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Abstract

Glioblastoma (GBM) is a highly aggressive form of cancer that is resistant to standard therapy 

with concurrent radiation and temozolomide, two agents that work by inducing DNA damage. An 

underlying cause of this resistance may be a subpopulation of cancer stem-like cells that display a 

heightened DNA damage response (DDR). While this DDR represents an attractive therapeutic 

target for overcoming the resistance of GBMs to radiation therapy, until now, the cause of this 

DDR upregulation has not been understood. In this issue of Cancer Research, Dr. Ross Carruthers 

and colleagues investigate DNA replication stress (RS) as an underlying mechanism responsible 

for upregulation of the DDR and hence the radiation resistance of glioma stem-like cells (GSCs). 

Furthermore, the authors explore the efficacy of combined ATR (Ataxia telangiectasia and Rad3 

related) kinase and PARP (Poly (ADP-ribose) polymerase) inhibitors as a strategy to leverage 

these mechanisms and overcome radiation resistance.

The cancer stem cell theory states that a small subpopulation of tumor cells possess unique 

self-renewal properties that are capable of seeding new tumors and are a source of regrowth 

following therapy (2). Glioblastoma stem-like cells (GSCs) are defined as CD133 positive 

cells that can initiate new tumors in mice (3). This subpopulation of cells was later shown to 

be notably radioresistant, a property attributed to an intensified DDR which could be 

targeted with an inhibitor of CHK1/2 (4). Subsequently, the Chalmers’ group demonstrated 

that enhanced G2-M checkpoint activation and DNA repair were functional consequences of 

an augmented DDR that treatment with ATR and PARP inhibitors could overcome to prevent 

radioresistance (5). Key questions prompted by these studies are what properties of GSCs 

lead to the enhanced basal level of DNA damage signaling and whether these mechanisms 

can be leveraged therapeutically to overcome the resistance of GSCs to ionizing radiation.

The underlying cause for elevated DDR in GSCs has previously been attributed to 

heightened levels of reactive oxygen species (ROS) leading to increased levels of PARP and 

SSB repair (6); however, Carruthers et al did not find evidence that ROS levels were elevated 

in CD133+ GSCs versus GSC-depleted cultures (1). Instead, GSCs displayed both elevated 
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basal levels of activated ATR and CHK1, and elevated markers of RS such as foci marked 

with the single-stranded DNA binding protein, replication protein A (RPA) and the DNA 

damage markers γ-H2AX and 53BP1. Untreated GSCs also exhibited reduced replication 

velocities and asymmetric bidirectional DNA replication forks, indicating increased stalling 

of replication factories compared to non-GSC populations (1). These observations pointed to 

elevated levels of RS as causative of DDR activation in untreated GSCs, a hypothesis 

supported by the high levels of RS in GBM (7), broad activation of DDR proteins by RS (8), 

and the overlap between signaling in response to RS and DNA damage (9). But, can elevated 

RS increase radioresistance in non-GSC cultures? Carruthers and colleagues demonstrate 

that slowing DNA replication velocity by aphidicolin treatment imparts a radioresistant 

phenotype (1). Therefore, slowing DNA replication and artificially creating replication stress 

can lead to radioresistance. These observations lead to the next question, what is the 

mechanism behind elevated RS in GSCs?

Replication stress is associated with oncogene expression and is a common feature of 

cancers (10,11). The induction of RS by oncogenes is multifactorial and may be due to 

aberrant expression of genes that regulate DNA synthesis (e.g., Cyclin E), increased origin 

firing, depletion of deoxynucleotide pools, and formation of hard to replicate secondary 

structures in DNA such as G4-quadruplexes (12,13). Emerging evidence implicate a role for 

oncogene-driven transcription as a source of replication stress (14,15). One potential 

consequence of increased origin firing and elevated transcription is collision between the 

protein machinery for these two processes, which in turn creates abnormal replication fork 

structures that can be processed into DNA double stranded breaks (DSBs) (16,17).

Given the recent evidence that replication/transcription conflicts can induce RS, Carruthers 

and colleagues explored whether GSCs displayed altered transcription profiles compared to 

the bulk non-GSC populations. No evidence for altered expression of genes associated with 

DNA replication or genes known to be induced by RS was discovered. Instead, GSCs 

overexpressed a significant number of ‘very long genes’ (VLG), sequences in excess of 800 

kilobases in length (1). It is interesting to note that several VLGs upregulated in GSCs are 

known to play important roles in neurological development, axon guidance, and synapse 

formation consistent with a neural progenitor phenotype (1). Some VLGs contain difficult to 

replicate sequences that are hotspots for forming chromosomal gaps and breaks, or common 

fragile sites (CFS), that are expressed under conditions of RS, such as through aphidicolin 

treatment (18–21).

Transcription of VLGs occurs late in the cell cycle and may not be completed until the 

following cell cycle (22). Therefore, replication factories will inevitably encounter the 

transcription of a VLG at some point during the cell cycle. Replication stalling at CFS, may 

further increase the incidence of replication/transcription machinery encounters (21,23). One 

consequence of replication/transcription collisions is the formation of stable RNA/DNA 

hybrids (also referred to as R Loops) which require enzymes such as RNAse H to resolve 

(22,24–27). R loops form when transcribed RNA hybridizes with the complementary DNA 

strand and displaces the nontemplate strand as single-stranded DNA (ssDNA). R loops have 

been detected in both bacteria and human cells and are now known to influence chromatin 

structure, regulation of transcription, immunoglobulin class switch recombination, and, if 
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persistent or collide in a ‘head on’ orientation with the replication machinery, can lead to 

genome instability when processed into DSBs (28–34).

Slowing and/or stalling of DNA replication, such as that induced by low concentrations of 

aphidicolin, causes the appearance of RNA/DNA hybrids. Current evidence suggests these 

hybrids result from inadvertent collision of replication/transcription machinery at VLGs 

(22). The observation by Carruthers et al that GSCs preferentially overexpress VLGs 

provided novel mechanistic insight into a source for elevated RS in GSCs: enhanced 

transcription of multiple VLGs increases the incidence of replication/transcription conflicts 

resulting in DSBs, potentially at CFS (Figure 1). Indeed, this study provides evidence of 

DSBs, marked by γH2AX, at sites overlapping replication or transcription, marked by BrdU 

or RNA:DNA hybrids, respectively. Furthermore, this overlap occurred preferentially in 

CD133+ GSCs compared to bulk GBM cultures (1).

The poor prognosis and relative resistance of GBM to standard therapy underscores the need 

for more effective therapies. The major question addressed by Carruthers and colleagues is 

whether the heightened RS in GSCs is therapeutically actionable. The ATR kinase is a 

master regulator of responses to DNA damage and RS (35). ATR has a direct role in 

diminishing RS by promoting stabilization and restart of stalled DNA replication forks, as 

well as preventing aberrant replication origin firing and subsequent nucleotide exhaustion 

and replication stalling (35). Of relevance to the observation that transcription/replication 

conflicts may be a source of RS in GSCs (1), ATR activates and promotes the resolution of 

persistent R loops (33,36–38). Thus, inhibition of ATR may present a unique approach to 

attenuating constitutive DDR signaling exhibited by GSCs and reversing radioresistance.

The poly(ADP-ribose) polymerase 1 (PARP1) and PARP2 enzymes bind to ssDNA breaks 

and are important signal transducers within the DDR pathway. Binding to ssDNA breaks 

activates PARP1 and PARP2 to post-translationally modify themselves as well as other 

proteins by synthesizing negatively charged poly(ADP-ribose) chains. PolyADP-ribosylation 

recruits proteins involved in ssDNA break repair (e.g. XRCC1) and modifies chromatin 

structure. Distinct from ATR, PARP also functions during DNA replication and the RS 

response by regulating fork stabilization and restart, elongation velocity, ligation of lagging 

strand Okazaki fragments, and homologous recombination repair of stalled DNA replication 

forks (39–43). Importantly, the therapeutic activity of PARP inhibitors is in part attributed to 

PARP ‘trapping’, resulting from the loss of autoPARylation that facilitates removal of PARP 

from DNA. Trapped PARP creates obstacles that impede ongoing DNA replication. The 

increased abundance of trapped PARP enzymes is hypothesized to be preferentially 

cytotoxic to cancer cells harboring defects in homologous recombination repair (44,45).

Consistent with the complementary roles of ATR and PARP in the DDR pathway and the 

hypothesis that RS is a targetable feature of GSCs, Carruthers et al. tested whether the 

combination of ATR and PARP inhibitors is preferentially cytotoxic and radiosensitizing in 

GSCs (relative to bulk cells). Although PARP inhibition alone was relatively ineffective, 

treatment of GSCs with an ATR inhibitor inhibited stem cell-like neurosphere formation in 

vitro, implicating a role for ATR for viability under these conditions. This effect was even 

more pronounced with the combination of ATR and PARP inhibition. Importantly, the 
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combination treatment enhanced DNA damage in GSCs and diminished the radioresistant 

phenotype of GSCs. It is likely that ATR and PARP inhibitors synergize by inhibiting 

multiple points in the DDR. The heightened levels of RS and DDR signaling in GSCs is 

consistent with the hypothesis that these cells have become dependent upon ATR for 

viability (46). Trapping PARP through the co-administration of a PARP inhibitor may 

further strengthen the dependence of GSCs on ATR activity for survival (Figure 1).

Of particular clinical relevance, Carruthers and colleagues found that while PARP inhibition 

alone was ineffective in radiosensitizing the GSC models used in this study, the combination 

of ATR and PARP inhibitors induces profound sensitization of GSCs to radiation, an effect 

that was significantly greater in CD133+ GSCs than in bulk GBM cells (1). Multiple clinical 

trials combining PARP inhibitors with radiation or other DDR inhibitors, such as those 

targeting ATR in both BRCA1/2-mutant and non-mutant cancers, are underway (45,47). The 

data presented in this study provide a preclinical rationale for the future clinical development 

of concurrent ATR and PARP inhibitors with radiation in GBMs, and potentially other 

cancers with a high RS burden. As an added benefit, inhibition of ATR has recently been 

shown to inhibit radiation-induced upregulation of Programmed death-ligand 1 (PD-L1) in 

tumor cells, diminish radiation-induced CD8+ T cell exhaustion, and decrease the number of 

tumor-infiltrating T regulatory cells to achieve a greater anti-tumor response in a mouse 

model of Kras-mutant cancer (48). Given the well characterized immunosuppressive tumor 

microenvironment associated with GBM, treatment with ATR inhibitors may present two 

weapons against this disease: targeting the addiction to the DDR pathway and reinvigorating 

T cells to attack GBM cells following radiation therapy (49,50).
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Figure 1. Targeting replication stress in glioblastoma stem-like cells (GSCs).
A) Carruthers et al. demonstrated that CD133+ GSCs exhibit constitutive replication stress 

(RS) as shown by elevated ATR and CHK1 kinase signaling (colored green). ATR is 

activated by binding to RPA coating extended regions of ssDNA through its partner ATR 

Interacting Protein (ATRIP). ATR phosphorylates and activates CHK1 thereby initiating a 

DNA damage response that promotes activation of the intra S and G2/M phase checkpoints, 

increases replication fork stability, and regulates DNA repair pathways such as homologous 

recombination (HR) (35). One potential source of RS in GSCs is the elevated transcription 

of ‘very long genes’ by RNA polymerase that may inadvertently collide with late replicating 

regions of the genome, activating the ATR replication stress response, which in turn 

promotes cell survival and radioresistance. B) Treatment of GSCs with an ATR inhibitor 

(colored red) is selectively toxic due to GSC dependence upon RS response signaling for 

survival. Inhibition of the RS response leads to increased R loop and replication fork 

instability that ultimately lead to DSBs following structure-specific endonuclease processing 

or DNA breakage. Inhibition of PARP results in base excision repair deficiency and may 

lead to trapping of the PARP enzyme on ssDNA breaks creating further dependence upon 

ATR signaling to promote stability and repair of stalled replication forks. Inhibition of ATR 

and PARP leads profound radiosenstization of GSCs. Abbreviations: ATR (Ataxia 

telangiectasia and Rad3-related), RPA (Replication Factor A), ssDNA (single-stranded 

DNA), RNAP (RNA polymerase II), MCM (minichromosome maintenance protein complex 

helicase), POLE and POLD (DNA polymerase epsilon and delta), PARP (Poly (ADP-ribose) 

polymerase), DSBs (Double-Stranded DNA breaks).
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