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Abstract

Background: Gliomas, a genetically heterogeneous group of primary central nervous system 

tumors, continue to pose a significant clinical challenge. Discovery of chromosomal 

rearrangements involving kinase genes has enabled precision therapy, and improved outcomes in 

several malignancies.
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Experimental Design: Positing that similar benefit could be accomplished for brain cancer 

patients, we evaluated The Cancer Genome Atlas (TCGA) glioblastoma dataset. Functional 

validation of the oncogenic potential and inhibitory sensitivity of discovered ROS1 fusions was 

performed using three independent cell-based model systems, and an in vivo murine xenograft 

study.

Results: In silico analysis revealed previously unreported intrachromosomal 6q22 microdeletions 

that generate ROS1-fusions from TCGA glioblastoma dataset. ROS1 fusions in primary glioma 

and ependymoma were independently corroborated from MSK-IMPACT and Foundation 

Medicine clinical datasets. GOPC-ROS1 is a recurrent ROS1 fusion in primary CNS tumors. 

CEP85L-ROS1 and GOPC-ROS1 are transforming oncogenes in cells of astrocytic lineage, and 

amenable to pharmacological inhibition with several ROS1 inhibitors even when occurring 

concurrently with other cancer hotspot aberrations frequently associated with glioblastoma. Oral 

monotherapy with a potent brain-permeable ROS1 inhibitor, lorlatinib, significantly prolonged 

survival in an intracranially xenografted tumor model generated from a ROS1 fusion-positive 

GBM cell line.

Conclusions: Our findings highlight that CNS tumors should be specifically interrogated for 

these rare intrachromosomal 6q22 microdeletions that generate actionable ROS1 fusions. ROS1 

fusions in primary brain cancer may be amenable for clinical intervention with kinase inhibitors, 

and this holds the potential of novel treatment paradigms in these treatment-refractory cancer 

types, particularly in glioblastoma.
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Introduction

Gliomas are the most common central nervous system (CNS) tumors affecting 6.6 per 

100,000 patients in the US (1) and include a heterogeneous group of neoplasms, including 

diffuse or anaplastic astrocytoma, oligodendroglioma, pilocytic astrocytoma, ependymoma, 

among several subtypes (2,3). Approximately half of the newly diagnosed gliomas are 

glioblastoma (GBM), a highly aggressive and infiltrative brain malignancy that is refractory 

to most standard of care treatment options. Despite multimodal therapeutic interventions, 

including combinations of surgery, chemotherapy and radiation, relative five year survival 

for GBM patients is about 5.5% (1). Pediatric (ages 0–19 years) and young adult (ages 20–

44 years) patients fare slightly better, with 5-year survival rates of 16.8 and 19.1%, 

respectively (1). Ten-year survival outlook of patients harboring other types of gliomas 

varies depending on age at presentation, diffuse or anaplastic tumor characteristics, and 

genomic profile, with malignant CNS tumor continuing to have some of the worst survival 

statistics when compared to most other cancer types. Thus, there is a pressing, unmet need 

for effective, personalized treatments that will improve patient outcomes in malignant CNS 

tumor patients.

Surveys of clinically relevant oncogenic drivers have the potential to inform novel 

molecularly-targeted treatment strategies (4). Over the last decade, GBM tumors have been 
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extensively profiled at the genomic and molecular level resulting from efforts initiated by 

investigators of The Cancer Genome Atlas (TCGA) project (5,6). The TCGA studies 

systematically catalogued genome alterations from a combined cohort of 506 glioblastoma 

samples and identified four distinct molecular subgroups: classical, mesenchymal, neural 

and pro-neural. Tumors from these molecular subgroups harbor unique patterns of somatic 

mutations and DNA copy number, including EGFR, NF1 and PDGFRA/IDH1 aberrations in 

classical, mesenchymal and proneural subtypes, respectively (6), and provide an informative 

framework for ongoing therapeutics development and risk stratification in GBM.

Chromosomal rearrangements that generate oncogenic kinase-fusion(s) are promising drug 

targets and selectively inhibiting them has led to unprecedented tumor responses in several 

malignancies (7–9). Rearrangements involving ROS1, an orphan receptor tyrosine kinase 

gene, was first described in a GBM cell line (U118MG) in 1987 (10), followed by further 

biochemical validation of this ROS1 fusion protein as a bonafide oncoprotein (11–13). More 

recently, various ROS1-fusions were identified in subsets of diverse pediatric and adult 

malignancies, including infantile fibrosarcoma, spitzoid melanoma, non-small cell lung 

cancer (NSCLC) and cholangiocarcinoma (14). We and others have shown dramatic clinical 

efficacy of ROS1 tyrosine kinase inhibitors (ROS1i) in ROS1-fusion expressing lung cancer 

patients (15–17), but their efficacy in ROS1-fusion positive brain tumors has not been 

examined to date due in part to lack of studies demonstrating the importance of ROS1 

fusions in brain tumors and limitations in TKIs that can cross the blood-brain barrier (BBB).

While discovery of single nucleotide variants, insertions, deletions, and copy numbers 

variants can be reliably identified from massively parallel next-generation sequencing 

(NGS), discovery of gene fusions is more complicated and has only recently become 

efficient with the development of powerful in silico fusion-mining tools (7). Recently, the 

use of an algorithm called TX-Fuse, assisted in the discovery of recurrent FGFR1-TACC1 
fusions in the TCGA glioblastoma patient cohort; the FGFR1-TACC1 fusions resulting from 

chromosomal microdeletions are particularly challenging to identify from large NGS data, 

and were not reported in the original TCGA publications (18). This suggests that a re-

interrogation of the original TCGA datasets may still yield novel information about 

actionable drivers in gliomas.

Here, we reevaluated TCGA glioma (low-grade glioma and glioblastoma) genomic 

sequencing datasets with the hypothesis that a subset of patients may harbor chromosomal 

rearrangements of the ROS1 gene, and that identification and validation of ROS1 fusions 

may facilitate clinical implementation of effective, brain-permeable ROS1 kinase inhibitors 

in patients with these lethal tumors.

Methods

Isolation and quantitative reverse transcriptase PCR (qRT-PCR) of GOPC-ROS1 and 
CEP85L-ROS1 from primary GBM tumors.

Frozen brain tumor samples were obtained from Henry Ford Hospital (Detroit, MI) with 

written consent from patients under an approved Institutional Review Board protocol. Total 

RNA was isolated from two to five milligrams of frozen tumors using the RNeasy (Qiagen) 
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system. Two micrograms of total RNA were used to generate complementary DNA (cDNA) 

using SuperScript™ VILO™ cDNA synthesis kit (ThermoFisher). Standard PCR was 

performed using AccuPrime™ Taq DNA polymerase with the following primers: 

CEP85L_ATG-Fwd-M13F (5’ atgtgggggcgcttcctg 3’) and ROS1_TERM-Rev (5’ 

ttaatcagacccatctccatatc 3’) for amplification of CEP85L-ROS1 fusion from TCGA-06–5418, 

and FIG_ATG-Fwd (5’ atgtcggcgggcggtccat 3’) with ROS1_TERM-Rev (5’ 

ttaatcagacccatctccatatc 3’) for amplification of GOPC-ROS1 from TCGA-12–5301 and 

TCGA-76–6192. Sanger sequencing of the PCR products was performed by using a series of 

internal sequencing primers. GOPC-ROS and CEP85L-ROS1 cDNAs were subcloned into 

pMSCV-IRES-GFP retroviral vectors in order to generate stable cell lines. To ascertain 

relative expression of ROS1-fusions we performed qRT-PCR for ROS1 kinase domain using 

the following primers: ROS1-Kin-qPCR-F1 (5’AAGAAGGGTTCCACAGACCAGG 3’) and 

ROS1-Kin-qPCR-R1 (5’ GCAGACAAACTCCAAGCTGCTT 3’). For qRT-PCR we used 

the PowerUp™ SYBR® Green Master Mix and the StepOnePlus™ Real-Time PCR System, 

both from Applied Biosystems and followed manufacturers protocol.

Cell culture, cell line generation and transformation assays

U118MG, Ba/F3, and NIH3T3 cells were purchased from American Type Culture 

Collection, ATCC, and cultured as recommended. SF-268 cells were procured from the 

National Cancer Institute (NCI-60 collection) via a Material Transfer Agreement. Briefly, 

for U118MG and Ba/F3 cells, complete medium (R10) contained RPMI medium 1640 with 

10% (vol/vol) Fetal Bovine Serum, L-glutamine, penicillin/streptomycin), with additional 

supplementation with 2 ng/ml of recombinant murine interleukin-3 (Peprotech) in the case 

of Ba/F3 cells. Human astrocytes stably expressing human telomerase (hTERT), and the 

E6/E7 viral antigens (HA TERT/E6/E7) were a gift from Dr. Russel O’Pieper’s laboratory 

(UCSF) as reported in their previous publication (19). These modified human astrocytes 

were cultured in DMEM with 10% FBS, and sub-cultured using routine practice when 70% 

confluent. Replication incompetent, infectious ecotropic and amphotropic retroviral particles 

were generated using Platinum-E and Platinum-A cells (Cell Biolabs, Inc.), respectively. To 

generate stable Ba/F3 GOPC-ROS1 and CEP85L-ROS1 cell lines, Ba/F3 cells were 

maintained at a density between 0.5 × 106 to 1 × 106/mL, transduced with ecotropic 

retrovirus, selected and validated as previously described(20,21). The ecotropic retrovirus 

was also used to infect NIH3T3 cells, to generate the CEP85L-ROS1 cell line. Amphotropic 

retrovirus was used to generate stable, transduced HA TERT/E6/E7 GOPC-ROS1 or 

CEP85L-ROS1 astrocyte cell lines.

Oncogenic potential of the ROS1-fusions was assessed with a IL-3 independent growth 

assay (IL-3 withdrawal). Briefly, stable cell lines were washed with R10 medium to remove 

IL-3. Cells were counted every 2–4 days, and those that exhibited sustained outgrowth were 

considered transformed. Transformed Ba/F3 cells were expanded and used for inhibitor 

testing via dose-response proliferation assays. Anchorage-independent soft-agar assays 

using HA TERT/E6/E7 GOPC-ROS1 and CEP85L-ROS1 cell lines were done as described 

in Sonoda et al(19). Briefly, 10,000 cells in DMEM + 20% calf serum were mixed with 

1.4% low melting temperate agarose to yield a final concentration of 0.7% of low melting. 

The agar layer with cells was laid on top of a pre-set 1.4 % low melting temperate agar layer 
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that had been prepared in advance. Per cell line, a minimum of 6 wells were seeded. Colony 

growth for monitored over 4 weeks. At the end of the incubation period, number of colonies 

were imaging 6–8 random fields per well, and using Image J to quantify colony number.

Immunoblotting

Where indicated, cells were treated with tyrosine kinase inhibitor for 2 to 4 hours. Lysates 

were prepared from cells using a standard cell lysis buffer as described before (21). Protein 

quantitation of cleared cell lysates was performed using Pierce™ BCA Protein Assay Kit 

(ThermoFisher Scientific), and 25 μg of total protein was loaded on pre-cast 4–12% 

Criterion™ XT Bis-Tris Protein Gels (Bio-Rad, # 3450125). Proteins were transferred to 

nitrocellulose membranes, and probed with phospho-ROS1 [#3078, 1:1,000; Cell Signaling 

Technology (CST)], total ROS1 (#3266, 1:1,000; CST), phospho-SHP2 (#3751, 1:1000, 

CST), total SHP2 (#3397, 1:1000; CST), phospho-ERK1/2 (#9101, 1:1,000; CST), total 

ERK2 (sc-1647, 1:2,000; Santa Cruz, phospho-Akt (#4060, 1:1,000; CST), AKT (#610860, 

1:1,000; BD Transduction Laboratories). Blots were imaged using either a LI-COR Odyssey 

imaging system or the Bio-Rad ChemiDoc imaging station according to the manufacturer’s 

protocol for immunoblot detection with use of infrared dye or horseradish peroxidase-

conjugated secondary antibodies, respectively. Phospho-ROS1 detection required the 

SuperSignal™ West Femto Maximum Sensitivity Substrate (ThermoFisher Scientific).

U118MG spheroids generation and inhibitor testing

3D U118MG spheroids were generated using the hanging drop method. Specifically, 1000 

U118MG cells in 35 μL volume per well were carefully seeded in the top chamber of a 

HDP1096 Perfecta3D® 96-Well plate (Sigma) to promote spheroid formation. For inhibitor 

treatment, cells were directly resuspended in R10 medium containing 50 nM of indicated 

inhibitor or in 0.05% DMSO (vehicle) and 35 μL of this cell suspension was seeded as 

above. The resulting spheroids were “dropped” into the recipient chamber after 54 hours of 

incubation by centrifugation, and calcein AM plus ethidium homodimer (using the LIVE/

DEAD™ Viability/Cytotoxicity Kit, ThermoFisher Scientific, #L3224) were added to stain 

as well as quantify live (calcein am, green) and dead (ethidium homodimer, red). Stained 

spheroids were live-imaged using a Nikon/Yokogawa CSU-W1 spinning disk confocal 

microscope. Z-sections were reconstructed and green versus red events were quantified 

using Bitplate Imaris software. Images were compiled and exported using Image J and/or 

Zen software (Carl Zeiss, Inc.).

Intracranial U118MG xenograft and oral inhibitor administration.

In vivo efficacy studies were performed in accordance with federal standards and protocols 

approved by the Institutional Animal Care and Use Committee at Oregon Health and 

Science University. U118MG cells were transduced with a puromycin-resistant luciferase 

lentivirus (Cellomics, #PLV-10003–50). Transduced cells were selected with puromycin and 

expanded for implantation. In log-growth phase, 1 × 106 cells were injected into 8-week-old 

Nu/Nu male mice (Jackson Laboratories, athymic nude: Foxnlnu; Whn-; hairless). Briefly, 

mice were deeply anesthetized and a small cranial-caudal incision made just left of midline 

on the scalp. Using a 0.9 mm burr, the intracranial space was carefully accessed just anterior 

to bregma. A 10 μL pipet tip was inserted to a depth of 2 mm, and cells were slowly injected 
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over 2 minutes. The hole was sealed with absorbable hemostatic cellulose and skin re-

approximated with surgical glue. To confirm engraftment, mice were administered D-

luciferin (75mg/kg; Promega) via intraperitoneal injection and imaged on a Xenogen 

IVIS2000 (Perkin-Elmer) 14 days after injection. Mice were then randomized to receive 

either lorlatinib (n=5, 30mg/kg in solution of Ethanol/PEG200/Water (10/40/50)) or vehicle 

alone (n=5, solution of Ethanol/PEG200/Water (10/40/50)) daily via oral gavage until death 

or euthanasia was required. Tumor growth was monitored with IVIS imaging weekly.

Results

ROS1 fusions are present in primary GBM tumor samples

Shah et al. recently developed a bioinformatic algorithm that enables fusion finding from 

RNA-sequencing data by examining exons exhibiting outlier expression, and assessing if 

there is a 5’ – 3’ imbalance in expression (22), a potential signature for fusion transcripts. 

Using this concept, we examined TCGA glioblastoma databases from previously reported 

studies (5,24). Our analysis of copy number of ROS1 genomic regions concords with the in 

silico prediction that TCGA-06–5418 GBM patient sample harbors the CEP85L-ROS1 

fusion (Supplementary Fig. S1). Interrogating TCGA data using Integrative Genomics 

Viewer (IGV) (25,26) revealed a characteristic pattern of loss of a chromosomal segment 

between CEP85L gene exon 8 and ROS1 gene exon 36 (Supplementary Fig. S2). We used 

this pattern as a hallmark for identifying samples harboring potential ROS1 fusions resulting 

from chromosomal microdeletion surrounding the ROS1 gene locus, and found two patient 

samples that we hypothesized harbor the GOPC-ROS1 fusion Supplementary Figs. S3 & 

S4). mRNA expression of predicted CEP85L-ROS1 (TGCA-06–5418) and GOPC-ROS1 (in 

TCGA-12–5301 & TCGA-76–6192) fusions was validated by reverse-transcriptase PCR 

(RT-PCR) reactions where the cDNA templates were synthesized from total RNA that had 

been extracted from fresh frozen tumor samples from these patients. Sanger sequencing of 

the RT-PCR reaction products confirmed the presence of CEP85L-ROS1 fusion in 

TCGA-06–5418 (CEP85L exons 1–8 fused in frame with ROS1 exons 36–43), and GOPC-

ROS1 in TCGA-12–5301 and TCGA-76–6192 samples (GOPC exons 1–7 arranged in frame 

with ROS1 exons 35–43) (Fig. 1A). The cDNA sequence, and the predicted protein 

sequences for CEP85L-ROS1 (TCGA-06–5418) and GOPC-ROS1 (TCGA-12–5301 & 

TCGA-76–6192) are reported in supplemental data (Supplementary Figs. S6–9). CEP85L-

ROS1 and GOPC-ROS1 result from small intrachromosomal deletion in 6q22.1 (illustrated 

in Supplementary Fig. S11B). The sample TCGA-06–6699 was also evaluated as it exhibited 

potential anomalies in the neighborhood of the ROS1 locus, but we were unable to ascertain 

the identity of the hypothesized ROS1 fusion (Supplementary Figs. S5). Similar 

interrogation of the low-grade glioma datasets revealed no aberrations in Ch. 6q22.2 region 

that would be indicative of ROS1 fusion genes.

Fluorescence in situ hybridization (FISH), a cytogenetic technique routinely used in 

diagnostic molecular pathology for detection of chromosomal abnormalities, was used to 

assess whether this standard pathology test could be used to reliably detect ROS1 

rearrangement resulting from intrachromosomal deletions (27). To this end, we employed 

clinical diagnostic ROS1-breakapart FISH probes (Abbott Laboratories) on TCGA-12–5301, 
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TCGA-06–5418, TCGA-06–6699 and TCGA-14–0789. The FISH assay showed that 

TCGA-06–5418 and TCGA-06–6699 samples harbor a chromosomal rearrangement 

consistent with an intrachromosomal deletion and translocation, respectively. The 

TCGA-14–0789 tissue section had extensive necrosis and quality of FISH data were poor, 

thus precluding confident interpretation by the cytogeneticist. The TCGA-12–5301 and 

TCGA-76–6192 samples were definitively negative for ROS1-rearrangement by FISH 

(Supplementary Fig. S11A, TCGA-12–5301 shown) despite being confirmed to express 

GOPC-ROS1 by Sanger sequencing (Fig. 1A). For TCGA-06–6699, we unsuccessfully 

attempted rapid amplification of 5’ complementary DNA ends (5’ RACE) assay as well as 

multiplex PCR using primers designed for known 5’ fusion gene partners; thus it is unclear 

if TCGA-06–6699 expresses a novel or known ROS1 bonafide fusion gene.

Sufficient fresh frozen tumor was available to biochemically assess protein expression of 

ROS1 fusions in TCGA-06–5418 and TCGA-06–6699. Immunoblotting with phospho-

specific as well as total ROS1 antibodies shows immunoreactive protein migrating at the 

predicted molecular weight of CEP85L-ROS1 (110.3 kDa) in the TCGA-06–5418 sample, 

however there are also several lower molecular weight species detected that may be 

reflecting protein degradation in these archival samples (Fig. 1B, left lane). We were unable 

to readily identify the ROS1 fusion partner in the TCGA-06–6699 sample but 

immunoblotting reveals a band with apparent molecular weight that is consistent with 

several previously reported ROS1 fusion proteins (Fig. 1B, right lane). To assess the relative 

expression of ROS1 fusions in tumor samples, we performed qRT-PCR comparing the 

TCGA GBM samples to two established human GBM cell lines: U118MG that was 

previously shown to express GOPC-ROS1 (10,12,28) as a positive control, and SF-268, an 

EGFR A289V mutation-driven GBM cell line as a negative control (29). Fold expression 

data show that both TCGA-06–5418 and TCGA-12–5301 have ROS1 mRNA expression 

that is at 83% and 85% of that of U118MG, respectively (Fig. 1C). In comparison, 

TCGA-76–6192 expresses a lower amount of ROS1 mRNA suggesting a smaller subclonal 

population or other technical factors such as degraded RNA. ROS1 did not amplify from the 

negative control SF-268 cells, consistent with previous report by Jun et al. (30). Taken 

together these data suggest that ROS1 chromosomal rearrangements in glioblastoma tumors 

produce ROS1 fusion-proteins that are expressed at detectable levels.

ROS1 fusion expressing glioblastoma patients had an average overall survival of 83 days as 

compared to a 357 day median overall survival for all patients in the TCGA cohort 

(Supplementary Fig. S12). However, we are unable to use statistical methods to ascertain if 

ROS1-fusion expression affects the survival outcome due to the small sample size.

Validation of the occurrence and frequency ROS1-fusions in independent patient cohorts

To validate these findings in independent GBM patient cohorts, and to better define the 

frequency of ROS1 fusions in primary brain tumors, we examined additional cancer 

genomic data. Specifically, we referred to the NGS data generated by the Memorial Sloan 

Kettering Cancer Center (MSKCC) MSK-IMPACT (31,32), and the Foundation Medicine™ 

genomic sequencing panels (33,34) that conducted massively parallel DNA sequencing of 

341 and 287 cancer-related genes, respectively. Notably, both these panels achieve 

Davare et al. Page 7

Clin Cancer Res. Author manuscript; available in PMC 2019 December 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sequencing reads depths of about 500–1000X, and analyze exons as well as some introns 

that are hotspots for mutations or chromosomal rearrangements. In addition, MSKCC also 

analyzed selected GBM cases using an anchored multiplex PCR targeted RNAseq panel 

assay (35). These data evidenced additional 7 cases, 6 GBM (5 adult, 1 pediatric) and 1 

ependymoma, corroborating that rare but recurrent ROS1 fusions are present in glial tumors 

as shown in the oncoprint (Fig. 2A, B, Supplementary Fig. S10). The relative frequency of 

ROS1-fusions in these sample sets is shown in Fig. 2B. The predominant fusion was GOPC-

ROS1 (81%), and one case each of CEP85L- and DCBLD1-ROS1 fusions were also 

identified. Based on a previous case of DCBLD1-ROS1 that was first discovered by DNA 

capture sequencing (MSK-IMPACT) but turned out to produce a GOPC-ROS1 transcript by 

RNA-sequencing, here we conclude that DCBLD1-ROS1 discovered in the FM1 sample 

similarly will produce a GOPC-ROS1 transcript (personal communication, Dr. Marc 
Ladanyi, MSKCC). As we were unable to validate the identity and sequence of the putative 

ROS1-fusion transcript in TCGA-06–6699, this sample is excluded from the oncoprint and 

frequency analysis. The oncoprint (Fig. 2A) also shows the concurrent genomic aberrations 

in common cancer hot-spot genes. These include (i) homozygous deletion of cell cycle 

checkpoint proteins, CDKN2A and B (this is uniform in all adult patient, but absent in the 

only pediatric patient sample), (ii) mutations in PTEN and, (iii) mutations in TERT or TP53. 

The FM1 GBM sample had an activating mutation in PI3KCA, and a concurrent RB 

mutation in addition to CDKN2A/B loss (Fig. 2A). The TCGA-06–5418 sample also has 

concurrent chromosomal amplification of PDFGFA. The pediatric patient sample (MSK-1, 4 

years old) had no concurrent aberrations in exons and selected introns of the 341 cancer-

related genes on the MSK-IMPACT panel. Notably, ROS1 fusion expression was mutually 

exclusive of EGFR, PDGFRA and IDH1 aberrations that are recurrent in gliomas. The 

U118MG cell line (Fig. 2A) has a very similar genomic profile as the primary GBM tumors 

(36) that harbor GOPC-ROS1, including homozygous deletion of CDKN2A/B, and 

mutations in PTEN as well as TP53. Given the absence of any new ROS1-rearranged, 

patient-derived glioma cell lines or xenografts, U118MG that is a genomically comparable 

cell-based model of the GBM was used as a surrogate for conducting functional studies.

GOPC-ROS1 and CEP85L-ROS1 are dominant, targetable oncogenic drivers

To test the oncogenic potential of the ROS1 fusions, we first used the Ba/F3 cytokine-

independent transformation assay system (37). Ba/F3, murine pro-B lineage cells, undergo 

apoptotic cell death in the absence of interleukin-3. However, ectopic expression of 

oncogenic tyrosine kinases confers IL-3 independence and neoplastic transformation. 

CEP85L-ROS1 and GOPC-ROS1 expressing Ba/F3 cells proliferated in the absence of IL-3, 

whereas ectopic expression of wildtype ROS1 was insufficient to transform Ba/F3 cells (Fig. 

3A). Further, expression of CEP85L-ROS1 in NIH3T3 murine fibroblasts robustly 

upregulates effector phosphorylation (phospho-SHP2 (pSHP2), phospho-AKT (pAKT), and 

phospho-ERK (pERK1/2)) downstream of ROS1 (Fig. 3B).

Next, we tested whether the fusions could transform immortalized human astrocytes (HA 

TERT) that carry concurrent TP53 and RB functional deficiency (19). We demonstrate that 

introduction of GOPC-ROS1 and CEP85L-ROS1 expression in cells of human astrocytic 

lineage enhances the ability of these cells to form anchorage-independent colonies, a 
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hallmark of neoplastic transformation (Fig. 3C). To determine relative efficacy of tyrosine 

kinase inhibitors (TKIs) with previously reported activity against ROS1 kinase, we 

performed dose-response cell viability assays using oncogene-addicted, transformed Ba/F3 

GOPC-ROS1 and CEP85L-ROS1 cell lines. Cell-based 50% inhibitor concentration (IC50) 

(scatter plot, Fig. 3F and Supplementary Fig. S13) were derived from dose-response curves 

(Fig. 3D & E) for CEP85L-ROS1 and GOPC-ROS1. These data demonstrate that multiple 

tyrosine kinase inhibitors are effective against CEP85L-ROS1 and GOPC-ROS1 

(12,13,20,28,38).

Pharmacological inhibition with tyrosine kinase inhibitors blocks autophosphorylation of 
ROS1, downstream effector protein activation and 3D spheroid formation in the U118MG-
GBM model

Using the U118MG cell line as a surrogate for human ROS1-fusion positive GBM, we tested 

the on-target inhibition of GOPC-ROS1 after treatment with six potentially brain-permeable 

ROS1 kinase inhibitors for 1 and 18 hours. The small molecules exhibited varying degrees 

of inhibition, with near complete inhibition of ROS1 autophosphorylation accomplished by 

cabozantinib (XL-184), foretinib (XL-880), lorlatinib (PF-06463922), and entrectinib 

(RXDX-101) (Fig. 4A). The extent of phospho-inhibition of signaling effectors that are 

downstream of ROS1, including SHP2, AKT and ERK1/2 kinase phosphorylation 

corresponded to level of ROS1 catalytic inhibition in these cells. The multi-kinase inhibitor 

dasatinib was used as a selectivity control, and did not exhibit substantial activity against 

ROS1.

Given demonstrable potency of these small molecules to inhibit ROS1 autophosphorylation, 

we tested their efficacy to block U118MG growth in dose-response cell viability assays. 

Given the robust biochemical inhibition of ROS1 phosphorylation (Fig. 4A), the U118MG 

cells were unexpectedly resistant to ROS1 inhibitors (Supplementary Fig. S14). We 

considered these possibilities: (a) U118MG cells are not dependent on ROS1 signaling for 

cell growth, or (b) when investigated in two-dimensional (2D) culture, ROS1 fusion positive 

cells experience substantial compensatory signaling from cell adhesion to treated plastic 

matrix thus enabling bypass survival signaling. Initial dose response experiments were done 

in 2D culture using standard, tissue-culture treated polystyrene microplates. Tumor cells 

depend more extensively on cell-cell contact and the native microenvironment for survival 

and growth in situ; both of these aspects are lost in standard 2D culture. We experimentally 

tested the latter hypothesis by comparing ROS1i efficacy in dose-response assay with 

U118MG cells either grown in 2D on standard, cell culture grade plastic dishes or grown as 

suspended clusters in ultra-low attachment dishes. U118MG cells cultured in low attachment 

dishes grew as suspended cell clusters, and this culture setting did not intrinsically inhibit 

their viability or proliferation. Notably, under these conditions the cells responded in a dose-

dependent manner to lorlatinib, cabozantinib, foretinib, and entrectinib (Supplementary Fig. 

S15). In contrast, cells grown at the same time on 2D were nearly completely resistant to 

these same inhibitors.

To further validate this hypothesis, we tested the efficacy of ROS1i to block U118MG cell 

growth using a three-dimensional spheroid assay. Specifically, the cells were grown in 
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hanging drop culture plates that promoted the formation of three-dimensional cell spheroids 

which to large degree recapitulates the cyto-architecture and cell-cell interactions as they 

occur in situ. The spheroids were smaller in diameter, and contained a larger proportion of 

dead cells when treated with ROS1i (foretinib, cabozantinib, ceritinib and lorlatinib as 

compared to dasatinib or vehicle treatment (Fig. 4B, C & D). Compilation of Z-stack images 

collected using confocal microscope reveal dose-dependent increase in number of dead cells 

(pseudocolored red) in lorlatinib-treated U118MG GBM spheroids (Movies S1–4).

Monotherapy with brain permeable ROS1i, lorlatinib reduces tumor burden and prolongs 
survival in the U118MG GOPC-ROS1 driven orthotopic xenograft GBM model

Entrectinib, cabozantinib, foretinib and lorlatinib are all attractive candidates for inhibiting 

ROS1-fusion driven GBM. Here, lorlatinib was selected for in vivo studies as it exhibited 

highest level of potency in Ba/F3 cells, and in the U118MG spheroid model. Additionally, 

having been specifically optimized for improved CNS availability, it has been shown to have 

favorable plasma:brain ratio (38,39). It should be noted that Zou et al. demonstrated efficacy 

of lorlatinib to reduce tumor burden in ROS1-fusion driven glioma using a genetically 

engineered mouse model of the disease (38). However, the survival benefit conferred by 

ROS1 inhibition in human cell origin GBM has not been previously reported. ROS1-positive 

adult GBM samples have several concurrent genomic aberrations (Fig. 2A), including 

mutations in TP53, TERT, PI3KCA, PTEN, RB, amplifications of other RTKs, and/or 

homozygous loss of CDKN2A/B that may contribute to primary resistance in vivo. To 

evaluate if there is survival benefit of ROS1-TKI in human ROS1 fusion-expressing GBM, 

we investigated the efficacy of oral monotherapy with lorlatinib in an orthotopic intracranial 

xenograft model of the disease. U118MG cells were engineered to express luciferase for 

bioluminescent monitoring of tumor engraftment, growth and response to inhibitor. 

Intracranial U118MG implantation resulted in tumor formation in all mice that were 

injected. These tumors were not infiltrative as native human glioblastoma tumors are, but 

similar to xenograft tumors formed by other glioblastoma cell lines such as U87 

(Supplementary Fig. S17). After engraftment, the mice were divided into two cohorts with 

equivalent representation of starting tumor volume. Lorlatinib (30 mg/kg) was administered 

by oral gavage, once daily for 4 weeks. Since lorlatinib has been recently interrogated in 

vivo for ALK and ROS1-driven tumors, we based the dose of lorlatinib for oral gavage on 

these studies (38,40). Regardless of the starting tumor size, all lorlatinib-treated mice 

exhibited decrease in luciferase signal (Fig. 5A, B), and importantly, survived for a 

significantly longer period (p < 0.001) (Fig. 5C). Even after lorlatinib was halted on day 28 

of treatment, the mice exhibited no signs of disease or weight loss for another 36 days after 

we stopped the treatment (Fig. 5D). We terminated the experiment after 92 days.

To confirm on-target activity of lorlatinib in U118MG xenografted tumors, we treated mice 

with either vehicle or lorlatinib (30 mg/kg) by oral gavage, and harvested tissue after four 

hours. The cerebral hemisphere contralateral to the one bearing the tumor was used as an 

internal normal brain control. Immunoblotting with indicated antibodies was performed 

using protein lysates prepared from treated tissue. These data (Fig. 5E) show near complete 

inhibition of intratumoral ROS1 catalytic activity after oral lorlatinib treatment, as well as 

concomitant inhibition of downstream effector pathways, including suppression of phospho-
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SHP2, phospho-ERK1/2 and phospho-S6. We also observe degradation of total GOPC-

ROS1; these data are consistent with a recent report (40). The mechanism of this inhibitor-

induced downregulation of total ROS1 is currently unknown and will be clarified in future 

studies. In summary, these data confirm that oral lorlatinib treatment accomplishes 

intratumoral inhibition of GOPC-ROS1 as well as its downstream effector pathways in 

intracranial tumors.

Discussion

ROS1 mRNA expression in tumors that originate in the central nervous system (e.g., 

astrocytomas, meningiomas, and glioblastoma), has been reported by multiple groups over 

the last twenty-five years (10,11,41,42). In 2003, Charest et al. discovered the native GOPC-

ROS1 fusion gene in U118MG GBM cells, and went on to show that in cooperation with 

loss of p16Ink4a and p19Arf (murine orthologues of CDKN2A &B), this ROS1-fusion 

drives formation of glioblastoma in murine models (12,13,28). Since then, there have been 

multiple inconsistent reports regarding the presence or absence of ROS1-fusions in GBM. 

These disparate results confound the utility of screening for ROS1 fusions in GBM or other 

primary CNS cancer patients. These inconsistencies are a result of poorly interpreted 

experimental results, challenges and limitations associated with mining for fusion genes in 

NGS data or due to the specific design of the break-apart FISH probes used. First, Das et al. 

(43) report that 78% of glioblastoma patients they interrogated (15 of 19) expressed the 

GOPC-ROS1, and these tumors co-expressed phosphorylated ALK and MET. This 

conclusion was based solely on an immuno-blot that shows a ROS1 antibody-reactive 

protein band of about 110kDa protein in 15 out of the 19 samples tested. They do not show 

any additional data that validates this using independent techniques (e.g., Sanger-

sequencing, NGS, immunohistochemistry), thereby weakening the conclusions. Second, Lim 

et al.(44) reported that ROS1 gene rearrangements are absent in GBM. In this study, 109 

GBM patient samples were interrogated with FISH break-apart probes, and IHC with a 

commercial ROS1 antibody. Due to the rarity of ROS1 fusions in GBM (0.5–1% in adults), 

it is feasible that a sample size of 109 was not large enough for discovery. However, a 

technical caveat pertaining to the ROS1 FISH break-apart probes may also have resulted in 

negative findings. GOPC-ROS1 is generated from an intrachromosomal microdeletion of 

~250 kbps between the GOPC and ROS1 genes on 6q22. Many commercially available 

ROS1-breakapart probes do not detect the GOPC-ROS1 fusion because the 5’ ROS1 probe 

overlaps with the GOPC gene that is 134kbp upstream of ROS1. Indeed, in our study, the 

GBM TCGA-12–5301 patient sample that definitively expresses GOPC-ROS1 fusion, as 

validated by Sanger sequencing, was FISH-negative for ROS1 fusion presence when 

analyzed by the clinical cytogenetics lab using two different commercial FISH probes. This 

has been previously observed and reported by Suehera et al. (45) in lung cancer.

Since ROS1 fusions in primary CNS tumors are generated from intrachromosomal deletion, 

careful selection of FISH probes or alternate sequencing methods are required to ensure their 

detection. Notably, even with NGS, not all computational algorithms or bioinformatics tools 

make high confidence calls for all fusion genes. For example, GOPC-ROS1 and CEP85L-

ROS1 fusions that we discovered by re-examining the TCGA GBM sequencing data have 

not been reported in landmark TCGA papers (5,24). Further, the Iavarone group reanalyzed 
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TCGA GBM data to discover FGFR receptor fusions that were also missed (18). Given these 

previous contradictory data pertaining to ROS1-fusions in GBM, our findings now firmly 

establish the occurrence and the frequency of ROS1-fusions in GBM. We examined 

independent patient cohorts, and by combining the TCGA, MSKCC and Foundation 

Medicine™ CNS tumor datasets, propose that the frequency of ROS1 fusions in adult GBM 

patients is likely to be between 0.5–1%. We also show that pediatric GBM (1 of 5; MSK-

IMPACT) and ependymoma patients (1 of 24; Foundation Medicine) also harbor ROS1-

fusions, however our sample size for this age group (<18 years) and histology 

(ependymoma) were too small to definitively report frequency.

To date, twenty-six different 5’ ROS1-fusion partners resulting from various rearrangement 

mechanisms have been described in multiple malignancies, including NSCLC, 

cholangiocarcinoma, inflammatory myofibroblastic tumors, spitzoid melanoma, and others 

(7). Given the relative promiscuity of the ROS1 gene rearrangement that results in these 

diverse fusions, it is striking that all ROS1-fusions identified in primary CNS tumor samples 

result from intrachromosomal 6q22 microdeletions. These data are strongly suggestive of 

susceptibility of that locus or a selection pressure for this type of rearrangement in cells of 

astroglial or CNS origin. The molecular mechanisms governing this remain unknown. An 

exception to this is ZCCHC8-ROS1, a novel fusion gene recently identified in a case of 

congenital GBM, a rare malignancy that occurs in <5% of all tumors in the pediatric 

population (46). This ROS1-fusion arose from a reciprocal t(6;12)(q21;q24.3) chromosomal 

translocation. A recent publication showed that GOPC-ROS1 and CEP85L-ROS1 fusion 

proteins are also present in pediatric low-grade glioma and diffuse astrocytoma (47), 

confirming our finding of GOPC-ROS1 in a pediatric GBM patient. Taken together, these 

data suggest that ROS1 fusions may be playing an oncogenic role in subsets of adult 

glioblastoma, and a more diverse set of pediatric low- and high-grade CNS tumors of glial or 

ependymal origin.

The activity and oncogenic potential of the CEP85L-ROS1 has not been functionally 

evaluated previously. We showed that both GOPC-ROS1 and CEP85L-ROS1 are oncogenic 

kinases in independent model systems examined, including in immortalized human 

astrocytes. Notably, multiple ROS1 inhibitors potently block catalytic activity, effector 

phosphorylation, and cell viability in ROS1-fusion driven model systems. In our 

experiments, we find that established ROS1-fusion expressing cancer cell lines (GBM: 

U118MG & NSCLC: HCC78 (data not shown), are resistant to ROS1-TKI when assayed in 

traditional 2D culture systems (treated plastic). Performing dose-response studies of these 

cells cultured in 3D, or in vivo, using murine tumor models concurs with immunoblotting 

data, and shows robust inhibitory efficacy of several ROS1 inhibitors (Fig. 4 & 5). Future 

experiments are warranted to elucidate the mechanisms underlying this intriguing 

phenotypic discrepancy between cells cultured on plastic versus in 3D. The tyrosine 

phosphatase, SHP2, is an important effector of ROS1, and its activity is tightly coupled to 

that of ROS1 kinase function in onco-addicted cells (7,14,20). However, SHP2 is also a 

negative regulator of focal adhesion kinase (FAK) that is activated predominantly by cell 

adhesion (48). Therefore, a possible hypothesis to explain this phenotype is that 

downregulation of SHP2 activity via inhibition of ROS1 may augment the FAK-SRC 

signaling axis, and promote ROS1i-resistance.
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Chromosomal rearrangements that generate ROS1 kinase-fusions are now established as 

dominant oncogenes in lung adenocarcinoma (14). Clinical trial data show that oral 

monotherapy with ROS1i in ROS1-fusion driven NSCLC offers significant benefit (3,16), 

and US Food and Drug Administration (FDA) approved crizotinib for front-line treatment in 

ROS1-fusion positive, metastatic NSCLC patients. Broadly, these data suggest that detection 

and pharmacological targeting of ROS1-fusions driven tumors may improve outcomes in 

ROS1-positive patients bearing cancers of other histologies as well. The expanding 

pharmacopeia of small molecule ROS1 inhibitors now includes multiple potent, brain-

permeable inhibitors, including those advancing through clinical trials (e.g., lorlatinib, 

entrectinib, and ceritinib). Shaw et al. reported Phase I dose-escalation data showing that 

oral lorlatinib treatment achieves both systemic and intracranial activity in ALK- and ROS1-

positive NSCLC patients, 72% of whom had CNS metastasis (49). Similarly, entrectinib 

treatment has led to complete CNS response in a patient with metastatic lung cancer (3). 

Thus, reaching effective CNS concentrations due to blood brain barrier permeability issues 

is no longer a clinical constraint that would minimize the translational relevance of our 

findings. Consequently, we propose that the detection of ROS1-fusions in CNS cancer 

patients may facilitate clinical investigation of ROS1-TKI as a realistic therapeutic modality 

for improving outcomes.

GBM continues to pose a significant clinical challenge, and while one-year relative survival 

rates have improved from 4.4% (1999–2000) to 37% in 2016, the five- and ten-year statistics 

remain dismal, with relative survival estimated to be 4.3% and 2.0%, respectively (50). 

Innovations in clinical trial design, and the emphasis on biomarker-based selection has paved 

the way for therapeutic innovations in rare diseases, and in cancers that were once thought to 

be untenable due to small patient numbers. Multi-armed, targeted trials such as the NCI- 

Molecular Analysis for Therapy Choice (MATCH), and NCI-COG-MATCH (pediatric), rely 

on identifying recurring functionally relevant genetic events that can be targeted with small 

molecules. Our findings suggest that the identification ROS1-fusions will facilitate precision 

oncology strategies that may demonstrably improve outcomes in this subset of adult and 

pediatric GBM patients. Future clinical exploration of this hypothesis is warranted.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Statement of Translational Relevance

Actionable ROS1-fusions generated from intrachromosomal 6q22 microdeletions are rare 

but recurrent in a subset of glioma, and may go undetected using certain types of 

sequencing or FISH analyses; immediate implementation of specific clinical screening 

for them may have a measurable impact on disease management.
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Figure 1. Validation of GOPC-ROS1 and CEP85L-ROS1 mRNA and protein expression in GBM 
samples.
A. Sanger sequencing (chromatographs) of the CEP85L-ROS1 and GOPC-ROS1 cDNAs in 

glioblastoma tumor samples from the TCGA cohort. Green and red arrows indicated above 

fusion cDNA diagram indicate primer binding location and direction used for sequencing 

CEP85L-ROS1 and GOPC-ROS1, respectively. Both fusions are generated from 

intrachromosomal deletion resulting in fusion of exons as depicted in the illustration. B. 
Immunoblotting lysates generated from frozen TCGA-06–5418 and TCGA-06–6699 tumors 
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shows expression of phosphorylated ROS1 protein. C. qRT-PCR analysis of TCGA samples 

as compared to established glioblastoma cell lines. Fold expression data for ROS1 are 

normalized to GAPDH.
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Figure 2. Validation of ROS1 fusion prevalence in GBM cases from independent genomic 
datasets.
A. Oncoprint plot illustrates ROS1 fusion in primary GBM and ependymoma samples from 

TCGA, MSK-IMPACT (MSK) and Foundation Medicine (FM) genomic sequencing 

datasets. Aberrations in cancer associated gene concurrent with ROS1-fusions are shown in 

various colors as indicated. Sample FM1 is indicated as having both DBCLD1-ROS1 and 

GOPC-ROS1 as we believe that this rearrangement generates a GOPC-ROS1 transcript due 

to genomic structure (see Results). The last lane shows the genomic profile of the 
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established human GBM cell line, U118MG (indicated in red). B. Table shows relative 

frequency of ROS1 fusions in the indicated datasets. Clinical information pertaining to age 

is absent from most FM data. For the MSKCC MSK-IMPACT data, the adult and pediatric 

patients are shown as separate rows in the table.
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Figure 3. CEP95L-ROS1 and GOPC-ROS1 transform human astrocytes and respond to ROS1 
kinase inhibitors.
A. Graph depicts data from an interleukin-3 (IL-3) withdrawal assay showing that ectopic 

expression of CEP85L-ROS1 & GOPC-ROS1 but not native full length ROS1 permits 

sustained outgrowth of Ba/F3 cells in the absence of IL-3. Parental indicates untransduced 

Ba/F3 cells (negative control). B. Immunoblot analysis shows ectopic expression of 

CEP85L-ROS1 upregulates phospho-tyrosine signaling (4G10, generic p-Tyr antibody), as 

well as canonical ROS1- effector pathway signaling (phosphorylation of SHP2 (pSHP2), 

AKT (pAKT), ERK1/2 (pERK1/2) in NIH3T3 murine fibroblasts. C. Soft-agar colony 

forming assay data shows that expression of CEP85L-ROS1 and GOPC-ROS1 confers 

neoplastic properties to human astrocytes with deficiency in TP53 and RB. Upper panel: 
representative images; lower panel: quantification of number of colonies. D. Dose response 

proliferation assay of Ba/F3 CEP85L-ROS1 and, (E) GOPC-ROS1 cells after 72 hour 

exposure to crizotinib, foretinib, cabozantinib, ceritinib, brigatinib, AZD3463, lorlatinib and 
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entrectinib. Data are normalized to vehicle-treated control, and values shown are the mean ± 

SEM. (F) Scatter plot of cell proliferation IC50 values for each TKI against Ba/F3 cells. 

Colored symbols represent different inhibitors as shown on the right.
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Figure 4. ROS1 kinase inhibitors suppress catalytic activity, effector phosphorylation, and cell 
viability in GOPC-ROS1 harboring human glioblastoma cells.
A. Immunoblot analysis of phospho-ROS1 (pROS1), total ROS1 (tROS1), phospho-SHP2 

(pSHP2), phospho-AKT (pAKT), phospho-ERK1/2 (pERK1/2) and total ERK2 (tERK2) 

from U118MG cell lysates generated after treatment with inhibitors (indicated, 25 nM) for 

1.5 or 18 hours. B. Suppression of U118MG spheroid growth and increase in cell death after 

treatment with foretinib, cabozantinib, ceritinib, lorlatinib and dasatinib for 48 hours, as 

indicated. Top: Calcein-AM staining shows viable cells within hanging drop spheroids 
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(pseudocolored green), and ethidium bromide (EthBr homodimer) staining shows dead cells 

(pseudocolored red). C. Quantification of live cell numbers (green bars) from spheroids after 

Z-stack confocal microscopy after treatment with 10, 50 and 250 nM for indicated kinase 

inhibitor for 48 hours. Data are depicted as fold-change relative to vehicle (DMSO) treated 

cells. D. Quantification of dead cell numbers (red bars) from spheroids after Z-stack 

confocal microscopy after treatment with 10, 50 and 250 nM for indicated kinase inhibitor 

for 48 hours. Data are depicted as fold-change relative to vehicle (DMSO) treated cells.
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Figure 5. Oral monotherapy with lorlatinib decreases tumor burden and prolongs survival in an 
intracranial U118MG GBM xenograft model.
A. Bioluminescence imaging of the U118MG-xenografted tumors pre- and post-four weeks 

of Vehicle or lorlatinib treatment (30 mg/kg by oral gavage, once daily). Firefly luciferase-

labeled U118MG GBM cells had been implanted into forebrain of NOD-scid mice four 

weeks prior to starting treatment. B. Photon emission as surrogate readout for tumor volume 

at start of treatment (week 0) and end of treatment (week 4) in Vehicle treated (left graph) 

and lorlatinib-treated (right graph) mice. C. Vehicle or lorlatinib-treated mouse weights at 
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start and end of treatment period. D. Kaplan Meier survival curve shows statistically 

significant difference in survivability of vehicle versus lorlatinib-treated U118MG tumor 

bearing mice. p<0.001 by Anova. E. Immunoblots from lysate prepared from mice treated as 

indicated. The illustration at the bottom indicates rough dissection lines used to harvest 

tissue to create normal brain (NB), and tumor brain (TB) as denoted in image. Lysates were 

interrogated with antibodies are shown in western blot panels, and dilutions described in 

Methods.
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