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Abstract

The intracellular effects and overall efficacies of anticancer therapies can vary significantly by 

tumor type. To identify patterns of drug-induced gene modulation that occur in different cancer 

cell types, we measured gene expression changes across the NCI-60 cell line panel after exposure 

to 15 anticancer agents. The results were integrated into a combined database and set of interactive 

analysis tools, designated the NCI Transcriptional Pharmacodynamics Workbench (NCI TPW), 

that allows exploration of gene expression modulation by molecular pathway, drug target, and 

association with drug sensitivity. We identified common transcriptional responses across agents 

and cell types and uncovered gene expression changes associated with drug sensitivity. We also 

demonstrated the value of this tool for investigating clinically-relevant molecular hypotheses and 

identifying candidate biomarkers of drug activity. The NCI TPW, publicly available at https://

tpwb.nci.nih.gov, provides a comprehensive resource to facilitate understanding of tumor cell 

characteristics that define sensitivity to commonly used anticancer drugs.
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Introduction

A better understanding of gene expression changes that occur in response to anticancer 

agents in genetically heterogeneous tumor cell lines may facilitate prediction of patient 

response and resistance, and help guide the development of effective clinical combination 

regimens. We therefore set out to define the drug-induced gene expression profiles of a 

diverse set of well-characterized cancer cell lines, the NCI-60 panel (1), in response to 15 

cytotoxic and targeted anticancer agents (Table 1). In addition to evaluating drug-induced 

transcriptional changes, we aimed to use computational and visualization tools to make the 

large datasets generated available to and searchable by the larger research community 

through the development of the comprehensive NCI Transcriptional Pharmacodynamics 

Workbench (NCI TPW) interactive web resource (https://tpwb.nci.nih.gov). The NCI TPW 

integrates cell line sensitivity data for 15 clinically relevant anticancer agents with both basal 

transcript levels and agent-induced transcriptional changes for 12,704 genes at three time 

points across the NCI-60 panel. The NCI TPW further relates this information to exon 

mutation, protein expression, and multidrug resistance data, and enables query of these data 

in the context of cellular pathways and receptors.

The unique NCI TPW dataset complements other publicly available resources, such as the 

pre-treatment molecular information and pharmacologic response in hundreds of cell lines 

available from Cancer Cell Line Encyclopedia and the Genomics of Drug Sensitivity in 

Cancer datasets (2,3), as well as the post-treatment transcriptional response data from the 

NIH Library of Integrated Network-based Cellular Signatures (LINCS) project. The LINCS 

project has collected transcriptional data for over 25,000 agents but features separate, 

independent components that focus on transcriptional response and drug sensitivity, among 

other areas, with each subproject using a different set of cell lines (4,5); only a small number 

of core cancer cell lines (< 10) have been tested across all agents, with additional cell lines 

(many of them non-cancer) used for specific agents. Furthermore, LINCS relies on 

expression measurements of 978 “landmark” genes, from which levels of all other 

transcripts have been extrapolated (6), and the bulk of the LINCS transcriptomics dataset is 

not currently linked to drug sensitivity data (5,7). Compared to these existing resources, the 

NCI TPW is unique in providing the most detailed systematic compilation of directly 

measured longitudinal transcriptional responses in a thoroughly characterized panel of 

cancer cell lines (the NCI-60) to multiple agents at predefined time points.

The range of analysis tools available in the NCI TPW exceeds that for previous genomic 

data websites, allowing users to analyze transcriptional response data in the context of 

molecular pathways and mutation spectra and to directly connect this information to cell 

growth inhibition of clinically important antitumor agents. Workbench users can generate 

time course plots to visualize expression changes for genes of interest, as well as heatmaps 
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of drug-perturbed genes across the NCI-60 panel based on signaling pathways, interactions 

with a specific transcription factor, or receptor type. The NCI TPW has recently been 

applied to the characterization of temporal expression changes in genes involved in DNA 

methylation (8), glycosylation (9), and endoplasmic reticulum (ER) stress response (Min 

2018, in preparation). Here, we describe construction of the database and datasets used to 

validate it, and then detail use of the NCI TPW to uncover gene expression changes 

associated with drug sensitivity in 13 curated cell signaling pathways and to gain 

mechanistic insights that may enable early preclinical evaluation of specific potential 

combination therapies. For example, analysis of NCI TPW data revealed cell lines in which 

exposure to the epigenetic agent vorinostat resulted in sustained loss of BRCA1, BRCA2, 

and RAD51 expression, changes that confer homologous recombination deficiency and 

susceptibility to PARP inhibition and therefore suggest potential value in vorinostat-PARP 

inhibitor combination therapies. In contrast, the opposing effects on expression of the early 

growth response 1 (EGR1) gene induced by the nucleoside analog gemcitabine and the 

epidermal growth factor receptor (EGFR) inhibitor erlotinib suggested a potential 

antagonistic relationship between these two agents, which was supported by further cell 

culture studies and may explain the lack of additional clinical benefit from combinations of 

gemcitabine and EGFR inhibitors (10-12).

This database and the accompanying set of interactive tools will empower biologists and 

pharmacologists to generate novel hypotheses and contribute to ongoing wider systems 

biology efforts evaluating how transcriptional response influences drug sensitivity, 

ultimately supporting subsequent mechanistic studies.

Materials and Methods

Cell lines, drug treatment, RNA extraction, and sensitivity measurements:

NCI-60 cell lines were obtained from the NCI Developmental Therapeutics Program Tumor 

Repository (https://dtp.cancer.gov/discovery_development/nci-60/cell_list.htm). Each lot of 

cells was authenticated through a variety of molecular characterizations, and identity was 

confirmed from frozen stock of each cell line using Identifiler DNA profiling. Each cell line 

was tested for mycoplasma when it was accepted into the repository and before being frozen 

as a working seed stock from which cell lines were limited to 20 passages of growth. 

Furthermore, randomly selected cultures were tested approximately every 6 months using 

the MycoAlert Mycoplasma Detection Kit (Lonza, Basel, Switzerland). Testing for drug 

sensitivity followed NCI-60 drug screening protocols and was completed on the same 

mixture of cells used for transcriptional profiling. For each cell line, the logGI50 values for 

bortezomib in the NCI TPW were inferred from a single experiment for each screening 

concentration of that agent. The logGI50 values for all other agents in NCI-TPW were 

computed as an average of two logGI50 values derived from two replicate experiments for 

each cell line.

Authentication results and screening protocols are available at: https://dtp.cancer.gov/

discovery_development/nci-60/characterization.htm. For RNA collection, cell lines were 

inoculated onto 96-well plates at densities of 7,500 – 30,000 cells/well 24 hours prior to 

addition of drugs. The cells were exposed to 15 anticancer agents (formulated in 0.25% 
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DMSO) at a ‘low’ and ‘high’ concentration, approximating the clinical Cmax (13) and 

log10(GI50) (14) (Table 1). Total RNA was collected from the untreated control and drug-

treated cells at 2, 6, and 24 hours using the Qiagen (Germantown, MD) RNeasy mini kit per 

manufacturer’s protocol and immediately frozen at −80oC.

Expression profiling on Affymetrix HTA array plates U133A:

RNA quality was determined on a Caliper LabChip GX (Hopkinton, MA) in 96-well format 

(distinct rRNA band and RQS > 7.5); only high-quality total RNA samples were used. 

Samples (96-well format, 1 μg each) were labeled using the Affymetrix (Cleveland, OH) HT 

One-Cycle Eukaryotic Labeling Kit on GeneChip Array Station following the 

manufacturer’s suggested protocols. Biotin-labeled antisense cRNA (4 μg per sample) was 

hybridized to Affymetrix GeneChip HT Human Genome U133A 96-Array plates overnight. 

Plates were washed and stained on a GeneChip Array Station, then scanned on an 

Affymetrix HT array plate scanner. Data were collected using the Affymetrix GCOS 

software. Initial data quality control was performed using percent present calls generated by 

Affymetrix Quality Reporter software. Gene expression data were deposited in the Gene 

Expression Omnibus (GEO) under accession number GSE116436.

The NCI Transcriptional Pharmacodynamics Workbench:

Tools in NCI TPW include time course graph representation of gene expression, heat map 

analysis of candidate gene expression, analysis of manually curated genes from selected 

cancer pathways and receptor lists, and correlation of the gene expression changes with drug 

sensitivity (log10[GI50]), cell line multidrug resistance status, cell doubling time, and the 

presence of certain pathogenic mutations. The NCI TPW defines gene expression fold 

change as the difference in log2 expression between the drug-exposed and corresponding 

zero concentration within a cell line at each time point. Raw CEL files downloaded from 

caARRAY were background-subtracted and normalized using the Robust Multi-array 

Average (RMA) algorithm (15) for all cell lines treated by the same drug. The data 

containing 22,227 probe sets on Affymetrix U133A were then summarized into 12,704 

genes by taking the average of log2 measurements of probe sets for each gene. The data 

matrices for NCI-60 lines treated with the 15 drugs at different time points and different 

concentrations, including baseline experiments (zero concentration), were stored in a 

backend SQLite database. The NCI TPW system operates under the CentOS (version 6.5). 

The web client interface pages are written in html, css, and JavaScript. Data analysis and 

graphic display are performed using R packages (version 2.15.0). CGIwithR, which permits 

the straightforward use of R as a CGI scripting language, is used to facilitate processing of 

information from web-based forms and reporting of results in the html through the CGI.

High throughput qRT-PCR:

Fluidigm BioMark™ System was used according to the manufacturer’s instructions. High-

quality total RNA (500 ng) (RIN > 7 on the Agilent Bioanalyzer) was reverse-transcribed 

using Invitrogen’s High Capacity cDNA Reverse Transcription Kits. The cDNAs were pre-

amplified with a pool of 32 pairs of gene-specific primers for 14 cycles, followed by 40 

cycles of real-time qPCR quantification in triplicates on 96.96 dynamic arrays using the 

Fluidigm gene expression protocol. Real-time PCR and data collection were done using the 
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BioMark system, and data were analyzed with Fluidigm’s Real-Time PCR Analysis 

software. Affymetrix U133A array results were validated with measurements of the 

expression of 28 selected genes after treatment with 6 drugs for 24 hours in 24–60 cell lines 

(Supplementary Table S1).

Confirmation of Genes Using TaqMan qRT-PCR:

Quantitative real-time reverse transcriptase-PCR reactions were monitored using the ABI 

StepOne Plus and TaqMan Chemistries (Applied Biosystems, Foster City, CA [now Thermo 

Fisher Scientific, Waltham, MA]). One microgram of total RNA was reverse transcribed in a 

20 μL reaction using the ABI High-Capacity cDNA Reverse Transcription Kit (Applied 

Biosystems); resulting cDNA was stored at −80oC until required. PCR reactions consisted of 

5 ng of cDNA, forward and reverse primers for the genes of interest and/or the endogenous 

control GAPDH (QIAGEN predesigned assays), and TaqMan SYBR Green PCR Master 

Mix (Applied Biosystems) in 20 μL reactions. Triplicate wells for each sample were 

analyzed using the comparative Ct method (ABI user bulletin #2), and measurements were 

expressed as an increase or decrease in relative expression (log2) compared with the 

untreated control. Commercial primers/probes were purchased from Applied Biosystems.

Identification of genes with consistent expression changes among antitumor agents:

Consistent transcriptional changes of the 12,704 genes were defined as those in which 

expression of the majority of NCI-60 lines changed in the same direction for that gene, and 

≤ 15 cell lines (i.e., ≤ 25% of cell lines) had a change in the opposite direction. Previously, 

we and others have found that gene signatures identified using this criterion of expression 

were in good concordance with drug response data that used alternative methods of gene 

ranking based on the strength of expression response (8,16,17). After identifying genes with 

concerted expression changes across the lines in individual experiments, we investigated 

which genes had a transcriptional response to all 15 drugs. Separate analyses were 

performed at 2, 6, and 24 hours after treatment.

Analyses of most sensitive and least sensitive cell line cohorts:

Genes included in the 13 curated cell signaling pathways are listed in Supplementary Table 

S2. For heatmaps, average fold change values were calculated for each gene in each pathway 

across the 10 most sensitive lines and the 10 least sensitive lines, respectively, in response to 

each of the 15 antitumor agents (high concentration). Mean fold change for all genes in each 

specific pathway represents the overall expression of that pathway. At each time point, 

analysis was performed separately for most sensitive and least sensitive cohorts. Heatmaps 

were generated using the “heatmap.2” package in R. Drugs and genes were aligned in all 

heatmaps. For correlation analyses of log(IC50) versus log2(fold change) for genes 

potentially mediating drug insensitivity, p-values were adjusted for multiple testing using the 

Benjamini and Hochberg method (18).

Analysis of EGR1-mediated antagonism between gemcitabine and erlotinib:

EGR1 protein levels following treatment with gemcitabine or erlotinib were assessed by 

Western blot using a Novex minigel system with precast 4–20% gels, anti-EGR1 
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monoclonal antibody (clone 15F7, Cell Signaling Technology), and chemiluminescent HRP 

visualization. For additivity analyses, cells were incubated with various concentrations of 

gemcitabine (0.6–2 mM) and erlotinib (0.02–1.25 mM) for 72 hours. Cells were then treated 

with 50% trichloroacetic acid and stained with Sulforhodamine B, and optical densities were 

measured at 515 nm. Antagonism was determined by the MacSynergy II model based on 

Bliss additivity (19,20); 3D response surface plot values, indicating the percent inhibition 

above or below expected at each set of concentrations, were calculated at the 95% 

confidence interval.

Assessment of vorinostat-induced HR deficiency and talazoparib sensitization:

T-47D, NCI-H460, UO31, UACC257, and SK-OV-3 cells were inoculated into 96-well 

plates in 100 μL media and incubated at 37ºC and 5% CO2 for 24 hours prior to addition of 

vorinostat. Drugs were added to produce a final DMSO concentration of 0.25% in 200 μl. 

For analysis of BRCA1, BRCA2, and RAD1 expression, cells were exposed to vorinostat (5 

μM) for 24 hours, then the media was replaced with vehicle, and cells were cultured for an 

additional 72 hours. BRCA1 and RAD51 proteins were measured by Western analysis using 

a Novex minigel system with precast 4–20% gels and chemiluminescent HRP visualization. 

Anti-RAD51 and anti-BRCA1 antibodies were purchased from Cell Signaling Technologies 

(Danvers, MA; catalog numbers 8875 and 9010, respectively). For additivity analysis, cells 

were incubated with vorinostat alone (0.3125–10 μM) for 24 hours, after which the culture 

medium was replaced with fresh medium containing talazoparib alone (3.125–50 nM), and 

cells were cultured for an additional 96 hours. Cells were fixed with 50% trichloroacetic 

acid and stained with Sulforhodamine B, and optical densities were measured at 515 nm. 

Dose responses and log10(GI50) were calculated, and synergism was determined by the 

MacSynergy II model based on Bliss additivity (19,20) as described above.

Results

Generation of the NCI TPW web tool

NCI-60 cell lines were exposed to 15 anticancer agents for 2, 6, and 24 hours at two 

different concentrations that, where possible, spanned the clinical Cmax and mean 50% 

inhibitory concentration (GI50) for the cells (Table 1). Sensitivity data (log10[GI50]) for each 

cell line and each drug, measured concurrently with the gene expression changes, can be 

found at https://tpwb.nci.nih.gov/GeneExpressionNCI60/GI50.html. Changes in gene 

expression were measured using Affymetrix GeneChip HT Human Genome U133A 

microarrays, and drug-induced gene expression was compared to basal expression (measured 

in untreated control cultures) at the same time points to generate positive and negative log2 

fold expression change values for each gene in the context of each cell line, drug, and time 

point; these data form the basis of the NCI TPW.

The NCI TPW online resource (https://tpwb.nci.nih.gov) contains extensive search and 

display capabilities for this database, allowing users to view the data based on a specific 

tumor histology, agent of interest, signaling pathway, or user-specified gene list. Options for 

visualization include: (1) single-gene response to low or high concentration of each agent at 

2, 6, and 24 hours, with the ability to stratify data by cancer type; (2) correlation analyses, 
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including gene expression changes most correlated with drug sensitivity, baseline expression 

of a gene of interest, or the presence of a specific mutation identified by exome sequencing; 

(3) heatmap or time course graph of the genes most highly modulated by each treatment; and 

(4) drug-induced effects on expression of a user-defined list of genes. Additionally, users can 

create a heatmap of drug-perturbed genes based on any one of 65 different signaling 

pathways, interaction with 121 specific transcription factors, or 55 receptor types; these gene 

lists were validated using a query signature in the Broad Connectivity Map (17) and the 

LINCS database (16). Example outputs are displayed in Figure 1A-C.

Confirmation and validation of gene expression changes

To confirm the array-based results, independent experiments were performed using a 

Fluidigm BioMark™ qRT-PCR System to measure expression of 28 selected genes after 24 

hours of exposure to 6 agents in subsets of cell lines that were chosen to span a broad range 

of sensitivities to the agents tested (Supplementary Table S1). The Pearson correlation 

coefficient for the association between drug-induced gene expression changes in the array 

experiments and Fluidigm BioMark™ qRT-PCR experiments (n > 11,000), was 0.782, 

indicating highly similar results from the two types of studies (Figure 2A-D).

To confirm that NCI TPW data accurately recapitulate the biology and mechanistic effects of 

targeted therapeutics, we used erlotinib, an FDA-approved inhibitor of EGFR that inhibits 

mitogen-activated protein kinase (MAPK) signaling (21), to examine downregulation of 

MAPK pathway transcriptional target genes DUSP6, DUSP4, and SPRY2 (22-24). 

Consistent with the mechanism of action of erlotinib, we observed an association between 

cell line sensitivity (log10[GI50]) and erlotinib-induced downregulation of MAPK pathway 

gene expression at 6 hours, with correlations of 0.48 (DUSP4), 0.56 (SPRY2) and 0.70 

(DUSP6) (Supplementary Figure S1).

Comparative analyses of gene expression changes in cell lines of different sensitivity

Using the NCI TPW to compare the average fold change in gene expression across all cell 

lines and drug treatments, none of the 12,704 genes measured showed a directionally 

concerted expression change (i.e., up- or down-regulation by all drugs tested and across the 

majority of cell lines) (8) from exposure to all 15 drugs at either 2 or 6 hours after treatment; 

however, 8 genes had a common directionally concerted response to all 15 agents across ≥ 

75% of NCI-60 cell lines after 24 hours (Supplementary Table S3). Three of these genes 

were downregulated: histone gene HIST1H4C, involved in chromatin structure; SLC19A1, 

encoding a folate and drug transporter; and XRCC5, involved in DNA repair. Five of these 

genes were upregulated: immune-related genes CD55, HLA-E, and HLA-G, proapoptotic 

gene BTG1, and microtubule-associated gene MAP1LC3B. Furthermore, the magnitudes of 

these gene expression changes were associated with cellular sensitivity (logGI50) to several 

agents; the strongest associations with chemosensitivity were observed for dasatinib, 

lapatinib, erlotinib, and cisplatin (data available on the NCI TPW, https://tpwb.nci.nih.gov).

To uncover signaling pathway–specific gene expression changes associated with drug 

sensitivity, we generated a list of transcriptionally regulated genes in 13 cell signaling 

pathways based on published data (see Supplementary Table S2 for details and references). 
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For example, XRCC6, PRKDC, DCLRE1C, NHEJ1, XRCC4, LIG4, BRCA1, RAD52, 
BRCA2, RAD54L, ATM, ATR, and PARP1 were selected to investigate the modulation of 

DNA damage and repair mechanisms. We calculated average fold change values for each of 

these gene subsets in the 10 most sensitive and least sensitive cell lines at 3 time points for 

the highest concentration of each drug (Figure 3). Few pathway changes were evident at 2 

hours, while increasingly substantial changes were observed at 6 and 24 hours. The genes 

that most prominently responded to all agents were those involved in ER stress activation 

and apoptosis; these responses were observed in both the most sensitive and least sensitive 

cohorts, though, in many cases, the least sensitive cell lines exhibited less substantial 

changes. Treatment with all tyrosine kinase inhibitors except sunitinib was associated with 

MAPK pathway downregulation of cell cycle checkpoint pathway function at 24 hours 

among the most sensitive cell lines, as would be expected based on the role of MAPK 

signaling in promoting cell proliferation, whereas the DNA damaging/cytotoxic agents had 

negligible effects on these genes.

We next sought to define potential mechanisms that control responsiveness to each of the 15 

agents. We examined fold expression changes in the 15 most sensitive and 15 least sensitive 

cell lines for each agent, and performed GI50 correlation analyses using the entire set of 

NCI-60 cell lines, to identify genes for which drug-induced expression changes in the most 

sensitive cell lines differed from those in the least sensitive cell lines (Supplementary Table 

S4). Notably, several of the 15 agents did not yield any genes exhibiting large expression 

differences between the most and least sensitive cohorts for the respective agents and 

therefore do not appear in this table. Several genes that exhibited lower expression levels in 

the least sensitive versus most sensitive cell lines are known tumor suppressor genes, while 

some genes with higher expression levels in the least sensitive cohort, including 

APOBEC3B, have been implicated as prognostic factors (25,26).

Opposing changes in EGR1 expression underlie antagonism between EGFR inhibitors and 
DNA damaging agents

To demonstrate the utility of the NCI TPW dataset in enabling early preclinical 

identification of potential antagonistic interactions that might limit the clinical utility of a 

combination, we explored agent class–specific modulation of the master transcriptional 

regulator EGR1. EGR1 promotes cell survival and proliferation, and we found that 

expression of the EGR1 gene was upregulated or downregulated upon exposure to anticancer 

agents depending on whether the agent mechanism of action entails a requirement for or 

suppression of cell proliferation; the EGFR tyrosine kinase inhibitors erlotinib and lapatinib, 

which exert antitumor activity via suppression of growth factor signaling, generally 

decreased EGR1 expression, while the DNA damage-inducing agents gemcitabine, 

topotecan, doxorubicin, and cisplatin generally promoted upregulation of EGR1 expression 

across the NCI-60 panel (Supplementary Figure S2A-B). Downregulation of EGR1 
expression following exposure to high-concentration EGFR tyrosine kinase inhibitors was 

associated with sensitivity to these agents (e.g., Pearson r = 0.634 or 0.482 after 6 hours of 

treatment with erlotinib or lapatinib, respectively; Supplementary Figure S2A). In contrast, 

upregulation of EGR1 expression was associated with sensitivity to high-concentration 

gemcitabine, topotecan, cisplatin, and doxorubicin (Pearson r = -0.591 or -0.610 after 6 
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hours of treatment with gemcitabine or topotecan, respectively, and r = -0.434 or -0.347 after 

24 hours of treatment with cisplatin or doxorubicin, respectively; P < 0.05 for all; 

Supplementary Figure S2B).

Given the lack of additional clinical benefit observed for combinations of EGFR inhibitors 

and gemcitabine relative to respective single-agent therapies (10-12), we postulated that the 

opposing changes in EGR1 gene expression induced by these two different agent classes 

might form a basis for antagonism. Focusing on erlotinib and gemcitabine, six cell lines 

from the NCI-60 panel were selected based on sensitivity to these two agents and the 

magnitude and direction of agent-induced changes in EGR1 gene expression; NCI-H322M 

and SK-OV-3 were sensitive to erlotinib but only moderately sensitive to gemcitabine and 

exhibited large decreases in EGR1 expression following erlotinib treatment; NCI-H460 and 

U251 were sensitive to gemcitabine but not erlotinib and exhibited large increases in EGR1 
expression in response to gemcitabine; PC3 and HCT116 were not sensitive to erlotinib, 

with only HCT-116 but not PC-3 sensitive to gemcitabine, and did not exhibit appreciably 

altered EGR1 expression in response to either drug (Figure 4A). Western blot analysis 

confirmed that gemcitabine- or erlotinib-induced EGR1 gene expression changes were 

associated with similar changes in EGR1 protein expression (Figure 4B).

We next sought to identify any antagonistic interactions over a range of erlotinib and 

gemcitabine concentrations by performing 3D response surface analysis based on the 

MacSynergy II model (19,20). This program calculates theoretical additive interactions 

using the response data for each of the single agents and then subtracts the theoretical from 

the observed values to generate a 3D surface response plot showing the percent inhibition 

above or below the expected values (indicated by positive or negative y-axis values, 

respectively). Calculation of the total volume (area under the curve × % inhibition) for each 

3D plot enables identification of significantly greater-than-additive (synergistic) or less-than-

additive (antagonistic) interactions, where calculated volumes of < -100 μM2 % represent 

significant and substantial antagonism. We found that exposure to the gemcitabine-erlotinib 

combination for 72 hours resulted in substantial antagonism between the drugs in the NCI-

H322M and SK-OV-3 cell lines (antagonism volumes of −126 ± 31 and −114 ± 5 μM2 %, 

respectively), moderate antagonism in the U251 cell line, and weak antagonism in the NCI-

H460, PC-3, and HCT-116 cell lines, with the mean antagonism volume for the former two 

cell lines significantly larger than that of the 4 cell lines for which no substantial erlotinib-

induced EGR1 downregulation was observed (P = 0.0007 according to an unpaired, 2-tailed 

t-test; Figure 4C-D and Supplementary Figure S3A-E).

Vorinostat impairs the homologous recombination pathway and increases sensitivity to 
PARP inhibitor treatment

As a starting point for further studies on the expression of genes involved in DNA damage 

and repair, we examined expression of homologous recombination (HR) pathway genes 

BRCA1, BRCA2, and RAD51 following drug exposure. The HDAC inhibitor vorinostat was 

one of several drugs that caused a sizeable decrease in relative expression (log2 fold change 

> 1) of all three genes (BRCA1 shown in Figure 1A; BRCA2 and RAD51 data available on 

the NCI TPW, https://tpwb.nci.nih.gov). This observation supports published findings that 
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vorinostat, by reducing BRCA1, BRCA2, and RAD51 expression, may confer HR 

deficiency and drive susceptibility to agents, such as PARP inhibitors, that impair alternative 

DNA damage repair processes (27-29). We assessed this hypothesis by first more fully 

exploring the effects of vorinostat on these HR pathway genes. To evaluate whether 

expression of the HR genes remained low after vorinostat exposure, we exposed 5 

vorinostat-sensitive cell lines to the drug for 24 hours, removed the drug, and then continued 

to culture the cells over 72 hours. Downregulation was sustained in T-47D and NCI-H460 

cells for 72 hours after vorinostat washout, whereas gene expression in UO31 and UACC257 

cells returned to baseline or higher within 24 hours of vorinostat washout, and no 

appreciable downregulation of these genes was observed at any time point in the SK-OV-3 

cell line (Figure 5A). In addition to RNA levels, BRCA1 and RAD51 protein levels also 

decreased over 72 hours of exposure to vorinostat (Figure 5B).

To further assess the impact of this induced HR deficiency phenotype, we evaluated whether 

vorinostat-mediated decreases in HR gene expression would enhance sensitivity to PARP 

inhibition. We assessed greater-than-additive cytotoxicity over a broad range of both 

vorinostat and talazoparib concentrations (0.3125–10 μM and 3.125–50 nM, respectively) by 

pre-treating cells with vorinostat for 24 hours, then replacing the culture medium with 

medium containing only talazoparib and incubating for an additional 96 hours. We again 

performed 3D response surface analysis based on the MacSynergy II model (19,20), where 

volumes of > 100 μM2 % represent significant and substantial synergy. This analysis 

revealed significant synergy between these two agents in the T-47D and NCI-H460 cell 

lines, with mean synergism volumes of 223 ± 109 and 252 ± 80 μM2 %, respectively, from 3 

independent experiments (Figure 5C-D and Supplementary Figure S4A). As expected for 

UO31 and UACC257 cells (in which HR gene expression was restored within 24 hours after 

vorinostat exposure) and SK-OV-3 cells (in which HR gene expression was not appreciably 

downregulated at any time point), increased sensitivity to PARP inhibition was not observed 

(Figure 5C and Supplementary Figure S4B-D). The mean synergism volume for the cell 

lines exhibiting sustained suppression of HR gene expression (T-47D and NCI-H460) was 

significantly greater than that of the 3 cell lines for which no such sustained HR gene 

downregulation was observed (Figure 5C; P = 0.0003 according to an unpaired, 2-tailed t-
test).

Discussion

We measured transcriptional responses to 15 anticancer agents across the NCI-60 cell line 

panel with the goal of creating a dataset and an accompanying extensive array of interactive, 

web-based analytical tools to facilitate exploration of gene expression changes induced by 

various treatment strategies. These tools have been validated to enable the NCI TPW to be 

used for comprehensive pathway and target effect analyses, complementing hypothesis-

driven studies of gene regulation that may be relevant to drug mechanism of action and 

treatment response.

The examination of genes exhibiting concerted directional responses to all 15 agents may 

shed light on common mechanisms of drug response or resistance. We found 8 such genes 

that exhibited concerted responses after 24 hours of drug treatment (Supplementary Table 
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S3): 3 genes were downregulated (HIST1H4C, a replication-dependent histone H4 family 

gene involved in chromatin structure; SLC19A1, which encodes a folate and drug 

transporter associated with drug sensitivity (30); and XRCC5, which encodes the protein 

Ku80, required for non-homologous end joining during DNA double strand break repair); 5 

genes were upregulated (the immune-related genes CD55, HLA-E, and HLA-G, the anti-

proliferation gene BTG1, and autophagy-associated gene MAP1LC3B). MAP1LC3B 
encodes the autophagosome component LC3B, which may play a role in chemoresistance 

and therefore may be a potential target for improving chemotherapy efficacy (31). In 

contrast, BTG1 promotes stress-induced cell growth arrest and apoptosis (32); BTG1 
deletions may be predictive of poor prognosis in some tumor types (33,34), and the 

concurrence of patient relapse with proliferation of tumor cells containing BTG1 deletions 

suggests that BTG1 loss may be associated with chemotherapeutic resistance in some 

instances (35,36). Thus, drug-induced BTG1 expression may be a potential positive 

biomarker for activity of pharmacological agents.

The increased expression of the immune-related CD55, HLA-E, and HLA-G genes in 

response to all 15 drugs is consistent with the known roles of the associated proteins in 

malignant cell survival and may have implications for the development of novel therapies. 

Expression of the non-classical HLA genes HLA-E and HLA-G promotes tumor evasion, 

suppression of immune response, and upregulation of matrix metalloproteinases (37); HLA-
E and HLA-G expression, particularly in the absence of classical HLA expression, is also 

associated with poor prognosis in several tumor types (38-40). Similarly, CD55 is a 

prognostic indicator in multiple cancers and, by enabling cancer cells to evade complement 

attack, confers resistance to apoptotic stimuli in vitro (41,42). Therefore, drug-induced 

upregulation of CD55 and these non-classical HLA genes may impede monotherapy 

treatments, and targeting of these proteins as part of combination therapies may be 

beneficial. Furthermore, the potential immunosuppressive effects conferred by increased 

HLA-E, HLA-G, and CD55 expression following treatment with the agents examined in this 

study suggest the promise of combining these drugs with immune-modulating agents. 

Indeed, clinical trials investigating several such immunotherapy combinations are currently 

underway (43).

These NCI TPW data led us to examine other genes relevant to immune function that are 

affected by the study agents. For example, expression of LIF (leukemia inhibitory factor) 

decreases following exposure to geldanamycin (Figure 1B). LIF, a multifunctional cytokine, 

has been shown to promote changes in the tumor microenvironment that result in tumor 

invasion (44-46). Because LIF promotes tolerance and drives T cells to differentiate into 

immune-suppressive regulatory T cells, an HSP90 inhibitor such as geldanamycin, which 

decreases tumor cell LIF production, may be synergistic with agents promoting T cell 

responses, such as checkpoint inhibitors. However, in vitro studies of immune-related genes 

must be interpreted with caution, as cell culture does not recapitulate the complex 

interactions between the immune system and tumor cells.

We identified signaling pathways unique to sensitive or insensitive cells by comparing 

cohorts of the 10 most sensitive lines and the 10 least sensitive lines for each agent. Upon 

examining a series of 13 curated pathways, we found that both the most sensitive and least 
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sensitive cell line cohorts had similar pathway signatures, although the magnitude of 

response was generally smaller in the least sensitive cohort; no pathways were uniquely 

activated in the least sensitive cohort. Pathways were not appreciably upregulated or 

downregulated after 2 hours of treatment, indicating that this time point is not optimal for 

measuring acute transcriptional responses.

Finally, our data demonstrate how the NCI TPW resource can be used to gain mechanistic 

insights to guide early preclinical evaluation of potential combination therapies. In response 

to EGFR inhibitors and DNA damaging agents, we observed directionally opposing changes 

in EGR1 expression that were also differentially associated with sensitivity to these agents; 

for example, we found that decreased EGR1 expression following erlotinib treatment was 

associated with sensitivity to erlotinib, consistent with a previous study showing that 

upregulation of EGR1 expression is associated with in vitro resistance to anti-EGFR 

antibody treatment and poor clinical outcome for colorectal carcinoma patients receiving 

cetuximab therapy (47). Our additional experimentation using the combination of erlotinib 

and gemcitabine indicated antagonism between these agents, which may explain the lack of 

substantial clinical activity documented for this and other combinations of these two agent 

classes relative to the respective single agents (10-12); interestingly, recent data suggest that 

this antagonism may be overcome by changes in the scheduling of drug administration 

(48-50). Conversely, NCI TPW data revealed that vorinostat treatment induced an HR-

deficient phenotype in some cell lines (i.e., loss of BRCA1, BRCA2, and RAD51 
expression), which led us to conduct further experiments to demonstrate vorinostat-induced 

sensitization of these cell lines to a PARP inhibitor, talazoparib. Further investigation of the 

mechanism by which this response occurs could uncover additional determinants of 

vorinostat sensitivity.

In conclusion, drug-induced transcriptional profiles were measured in the NCI-60 panel and 

are publicly available on the NCI TPW (https://tpwb.nci.nih.gov). We utilized these data to 

identify common transcriptional responses to pharmacological stress across drug 

mechanisms and multiple cell backgrounds. Evaluating expression differences in response to 

drugs within the same class or dosing tuned to the sensitivity of each cell line will help 

identify candidate genes to serve as pharmacodynamic biomarkers or for investigation as 

potential drug targets. While these data are limited to 24 hours of drug exposure, 

constraining their relevance to investigations of acquired drug resistance, this resource has 

already been used to examine expression changes for genes involved in epigenetic regulation 

and one-carbon metabolism pathways (8), glycosylation (9), and ER stress response (Min 

2018, in preparation). The NCI TPW provides a resource to the scientific community to aid 

in understanding drug mechanisms, finding novel targets for drug combination treatments, 

and exploring the link between genetic background, transcriptional response, and drug 

sensitivity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Statement of Significance

The NCI Transcriptional Pharmacodynamics Workbench represents the most extensive 

compilation to date of directly-measured longitudinal transcriptional responses to 

anticancer agents across a thoroughly characterized ensemble of cancer cell lines.
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Figure 1. 
NCI TPW users can download graphs and heatmaps demonstrating changes in the 

expression levels of 12,704 genes in the NCI-60 panel of cell lines exposed to two different 

concentrations of 15 anticancer agents. A: single-gene response to all 15 agents at two 

different concentrations over three time points (shown, BRCA1 against all drugs tested at the 

high concentration); B: single-gene response (log2 fold expression change) following 

treatment with selected agent, by cell line (shown, LIF expression following 6 hours of 

exposure to high-concentration geldanamycin in breast [red], CNS [light green], colon 

[orange], and leukemia [dark green] cancer cell lines); C: genes most highly modulated by 

selected treatment parameter (shown, high-concentration azacytidine).
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Figure 2. 
Validation of NCI TPW Affymetrix array gene expression measurements using Fluidigm 

qRT-PCR. A: Pearson correlation analysis of drug-induced gene expression perturbation 

measured by Affymetrix array or by HT Fluidigm (qRT-PCR) in an independent experiment. 

This experiment measured 32 genes in 20–60 cell lines treated with 6 drugs for 24 hours 

(see Supplementary Table S1); data are expressed as log2 of drug-induced change in 

expression. B-D: Pearson correlation analyses for expression of select genes (PLK1, 
CDKN1A, and MGEA5, respectively) measured in the experiment described above (see 

Supplementary Table S1).
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Figure 3. 
Cell signaling pathway–specific gene expression responses associated with drug sensitivity 

and insensitivity across the NCI-60 cell line panel. Average responses of the 10 most 

sensitive (top) or 10 least sensitive (bottom) cell lines after 2, 6, or 24 hours of treatment 

with the highest concentration of each drug, arranged by drug mechanism of action: kinase 

inhibitors (labeled in blue), genotoxic agents (red), or agents of other mechanistic classes 

(black). Pathway upregulation and downregulation are indicated by yellow and blue, 

respectively. Transcriptionally regulated, pathway-specific genes used to identify pathway 

modulation are provided in Supplementary Table S2.
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Figure 4. 
Modulation of EGR1 expression underlies antagonistic interaction between gemcitabine and 

erlotinib. A: Data from the NCI TPW showing changes in EGR1 gene expression in six 

selected cell lines after exposure to gemcitabine (top, red) or erlotinib (blue, bottom) for 2, 

6, or 24 hours. Each bar represents the average fold change of the two concentrations tested 

(error bars indicate standard deviation). LogGI50 values (μM) for each cell line and agent are 

shown above (gemcitabine) or below (erlotinib) each set of bars. Cell lines are grouped and 

shaded according to shared sensitivity and EGR1 response characteristics (black: sensitive to 

erlotinib but not gemcitabine, drug-induced downregulation of EGR1; dark gray: sensitive to 

gemcitabine but not erlotinib, drug-induced upregulation of EGR1; light gray: not sensitive 

to erlotinib or gemcitabine [other than HCT-116 + gemcitabine], no appreciable drug-

induced alteration of EGR1 expression). B: EGR1 protein expression recapitulates EGR1 
gene expression changes in SK-OV-3 and NCI-H460 cells following exposure to 

gemcitabine or erlotinib. Representative Western blots show erlotinib-induced 

downregulation of EGR1 in SK-OV-3 cells and gemcitabine-induced upregulation of EGR1 

in NCI-H460 cells. C: Quantitation of antagonism between gemcitabine and erlotinib. Cell 

survival was measured after simultaneous exposure to gemcitabine (0.1–104 nM) and 

Monks et al. Page 20

Cancer Res. Author manuscript; available in PMC 2019 December 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



erlotinib (0.1–1 μM) for 72 hours in the indicated cell lines, and antagonism was determined 

by 3D response surface analysis based on the MacSynergy II model (19,20), where a volume 

of < −100 μM2 % represents significant antagonism. Each column indicates the average of 

2–3 separate experiments (error bars indicate standard deviation). The statistically 

significant difference in mean volume for the two cell lines exhibiting substantial erlotinib-

induced EGR1 downregulation (NCI-H322M and SK-OV-3) versus the 4 cell lines for which 

no such EGR1 downregulation was observed is indicated by asterisks (***P = 0.0007 

according to an unpaired, 2-tailed t-test). D: Example 3D plot showing response surface 

analysis for one experiment with the gemcitabine-erlotinib combination in the NCI-H322M 

cell line; values shown in (C) represent the average volumes for 3D plots from 2–3 replicate 

experiments in each cell line.
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Figure 5. 
Sustained downregulation of HR genes and sensitivity to the PARP inhibitor talazoparib 

after vorinostat exposure. A: Sustained downregulation of HR genes BRCA1, BRCA2, and 

RAD51 after treatment with vorinostat. After 24 hours of exposure to 5 μM vorinostat, 

vorinostat was removed from the culture, and gene expression changes were determined 

after the 24-hour vorinostat exposure and after a further 24, 48, and 72 hours of culture in 

fresh media. Data are average triplicate values from 2–3 separate experiments (error bars 

indicate standard deviation). B: Decreased BRCA1 and RAD51 protein expression in T-47D 

cells following continuous exposure to 5 μM vorinostat. Representative Western blot shows 

sustained decreases in protein expression at the indicated time points throughout 72 hours of 

vorinostat treatment. C: Vorinostat-mediated sensitization to talazoparib. Cell survival was 

measured after exposure to vorinostat alone (0.3125–10 μM) for 24 hours, followed by 

incubation with talazoparib alone (3.125–50 nM) for 96 hours in the indicated cell lines; 

greater-than-additive inhibition of cell growth was determined by 3D response surface 

analysis based on the MacSynergy II model (19,20), where a volume of > 100 μM2 % 

represents significant synergy. Each column indicates the mean volume from 2–3 

independent experiments; error bars indicate standard deviation, and asterisks indicate the 

significant difference in mean volume for the 2 cell lines exhibiting sustained HR gene 

downregulation (T-47D and NCI-H460) versus the 3 cell lines exhibiting no such sustained 
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downregulation of HR genes, according to an unpaired, 2-tailed t-test (***P = 0.0003). D: 

Example 3D plot showing the response surface analysis for one experiment in the T-47D cell 

line; volume measurements shown in (C) represent the average volumes for 3D plots from 

2–3 replicate experiments in each cell line.
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Table 1.

Drugs used in transcriptional response profiling of NCI-60 cell lines for generation of the NCI TPW.

Drug (NSC) Mechanism/Target
Cmax

(μM)(13)
NCI-60 mean
GI50 (μM)(14)

Concentration
(μM)

Low High

Bortezomib
(681239)

proteasome inhibitor 0.312 0.00051 0.01 0.1

Sirolimus
(226080)

mTOR inhibitor 0.016 0.050 0.01 0.1

Geldanamycin
†

(122750)

Hsp90 inhibitor ND 0.1 0.1 1

Doxorubicin
(123127)

reactive oxygen species generator, topoisomerase 2 inhibitor 6.73 0.097 0.1 1

Gemcitabine
(613327)

DNA synthesis inhibitor (chain terminator) 89.3 0.24 0.2 2

Paclitaxel
(125973)

microtubule stabilizer 4.27 0.025 0.01 0.1

Dasatinib
(732517)

tyrosine kinase inhibitor 0.264 0.33 0.1 2

Azacytidine
(102816)

DNA alkyltransferase inhibitor 3.07 0.95 1 5

Vorinostat
(701852)

HDAC inhibitor 1.2 0.94 1 5

Sunitinib
(750690)

tyrosine kinase inhibitor 0.181 2.2 0.2 2

Lapatinib
(745750)

tyrosine kinase inhibitor 4.18 2.9 1 10

Sorafenib
(747971)

tyrosine kinase inhibitor 20.1 1.9 5 10

Topotecan
(609699)

topoisomerase 1 inhibitor 0.15 0.031 0.01 1

Erlotinib
(718781)

kinase inhibitor (EGFR) 3.15 5.5 1 10

Cisplatin
(119875)

intrastrand DNA crosslinker 14.4 1.4 3 15

ND: not determined

†
not an FDA-approved agent
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