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Abstract

Identification of a novel catalyst–allenoate pair allows enantioselective [2+2] cycloaddition of α-

methylstyrene. To understand the origin of selectivity, a detailed mechanistic investigation was 

conducted. Herein, two competing reaction pathways are proposed, which operate simultaneously 

and funnel the alkenes to the same axially chiral cyclobutanes. In agreement with the Woodward–

Hoffmann rules, this mechanistic curiosity can be rationalized through a unique symmetry 

operation that was elucidated by deuteration experiments. In the case of 1,1-diarylalkenes, distal 

communication between the catalyst and alkene is achieved through subtle alteration of electronic 

properties and conformation. In this context, a Hammett study lends further credibility to a 

concerted mechanism. Thus, extended scope exploration, including β-substitution on the alkene to 

generate two adjacent stereocenters within the cyclobutane ring, is achieved in a highly 

stereospecific and enantioselective fashion (33 examples, up to >99:1 er).

Graphical Abstract

INTRODUCTION

Construction of multiple stereocenters in a single event has become an increasingly 

important strategy to build molecular complexity in an efficient and economical way. 
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Arguably, one of the most powerful methods to achieve such a transformation is the Diels–

Alder reaction.1 It is generally postulated that the aforementioned reaction involves a 

symmetry-allowed cyclic transition state as predicted by the Woodward–Hoffmann rules.2 

Consequently, the reaction can be performed in a stereospecific fashion, allowing the 

generation of all possible isomers from the respective E- or Z-alkenes. Despite significant 

advances in the realm of enantioselective Diels–Alder reactions,3 the analogous, concerted 

[2+2] cycloaddition of alkenes has remained a challenge. Particularly, methods that utilize 

activated olefins are especially difficult. In contrast to the Diels–Alder reaction, recent 

methods to construct enantioenriched arylcyclobutanes by [2+2] cycloaddition often proceed 

through stepwise processes, resulting in decreased reaction selectivity (Scheme 1a).4,5 With 

respect to Lewis acid catalyzed examples, gold complexes have been utilized to activate 

alkynes6 or allenes7 to achieve enantioselective cycloaddition with highly activated styrene 

derivatives. In addition, copper and zinc have been used with electron rich arylalkenes to 

give cyclobutanes with good control of enantioselectivity.8 Alternatively, chiral amines can 

be used to assemble cyclobutanes via ionic intermediates.9 Photochemical methods10 often 

exhibit increased tolerance for electron-poor styrenes, but generally involve excited state 

biradical intermediates, which lead to either stereoconvergence10f or erosion of 

diastereoselectivity.10g Overall, only a few examples,9a report good stereospecificity through 

trapping of reactive intermediates at low temperatures.

To address this problem, we recently focused our efforts on rendering alkene-allenoate 

cycloadditions enantioselective.11 Based on several reports in the literature,11b,12 alkene-

allenoate cycloadditions appear to be concerted and therefore stereo-specific in nature, 

which provides a unique opportunity for an in-depth study (Scheme 1b). Herein, we report 

the enantioselective [2+2] cycloaddition of α-methylstyrene through identification of a novel 

alkene-allenoate pair. This method does not only enable catalytic enantioselective formation 

of quaternary carbon centers13 but also exemplifies how elucidation of reaction mechanism 

can go hand in hand with expansion of scope. Ultimately, we propose models that reliably 

explain the observed selectivity for a range of activated alkenes in this unique [2+2] 

cycloaddition.

RESULTS AND DISCUSSION

Optimization.

We initially envisioned accessing cyclobutanes bearing a quaternary center by using 

activated 1,1-disubstituted alkenes (e.g., α-methylstyrene). Preliminary data suggested that 

the identity of the allenoate ester has a significant influence on modulating reactivity as well 

as selectivity.12d As such, investigations of various allenoates 1 were undertaken (Table 1).

Changing from benzyl (1a) to the more reactive 2,2,2-trifluoroethyl ester (1b) under our 

previously optimized reaction conditions resulted in decreased yield, due to competitive 

polymerization of the starting materials under the reaction conditions (Table 1, compare 

entries 1 and 2). We next examined the use of thiobenzyl allenic ester 1c in the reaction and 

were pleased to find a slight increase in reaction selectivity, albeit with decreased overall 

yield (compare entries 1 and 3). Confident that reaction yield could be improved through 

catalyst control, we studied modifications of the diarylprolinol scaffold. Whereas increasing 
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the steric size of the aryl groups from phenyl (2a) to xylyl (2b) provided a significant 

increase in reaction selectivity, further increase to sterically bulkier 3,5-(tBu)2-C6H3 catalyst 

2c resulted in a substantially less selective reaction (compare entries 3–5). Investigation of 

more electron rich aryl groups (i.e., entry 6, 2d) resulted in a marked decrease in overall 

reaction yield while providing higher reaction selectivity. Significant improvements in both 

reaction yield and enantioselectivity was observed when more electron deficient 3,5-(CF3)2-

C6H3 catalyst 2e was examined in the reaction (entry 7). Interestingly, utilizing the same 

catalyst with benzyl allenoate resulted in a smaller increase in enantioselectivity (compare 

entries 1 and 8).

Mechanism.

To account for the observed enantiomer obtained in the reaction we propose that upon 

binding of the Lewis basic carbonyl oxygen to the Lewis acidic boron atom,14 the 

orientation of the allenoate may be fixed by a putative C— H⋯O hydrogen bonding 

interaction (Scheme 2a).15 As the bottom face of the allenoate is effectively blocked by the 

large aryl groups of the catalyst, approach of the alkene may only occur from the top face. 

Additionally, the sterically large phenyl group of the alkene is oriented distal to the large 

catalyst–substrate complex. Conveniently, the planar character of the phenyl group thereby 

also minimizes steric interaction with the protruding C–H bond of the allene, resulting in 

two plausible transition states (Scheme 2a, TS-A1 and TS-B1) for alkene approach.

We propose a concerted, asynchronous [π2s+(π2s+π2s)] cycloaddition in which the direction 

of rotation of the electron deficient allenic π-bond is dictated by the Woodward–Hoffmann 

rules (indicated by the blue arrows).2,16 Because of the unusual symmetry of the system, 

both transition states lead to the same enantiomer. The absolute configuration of the 

cycloadduct 3c was proven through hydrolysis of the thioester and subsequent analysis of 

the corresponding carboxylic acid 4 via X-ray diffraction.17 To distinguish TS-A1 and TS-
B1, cis-β-deutero-α-methylstyrene 5 was subjected to the reaction conditions (Scheme 2b). 

To our surprise, the cycloadduct 6 was obtained as an 83:17 Z:E mixture suggesting that 

both pathways are operating. Accordingly, trans-β-deutero-α-methylstyrene 7 furnished 

cyclobutane 8 as a 86:14 Z:E mixture. Assignment of the respective E- and Z-isomers was 

achieved through derivatization and subsequent NOE analysis of the respective tertiary 

alcohol 9 (see Supporting Information for details). Thus, we were able to deduce TS-A1 to 

be energetically favored, which can be explained by the alkene being distal to the bulky 

boroaryl group of the catalyst. In addition, the cycloaddition was highly stereospecific, as 

indicated by the two different pairs of products generated from the respective cis- and trans-

deuteroalkene. This suggests a concerted mechanism, which was not necessarily to be 

expected considering the stabilization of a potential benzylic carbocation in a stepwise 

process.

To gain further insight into the reaction mechanism, we became interested in differentiating 

1,1-biaryl alkenes based on their steric and/or electronic properties (Scheme 3a). Herein, 

only one aryl ring is in conjugation with the π-system, resulting in substantial steric 

differentiation of the two aryl groups (Scheme 3a, TS-A2). We propose preferential reaction 

occurs with the more reactive conformer of alkene (TS-A2, X = more electron donating than 
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Y), providing an excellent setting to undertake a more detailed Hammett study. 

Electronically differentiated biaryl alkenes 10 were evaluated in the reaction. Moderate to 

good yields were obtained depending on the electronic properties of the biarylalkenes. In 

agreement with our model, increased disparity between the two aryl groups resulted in 

improved reaction enantioselectivity (products 11a–11f). We found a good correlation 

between log(er) and σ+ with a ρ value <1, suggesting the build-up of positive charge in the 

transition state in a less sensitive fashion than the parent SN1 reaction.18 This correlates with 

a concerted, highly asynchronous cycloaddition. According to the regression equation 

obtained from the small training set used for the Hammett study, an enantiomeric ratio of 

92:8 was predicted for alkene 12 bearing two electronically altered rings19 (herein Δσ+ was 

obtained from the parent σ+ values for para-CF3 and para-OMe).18 When 12 was subjected 

to the reaction conditions, cycloadduct 13 was obtained in 58% yield and 92:8 er 

highlighting the potential of this type of enantiodiscrimination (Scheme 3b). Proof of 

absolute stereochemistry was achieved by hydrolysis of product 13 and X-ray analysis of the 

respective biarylcyclobutanecarboxylic acid 14.

To further probe our hypothesis, differentially substituted 1,1-biaryl olefin 15 was 

synthesized and examined in the reaction (Scheme 3c). As the aryl groups of this alkene 

possess more similar electronic properties, the rotation of one aryl group out of conjugation 

is primarily driven by adverse intramolecular steric interactions. We hypothesized the ortho-

tolyl group would preferentially rotate out of plane to minimize 1,3-allylic strain (TS-A3, 

Scheme 3c), thus providing a similar steric environment as proposed in TS-A2. Gratifyingly, 

16 was obtained in 48% yield and 89:11 er, lending support to our mechanistic hypothesis.

Scope.

With a catalyst system that allowed for the cycloaddition of activated alkenes in hand, we 

examined the substrate scope of the reaction (Scheme 4). α-Methylstyrene underwent [2+2] 

cycloaddition in 93% yield and 96:4 er (product 3c) on gram scale (5.26 mmol) with no loss 

in reaction selectivity. Increasing the steric size of the α-substituent was investigated and 

proceeds with high enantioselectivity (products 3d and 3e). High chemoselectivity for the 

activated alkene in the presence of an unactivated alkene was observed to provide 3e in 72% 

yield and 96:4 er, with no trace of cycloadducts derived from the reaction of the unactivated 

olefin. Several steric and electronic perturbations of the aromatic ring have been investigated 

(products 3f–3l). The cycloaddition proceeded in good yield with sterically encumbered 

(product 3f), halogenated (products 3h and 3j), and electron-poor (products 3i and 3j) vinyl 

arenes. Spirocyclic cyclobutane derivatives can also be accessed from the requisite 1,1-

disubstituted olefin in good yield and high enantioselectivity (product 3k and 3l). 
Heterocycles bearing weakly basic heteroatoms, such as thiophene, were also tolerated 

(product 3l). In some cases, dropping the temperature improved the yield by decreasing the 

rate of alkene polymerization. Interestingly, enynes underwent cycloaddition without any 

interference of the alkyne moiety yielding 3m and 3n in moderate yield and excellent 

enantioselectivity.

Replacement of the aryl group with a cyclohexyl group resulted in substantial decrease in 

enantioselectivity, demonstrating that the aryl group is necessary to obtain highly 
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enantioenriched products (Scheme 4, compare products 17 and 3c). Substitution at the α-

position was also essential for successful reaction, as styrene itself performed poorly in 

terms of reactivity and selectivity under several reaction conditions (product 3o, see 

Supporting Information for further details). Partial polymerization of styrene presumably 

accounts for the low yield, whereas low enantioselectivities for 17 and 3o can be rationalized 

by lack of steric differentiation with the protruding C–H bond of the allene.

To further expand the reaction scope, we investigated commodity dienes, such as isoprene 

(18), in the cycloaddition reaction (Scheme 5). Initially, when EtAlCl2 was used as a Lewis 

acid, low periselectivity was observed, favoring Diels–Alder product 20. In stark contrast to 

EtAlCl2, catalyst 2e allowed for >99:1 selectivity favoring [2+2] cycloadduct 19. The 

reaction also occurred with high chemoselectivity, as only the more substituted alkene of 

isoprene underwent cyclo-addition; however, the observed enantioselectivity was only 

moderate for this reaction. We assume that upon binding of allenoate 1c to catalyst 2e, the 

internal π-bond (Scheme 5a, marked in gray in TS-A4) is sufficiently blocked by the large 

boroaryl group of the catalyst, leaving the distal π-bond (marked in red in TS-A5) more 

readily accessible for [2+2] cycloaddition.20 It should be noted that our system complements 

previous reports on Diels–Alder reactions between allenoates and cyclic dienes.14b,21,22 α-

Substitution, as imposed by 2,3-dimethylbutadiene (21), significantly improved the 

enantioselectivity while preserving the high level of peri-selectivity (Scheme 5b, product 

22).

Application to β-Substitution.

The potential to generate two adjacent stereocenters piqued our curiosity to further study β-

substitution of the alkene starting materials and test our proposed models. We initiated this 

survey with cyclic alkene 23. Gratifyingly, the reaction proceeded in good yield, 

regioselectivity, and with excellent enantioselectivity, but resulted in the formation of both 

alkene isomers (Scheme 6, Z-24 and ent-E-24) in a 69:31 ratio. Separation by column 

chromatography revealed Z-isomer Z-24 as the major product. In accordance with the 

deuteration experiment and as a consequence of β-substitution on the alkene, the two TS do 

not lead to the same absolute configuration within the cyclobutane ring (see Scheme 6a, TS-
A6 and TS-B2). To verify this hypothesis, Z-24 and ent-E-24 were individually transformed 

to ketone 25 by oxidative cleavage using a modified Lemieux–Johnson oxidation.23 As 

expected, 25 revealed opposite absolute configuration indicated by opposite optical rotation.

Acyclic trisubstituted alkenes should, based on our mechanistic study, undergo cycloaddition 

in a concerted, stereospecific fashion. To demonstrate the utility of such an attribute, 

different pairs of acyclic E- and Z-alkenes were subjected to the optimized conditions (Table 

2). As seen for alkene 23, modest E/Z selectivity was observed for Z-alkenes; however, the 

respective cyclobutanes 27a and 27b were formed with very high enantioselectivity (entries 

1 and 2, the respective TS-A6 and TS-B2 from Scheme 6 are likely operating and explain 

the observed selectivity for alkenes 26a and 26b). Gratifyingly, no detectable amounts of the 

diastereomeric product originating from a nonstereospecific process was observed (compare 

entry 1 and 3). Interestingly, E-alkenes (entries 3–7) performed significantly better in terms 

of E/Z selectivity of products. Considering the two transition states TS-A7 and TS-B3, this 
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is not surprising because TS-A7 encounters a substantial steric interaction between the E-β-

substituent and the boroaryl group, whereas TS-B3 is less affected by this substituent 

pointing away from the large boroaryl group (see Scheme 7a for details). Thus, E-isomeric 

cyclobutanes were formed almost exclusively from E-alkenes; however, product 27c (entry 

3) was obtained with low enantioselectivity even when the temperature was decreased to 

−20 °C. A modest improvement was accomplished by exchanging catalyst 2c with 2a to 

provide the desired product in 90:10 er. Interestingly, when benzyl allenoate 1a was used 

instead of its thio-analog 1c, good enantioselectivity was achieved while maintaining the 

high level of E/Z selectivity (entry 4). Steric bulk, as imposed by ethyl groups on their 

respective positions (alkene 26d and 26e), was well tolerated giving products 27e and 27f in 

good yield and enantioselectivity. Finally, cyclic alkene 26f proceeded in 88% yield and 94:6 

er with thiobenzyl allenic ester 1c. Its absolute stereochemistry was unambiguously 

determined by X-ray diffraction of the respective pentabromophenyl ester 28 and was found 

to be in agreement with the proposed models (Scheme 7b).

CONCLUSION

In summary, a method for enantioselective [2+2] cyclo-additions of activated alkenes with 

allenoates has been developed. Supported by mechanistic evidence, this reaction resembles a 

rare example of a concerted, enantioselective [2+2] cycloaddition with activated alkenes. As 

such, its potential to generate molecular complexity, with precise control of stereochemistry, 

makes the reaction especially attractive toward the synthesis of cyclobutane containing 

targets.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Scheme 1. 
Enantioselective Arylcyclobutane Synthesis
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Scheme 2. 
Model for Enantioselectivity
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Scheme 3. 
Distal Differentiation of 1,1-Biarylalkenes
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Scheme 4. 
1,1-Disubstituted Alkene Substrate Scope*
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Scheme 5. 
Catalyst Induced Periselectivity
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Scheme 6. 
Initial Study on Trisubstituted Alkenes
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Scheme 7. 
TS for E-Alkenes
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Table 1.

Reaction Optimization

Entry XR Ar Yield
b

er
c

1 OBn (1a) Ph (2a) 95% 78:22

2 OCH2CF3 (1b) Ph (2a) 46% 76:24

3 SBn (1c) Ph (2a) 72% 81:19

4 SBn (1c) 3,5-(CH3)2-C6H3 (2b) 71% 90:10

5 SBn (1c) 3,5-(tBu)2-C6H3 (2c) 90% 80:20

6 SBn (1c) 3,5-(OMe)2-C6H3 (2d) 56% 87:13

7 SBn (1c) 3,5-(CF3)2-C6H3 (2e) 96% 96:4

8 OBn (1a) 3.5-(CF3)2-C6H3 (2e) 87% 86:14

a
See the Supporting Information for experimental details.

b
Determi-nation by 1H NMR of the crude reaction mixture utilizing a calibrated standard.

c
Determined by HPLC analysis using a chiral column.
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Table 2.

Stereospecific [2+2] Cycloadditions

a
Determination by 1H NMR of the crude reaction mixture utilizing a calibrated standard. Reactions run under optimized conditions using catalyst 

2e.

b
Yields reported of pure major isomer as average of two experiments.

c
Enantiomeric ratio of the major isomer (see Supporting Information for er of minor isomers).

d
Reactions run at −20 °C.

e
Combined yield of both isomers in parentheses.
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