation products, such as those formed from 

4-oxo-2-alkenals (Figure 2),[45] are hypothesized to be elevated in humans who eat 

processed or red meats.[16, 46]

Heterocyclic aromatic amines and polycyclic aromatic hydrocarbons.—HAAs, 

including 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3,8-

dimethylimidazo[4,5-f]quinoxaline (MeIQx) and 2-amino-9H-pyrido[2,3-b]indole (AαC) 

are abundant HAAs formed in well-done cooked meats. HAAs undergo metabolism, by 

cytochrome P450 enzymes, to form genotoxic N-hydroxylated metabolites.[19] These 

metabolites undergo further metabolism with conjugation enzymes, such N-

acetyltransferases or sulfotransferases, to generate reactive intermediates that bind to DNA 

(Figure 2).[32] PAHs, such as benzo[a]pyrene (B[a]P), also undergo bioactivation by human 

cytochrome P450 enzymes to form genotoxic species.[47] The reactive intermediates are 

anti-diol-epoxides of the bay region of PAH molecules, although trans-dihydrodiols of some 

PAHs can contribute to DNA damage and oxidative stress through their oxidation to o-

quinones.[48] PAHs that arise in tobacco smoke are also believed contribute to lung cancer in 

smokers.[49]

N-glycolylneuraminic acid (Neu5Gc).—Red meats are rich with glycans containing a 

non-human variant of sialic acid called N-glycolylneuraminic acid (Neu5Gc).[50] Neu5Gc is 

not biosynthesized in humans, but it is bioavailable and becomes incorporated in tissues of 

omnivores.[50] Interactions of this antigen with circulating anti-Neu5Gc antibodies in a 

murine model have been shown promote chronic inflammation, leading to reactive oxygen 

species that can contribute to carcinogenesis and tumor progression (Figure 3).

2. Methods to detect DNA adducts in humans.

Despite the large body of epidemiology data on the risk of processed or red meat diet in the 

development of CRC,[11, 13] there is a paucity of physico-chemical data on the DNA adducts 

formed in the colorectum. The absence of specific biomarkers for distinguishing between 

DNA adducts occurring through dietary intake or from endogenous processes has hindered 

our ability to substantiate any of the proposed chemicals and biochemical mechanisms 

involved in CRC. 32P-postlabeling, immunohistochemistry (IHC), gas chromatography/mass 

spectrometry (GC/MS) and liquid chromatography mass spectrometry (LC/MS) have served 

as the major methods to measure DNA adducts in humans. The advantages and limitations 

of these technologies have been reviewed,[51–54] and the technologies are briefly highlighted 

here in context to the characterization of DNA adducts in colorectum.

2.1 32P-Postlabeling
32P-Postlabeling remains the most commonly used method to screen for DNA adducts 

because it is a highly sensitive technique.[51] The DNA is enzymatically digested to 3′-
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phospho-2′-deoxyribonucleotides, and 32P-orthophosphate from [γ−32P] ATP is transferred 

to the 5′-OH position of the 2′-deoxyribonucleotide adduct, by polynucleotide kinase. The 

5′−32P-labeled nucleotides are usually resolved by multi-dimensional thin-layer 

chromatography using autoradiography for detection or by HPLC with radiometric 

detection. The technique has revealed that human DNA is modified with many 

environmental and dietary chemicals, and endogenous electrophiles to form numerous 

putative DNA adducts some of which may occur in the colorectum.[55, 56] However, the 

identification and quantification of DNA adducts cannot be achieved by 32P-postlabeling. 

Thus, the conclusions drawn from epidemiological studies employing 32P-postlabeling have 

often provided ambiguous results about the role of diet, chemical exposures and their 

relationships to DNA adducts, and the impact of genetic polymorphisms in genes that 

encode for carcinogen metabolism enzymes on cancer risk.[57–59]

2.2 Immunochemical methods

Several DNA adducts have been screened, by immunochemical methods, in human 

colorectal or other tissues.[38, 60–63] These methods employ ELISA (enzyme-linked 

immunosorbent assay) plate-based assays, radio immunoassays, or slot-blot methods to 

screen for DNA adducts, using antibodies raised against carcinogen-treated DNA or DNA 

adducts coupled to carrier proteins. Immunohistochemical (IHC) detection of DNA adducts 

in tissue section-cuts mounted on slides is another screening method and allows for the 

visualization of the DNA adduct within specific cell types of a tissue.[52] IHC is especially 

suitable for archived formalin-fixed paraffin-embedded (FFPE) tissues for which there is a 

clinical diagnosis of disease. An important drawback of immuno-based detection methods is 

that the specificity of antibodies, even monoclonal antibodies, for DNA adducts is uncertain 

as they may cross-react with other DNA lesions or cellular components, leading to errors in 

identification and quantification. Also, immunodetection methods can only be performed on 

DNA lesions for which antibodies are available. Signals for putative colorectal adducts of 

O6-MedG,[60, 62] O6-CMdG,[42] and M1-dG[61] have been detected by IHC or slot blot 

methods. A high red meat diet increased rectal O6-MedG adduct levels in healthy subjects 

by 21% relative to baseline levels, based on immuno detection.[62] In another study, the 

mean percentage of exfoliated colonocytes staining positive for O6-CMdG in feces of 

subjects on a red meat diet was increased by 2.5-fold compared to the levels for the same 

subjects on a vegetarian diet.[42] M1-dG was detected, by means of a slot blot method, in 

more than 90% of the colorectal specimens of men and women from European Prospective 

Investigation on Cancer.[61]

2.3 Mass spectrometry methods

GC/MS with electron impact ionization and more recently negative ion chemical ionization 

have been employed to measure DNA adducts (primarily used for oxidized DNA bases) 

where adduct structures can be corroborated from the MS fragmentation spectra. The DNA 

is usually hydrolyzed with acid or base to produce the aglycone adducts.[54] DNA adducts 

require chemical derivatization to increase the volatility required for GC analysis. The 

derivatization process is often conducted at elevated temperature (> 100 °C). Thus, the DNA 

adducts must be stable to the harsh conditions of DNA hydrolysis and to elevated 

temperatures employed in GC/MS. The base hydrolysis of DNA was employed to recover 
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PhIP from human colorectal DNA, followed by electron capture MS, which is also known as 

GC-negative ion chemical ionization (NICI)-MS.[64] Presumably, the liberated PhIP was 

derived from the N-(2′-deoxyguanosine-8-yl)-PhIP (dG-C8-PhIP). PhIP was detected at 

levels of several adducts per 108 DNA bases in two out of six human colon samples, when 

assayed by this method. To the author’s knowledge, there are no other reports on the analysis 

of DNA adducts in human colorectal tissue by GC/MS.

The online coupling of LC to electrospray ionization (ESI) MS is the most commonly used 

technology to measure many DNA adducts which would otherwise undergo thermal 

decomposition by GC-MS.[65–67] Most DNA adducts are detected following nuclease 

digestion of the DNA to produce the modified 2′-deoxyribonucleoside adducts.[67] Because 

of the basic properties of the nitrogenous nucleobase moieties, DNA adducts are usually 

analyzed in the positive ionization mode. A common feature of most DNA adducts is their 

propensity to lose the 2′-deoxyribose (dR) moiety (116 Da or 116.0473 Da in high-

resolution accurate mass (HRAMS)), when subjected to collision-induced dissociation 

(CID).[68] This transition is commonly used to measure DNA adducts by targeted MS2 

methods employing triple quadrupole MS, and more recently by ion trap (IT)/Orbitrap MSn 

scanning methods.[67, 69–72] However, there are no reports in the literature employing 

LC/MS2 to measure 2′-deoxyribonucleoside DNA adducts in the colorectum from 

chemicals derived from processed red meat or cooked meats. Another approach is to analyze 

for the DNA adducts as the modified DNA base. Following formic acid hydrolysis of DNA, 

Orbitrap-HRAMS was employed using wide-selected ion monitoring or HRAMS/MS2 to 

screen for the aglycones of 30 putative DNA adducts in human colon; O6-CMdG was 

tentatively identified as one lesion.[73]

2.4 Other methods to detect DNA damage

There is one report on the detection of a putative B[a]P DNA adduct in colorectum, 

following acid hydrolysis of DNA. The liberated tetraol r-7,c-10,t-8,t-9-

tetrahydroxy-7,8,9,10-tetrahydro-B[a]P was detected, by HPLC/fluorescence, in four out of 

seven colon mucosa samples at levels ranging between 0.2 and 1.0 adducts per 108 DNA 

bases.[74] These findings were not confirmed by specific MS-based methods.

DNA damage has also been assessed by the Comet Assay. The alkaline comet assay detects 

DNA strand breaks (SBs) and alkali-labile sites at frequencies from a few hundred to several 

thousand breaks per eukaryote cell and can visualize DNA damage introduced by 

endogenous electrophiles or exposures to exogenous genotoxicants.[75] The treatment of the 

genome with DNA glycosylases allows for measurement of damage other than SBs, where 

damaged bases in DNA are removed, resulting in the formation of apurinic/apyrimidinic 

(AP) sites, which are readily detected by the comet assay. The assay is sensitive and can 

screen for a broad range of types of DNA damage. However, the Comet Assay, like 32P-

postlabeling and immunodetection methods, fails to identify the specific chemicals involved 

in DNA adduct formation. DNA damage in human colon of volunteers who consumed 

cooked meat was characterized by the Comet Assay. When volunteers ate a diet of high-

temperature cooked red meat containing elevated levels of HAAs, rectal biopsy cell DNA 

damage increased, when measured by the Comet assay.[76] The DNA damage was reduced 
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by nearly two-fold when the cooked meat was consumed with cruciferous vegetables, 

yogurt, and chlorophyllin tablets.[76] These food components reduce the genotoxicity of 

HAAs in rodent studies,[77, 78] suggesting a plausible role for HAAs in cooked meat in DNA 

damage of the rectum.[76]

3. Factors that modulate carcinogenicity

There are many dietary and host factors that can influence the biological potency of 

genotoxicants. Chemoprotective agents in the diet and beverages and the bacterial flora are 

important factors that impact the carcinogenic potential of genotoxicants in cooked meat.

3.1 Chemoprevention

Numerous studies have reported protective beneficial health effects of naturally occurring 

phytochemicals, including polyphenolics and thiocyanates, found in cruciferous vegetables, 

foods, and beverages against carcinogens.[79, 80] Beneficial effects have also been reported 

on short chain fatty acid microbial metabolites, which are formed in fermented dairy 

products and regulate epithelial cell homeostasis.[81] These biochemicals have been reported 

to exert protection towards dietary, tobacco-associated, and mycotoxin carcinogens.[80, 82–85] 

Wattenberg classified chemopreventive agents into three broad categories, with markedly 

different functions: 1) agents that can prevent the formation of carcinogenic compounds 

from their precursors or diminish carcinogen bioavailability; 2) agents that can block the 

metabolic activation of carcinogens, scavenge reactive intermediates, or alter metabolism by 

changes in the expression of enzymes of metabolism involved in bioactivation or 

detoxification; and 3) agents that can interfere in the process by which initiated cells 

progress to neoplasia.[82] Recently certain chemicals have been shown to act on the repair 

and replication processes of damaged DNA, resulting in decreases in mutation frequency.[80] 

It is also now recognized that dietary factors contribute to chemoprevention by modulating 

epigenetic events, including the DNA methylation status, that alters expression of genes 

involved carcinogenesis.[86]

3.2 The role of bacterial flora in colorectal cancer

Bacteria constitute about 90% of all cells in the human body, and it has been estimated that 

these bacteria are comprised of over 1000 different species.[9] Trillions of commensal 

bacteria, termed “the microbiota,” are in close proximity to a single layer of intestinal 

epithelial cells. Commensal bacteria are involved in the intestinal architecture and possess 

important homeostatic immune and metabolic functions. Commensal bacteria and their 

metabolites affect the proliferation and survival of epithelial cells and also provide 

protection against pathogens.[87] The majority of microbes reside in the gastrointestinal tract 

in communities defined as the microbiome. The microbiome is dynamic and its composition 

and functionality is influenced by the diet, environment, and physiological changes, such as 

diseases. An unbalanced change in the microbiota ecosystem leads to dysbiosis and can 

result in the development of inflammatory bowel disease, metabolic syndrome, and initiate 

CRC.[87] A model of the microbial ecology involved in the onset of CRC and progression 

was proposed by Tjalsma,[9] and termed the bacterial driver-passenger model. In this model, 

CRC development is initiated by over colonization of the colorectum with indigenous 
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bacteria with pro-carcinogenic features – these microbes are termed bacterial drivers, and 

damage epithelial DNA and contribute to CRC initiation. Several candidate bacterial drivers 

have been identified and include superoxide-producing strains of Enterococcus faecalis, and 

colibactin-producing Escherichia coli strains. Colibactin is a potent genotoxin that is can 

form DNA adducts and crosslinks, induces DNA strand breaks and cell cycle arrest, and also 

promotes tumor growth.[88–91] Other pro-inflammatory members of Bacteroides fragilis 
Enterobacteriaceae, such as Shigella, Citrobacter and Salmonella have been associated with 

early stages of CRC as possible bacterial drivers.[92]

There are also a number of bacteria that exert antimutagenic/anticarcinogenic effects. For 

example, certain strains of lactobacillus and bifidobacterium species inhibit DNA damage 

and decrease the incidence of colon carcinogenesis of 1,2-dimethylhydrazine and HAAs in 

rodents by either binding to the procarcinogens, catalyzing the detoxication of the 

chemicals, or by induction of the immune response.[93–95]

Bacterial enzymes can metabolize procarcinogens. The enzymes include: β-glucuronidase, 

β-glycosidase, azoreductase, nitroreductase, and nitrate reductase.[96] For example, the 

glucuronide conjugates of HAAs and their N-hydroxylated HAAs, and those of 

hydroxylated PAHs can undergo enzymatic hydrolysis by β-glucuronidases of the bacterial 

flora, which liberate the aglycones that may exert genotoxic effects within the GI tract, or 

undergo enterohepatic circulation and modulate carcinogenic risk (Figure 4).[97, 98]

Eubacterium and Clostridium oxidize IQ-type compounds to form 7-oxo species, such as 2-

amino-3-methyl-3H-imidazo[4,5-f]quinolone (7-oxo-IQ) (Figure 4).[99] These compounds 

are directly mutagenic in the Ames test strain Salmonella; however, they are not 

carcinogenic in rodents.[100] The human gut microbiota also can contribute to the 

detoxification of PhIP by forming 7-hydroxy-5-methyl-3-phenyl-6,7,8,9-7-

tetrahydropyrido[3′,2′:4,5]imidazo[1,2-a]pyrimidin-5-ium chloride (PhIP-M1), a conjugate 

formed by Lactobacillus reuteri, Eubacterium hallii, and strains of Enterococcus in the 

presence of glycerol.[101–103] PhIP-M1 has been detected as a minor metabolite in human 

urine and feces.[104] The human colon microbiota also catalyze the formation of 7-

hydroxybenzo[a]pyrene in vitro.[105] At the elevated doses employed in carcinogenesis 

studies, the oral exposure to B[a]P significantly altered the composition and the abundance 

of the gut microbiota and led to moderate inflammation in the ileal and colonic mucosa of 

C57BL/6 mice.[106] Collectively, these findings highlight the complex effects of the diet, and 

the interplay of commensal and pathogenic bacteria microbiome on microbial composition 

and activity in the colon that impact human health and disease states.

Conclusions.

Epidemiological studies have often linked the frequent consumption of processed meats and 

cooked red meats with an elevated risk for CRC.[11, 13] Multiple hypotheses have been 

proposed to explain the increased risk of CRC associated with meat consumption.[107] Many 

different classes of genotoxicants present in processed and cooked meats are capable of 

forming pro-mutagenic DNA adducts in humans, which can contribute to CRC.[13, 31, 46] In 

addition, endogenous nitrosation processes produce reactive intermediates that can induce 
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DNA damage, and possibly lead to mutations in the colonocytes.[14] Pro-oxidants in cooked 

red and processed meats, including heme, ingested fats and lipid peroxidation products,[108] 

and Neu5Gc[50] may contribute to inflammation and tumor promotion, leading to the 

development of CRC. It is also important to consider the role of the bacterial flora of the gut 

in the development of CRC. Gut bacteria have critical homeostatic and immune functions, 

and are capable of metabolizing endogenous and xenobiotic chemicals, including the 

bioactivation and detoxification of carcinogens.[78, 107] The increased risk for CRC may not 

be associated with one single chemical, but due to the presence of a complex mixture of 

chemicals and bacterial flora acting on multiple stages of CRC development.[18] Clearly, 

more human studies with controlled meat diets and the identification and quantification of 

colorectal biomarkers of DNA damage, such as DNA adducts, by specific mass 

spectrometric methods, and linking these adducts to mutations[109] can advance our 

understanding of the chemicals in the diet and those produced endogenously that damage 

DNA and may contribute CRC risk.[32, 110]

The IARC working group concluded that for every 50 grams of processed meat or 100 

grams of red meat eaten, the relative risk of colon cancer was increased by about 18% 

compared to those individuals who ate the least meats.[10] This relative risk is modest 

compared to the relative risk of developing lung cancer from smoking cigarettes, which 

ranges between 1000–3000%.[111] Nevertheless, exposure to genotoxicants in the diet 

should be avoided. It should be recognized that consumption of red meat does have 

beneficial effects. Red meat is a nutritious food and an important source of protein with all 

essential amino acids, highly bioavailable iron, zinc, selenium, and B vitamins, especially 

vitamin B12 in the diet.[112] There are ways to eat healthier meat products by avoiding the 

consumption of processed meats treated with nitrite or by not over-cooking or charring of 

red meat. The consumption of lean red meats in moderation,[2] combined with poultry, fish, 

whole grains, vegetables, and fruits can provide a well-balanced and healthy diet.
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Figure 1. 
Mechanisms of DNA damage in colorectum by genotoxicants and components in meat and 

modulating effects of the bacterial flora. Mechanisms are adapted from references [35, 36] 

and citations within.
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Figure 2. 
Chemical structures of DNA adducts derived from prototypical NOCs, HAAs and PAHs, 

and lipid peroxides.
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Figure 3. 
Potential CRC risk associated with metabolic incorporation of non-human sialic acid N-

glycolylneuraminic acid (Neu5Gc) from red meat. (a) Neu5Gc is present in beef, pork, lamb, 

but humans cannot synthesize Neu5Gc. (b) Neu5Gc can be incorporated into human cells 

through the same pathway used for Neu5Ac recycling. (c) Endocytosed Neu5Gc is used as a 

substrate for the synthesis of sialylated glycans in the Golgi. Cell surface glycans containing 

Neu5Gc may be targeted by circulating anti-Neu5Gc antibodies and complement, leading to 

a human specific inflammation, termed xenosialitis.[50] The figure was kindly provided by 

Dr. Kunio Kawanishi and adapted with permission from reference 50.
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Figure 4. 
Metabolism of HAAs by mammalian P450s (CYP) and UDP-glucuronosyltransferases 

(UGT), and metabolism of HAAs or their metabolites by bacterial gut flora.
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