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Abstract

Purpose of review: novel immunotherapies such as checkpoint inhibitors, bispecific and 

chimeric antigen receptor T cells are leading to promising responses when treating solid tumors 

and hematological malignancies. T cell neoplasms include leukemia and lymphomas that are 

derived from T cells. These are rare diseases with generally poor clinical outcomes. This review 

describes the rational and preliminary results of these approaches for people with T cell lymphoma 

and leukemia.

Recent findings: for T cell neoplasms, despite significant research effort, only few agents, such 

as monoclonal antibodies and allogeneic stem cell transplantation, showed some clinical activity. 

One of the major hurdles to targeting T cell neoplasms is that activation or elimination of T cells, 

either normal or neoplastic, can cause significant toxicity. A need to develop novel safe and 

effective immunotherapies for T cell neoplasms exists.

Summary: In this review, we will discuss the rationale for immunotherapy of T cell leukemia 

and lymphoma and present the most recent therapeutic approaches.
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Introduction

In the last few years, immunotherapy has revolutionized the treatment of cancer. After the 

first wave of clinical responses with monoclonal antibodies, a new generation of 

immunotherapies has become available (1-4). Checkpoint inhibitors, bispecific antibodies, 

and chimeric antigen receptor T cells (CART) have led to unprecedented responses in 

patients with relapsed and refractory neoplasms (1-4). After being validated in the most 

common cancer subtypes, some of these approaches are now being tested in rare neoplasms 

such as T cell lymphoma (TCL) and leukemia (T-ALL). The need for effective and safe new 

therapies is urgent, as the overall prognosis for these rare diseases is generally poor (5, 6).

T cell lymphomas and leukemias represent a broad group of disorders, characterized by 

clonal growth and dysfunction of T cells at different stages of maturation and commitment. 

Traditionally, T cell lymphomas have been divided into cutaneous TCL (CTCL) and 

peripheral TCL (PTCL). Overall, TCL represent about 10% of all non-Hodgkin’s 

lymphomas (NHL) (7). PTCL-not otherwise specified (PTCL-NOS) is the most common 

subtype (26%), followed by angioimmunoblastic TCL (AITL, 19%), anaplastic large cell 

lymphoma (ALCL) divided into anaplastic lymphoma kinase (ALK) positive (7%), and 

ALK negative (6%) and enteropathy-associated TCL (EATL; <5%) (5, 8). The majority of 

PTCL originate from the CD4+ helper cells while only a minority of PTCL is derived from 

the CD8+ cytotoxic cells. Additionally, some PTCL, like AITL, share a similar phenotype 

with the T follicular helper cells (TFH) (9, 10). CTCLs are a group of mature TCLs that 

present primarily in the skin, but can progress to blood, lymph nodes and visceral organs. 

Mycosis Fungoides (MF) is the most common subtype of CTCL, while Sezary Syndrome 

(SS) is more rare. In 2016, it was estimated that MF was diagnosed in 1620 subject and SS 

in 70 in the United States (11). Extranodal NK/T cell lymphoma (ENKL) is a distinct TCL 

that is frequently localized in the nasal area (nasal cavity, nasopharynx, paranasal sinus and 

palate in 68%) or extra-nasal (in 26%). In an analysis of the International T-cell Lymphoma 

Project, over 1153 patients, 136 (12%) had ENKL, and the frequency is higher in Asia than 

in the Western countries (22% vs 5%) (12). Adult T-cell leukemia/lymphoma (ATLL), T 

large granular lymphocytic leukemia (T-LGL) and T-prolymphocytic leukemia (T-PLL) are 

rare, mature leukemic T-cell lymphoproliferative disorders. ATLL is extremely aggressive 

and is promoted by human T-cell lymphotropic virus type 1 (HTLV1). T-LGL accounts for 

2-5% of all chronic lymphoproliferative disorders in North America and Europe. It is usually 

an indolent disease which can be associated with autoimmune disorders. T-PLL accounts for 

approximately 2% of mature lymphoid malignancies, and usually presents with diffuse 

hepatosplenomegaly and leukocytosis (13). Precursor T-cell lymphoblastic lymphoma/

leukemia instead arises from early T cell progenitors. It is a rapidly growing, aggressive 

disease (14, 15), occurring more frequently in late childhood, adolescence and young adults. 

T-ALL represents 10-15% of pediatric and 20-25% of adult cases of ALL in the western 

world and Japan.

This large and heterogeneous group of diseases varies in clinical behavior and overall 

prognosis. In general, there are limited effective treatment options for T cell 

lymphoproliferative disorders in frontline and even more so in the relapse/refractory setting, 

where median survival is poor. As an example, the survival for PTCL is 5 months for 
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refractory patients and 11 months for relapsed patients (16). Other TCL subtypes that are 

generally considered more indolent, such as CTCL, are extremely difficult to treat when they 

progress with tumor involvement and/or systemic disease. In the last few years, new 

treatment options have been proposed and are in early stage of development. Given the 

success of checkpoint inhibition and CART in other lymphomas and leukemias, 

investigating the effects of immunotherapy for T cell neoplasms has become a topic of 

research interest. Here we present a broad view of the known immunotherapy strategies for 

T cell lymphoma and leukemia and discuss their possible future development toward 

successful clinical results.

Immune system in T cell neoplasms – rationale for immunotherapy

Tumor microenvironment (TME) and chronic inflammation play an important role in the 

development of slow-growing subtypes of TCL, such as MF and SS. In CTCL, normal 

tumor-infiltrating T cells (TIL) (mostly CD8+) have been demonstrated to have an 

exhausted/anergic phenotype, thus being unable to exert an effective anti-tumor response. 

These T cells are characterized by the expression of predominantly immunoinhibitory 

molecules, like programmed death-1 (PD1) and other checkpoint molecules such as ICOS, 

Tim-3 and LAG-3. The T cell neoplastic clone seems to be anergic as well, without 

consistent upregulation of immune checkpoint ligand (17). T cell exhaustion has also been 

associated with disease progression in an extremely aggressive disease like ATLL 

{Miyatake, 2013 #146}. In vitro interaction with epithelial and fibroblastic cell-lines was 

shown to induce apoptosis resistance in primary ATLL cells and ATLL cell lines(18), as well 

as HTLV1 latency(19). In ATLL models, fibroblasts acquire an activated pro-inflammatory 

phenotype enhancing tumorigenesis(20). Interestingly, MF and SS cells have the potential to 

inhibit normal T-cell proliferation and suppress dendritic cells maturation by secreting Th2-

type cytokines (21). Similarly, skin fibroblasts in advanced CTCL promote a Th2-dominant 

microenvironment with excess of CCL26/eotaxin-3 (22). Therefore, T cell neoplasms 

possess a T cell immune infiltrate but immune suppression is likely preventing potentially 

tumor-specific T cells to efficiently kill neoplastic cells (23, 24).

Another important population found in the microenvironment of CTCL is the tumor-

associated macrophages (TAM). TAM are important components of the innate immune 

response and can be activated in response to microenvironment. These responses can range 

between anti-tumorigenic (pro-inflammatory and phagocytic towards tumor cells) or pro-

tumorigenic (promoting tumor cell survival, metastasis, angiogenesis, as well as suppression 

of surrounding immune cells) (25). Immunosuppressive macrophage (M2) infiltration has 

been associated with poor clinical outcomes in several cancer types (3, 26-28). The presence 

of TAM in patients with MF has been correlated to a worse outcome (29, 30), and the 

presence of M2 macrophages with more advanced stage (31). This suggests that TAM in MF 

play an important role in both the pathogenesis and progression of disease.

Similarly, PTCL cells are known to have many interactions with the microenvironment. 

PTCL cells produce soluble and surface molecules like the programmed death ligand 1 (PD-

L1) that allow them to escape the antitumor cytotoxic T cells. They also recruit eosinophils 

from the bloodstream by releasing IL-5 and IL-13. Intratumor eosinophils secrete high 
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amounts of IL-10 and IL-4, which sustain macrophage differentiation into the tumor-

favoring (M2) phenotype(32).

Therefore, at least for certain subsets of TCL, the reinvigoration of exhausted TIL or the 

inhibition of immunosuppressive macrophages could represent rational therapeutic 

strategies.

The Epstein-Barr virus (EBV) plays an important role in the pathogenesis of some TCL 

subtypes like ENKL. The virus is more frequently found in B-cell clones associated with 

TCL, but interestingly, it can also infect T and NK cells, despite the usual lack of the EBV 

receptor CD21(33, 34). EBV-infected B-cell clones are often found in PTCL-NOS and 

AITL. Latent EBV infection has transformative properties on infected cells, but it can also 

cause inflammation in the tumor microenvironment(35). EBV seems to trigger the 

infiltration of CD8+ T cells and cytotoxic CD8+ cells in the EBV infected germinal 

centers(36). In other EBV-related cancers, such as Hodgkin lymphoma (HL) and 

nasopharyngeal carcinoma (NPC), a larger number of dendritic cells and TAM has been 

detected in EBV+ disease but not in EBV- (37-39). In PTCL, the DNA of EBV in peripheral 

blood correlates with a worse prognosis(40). In ENKL, one of the main oncogenic driver, 

NF-kB, is driven by the EBV protein LMP1. LMP1 and NF-kB activate a series of genes 

that lead to the production of Th1 cytokines TNF-α and IFN-γ(34, 41). Moreover, in ENKL 

EBV infection promotes the upregulation on infected lymphoma cells of the PD-L1. Binding 

of PD-L1 on lymphoma cells by PD1 on effector T cells suppresses T cell toxicity, allowing 

ENKL to escape this regulation(34, 41). This might explain the good activity of checkpoint 

inhibitors in ENKL.

In consideration of this, it would be expected that viral-driven TCL might respond to 

checkpoint inhibitors. Another example of a virus-enhanced disease is ATLL. This subtype 

of T cell lymphoma is driven by HTLV1. In this case though, the anti-PD1 study led to 

activation of a milder presentation of the disease and frank progression of regular cases: the 

phase 2 protocol was closed right after the first 3 patients enrolled (42). Unfortunately, there 

are not many preclinical models of TCL treated with immunotherapy. Warteig and 

colleaguesfound that PD-1 was a tumor suppressor for TCL in TCL cell lines and in a mouse 

model. PD-1 blockade in these models seems to promote PI3K/AKT activity and tumor 

growth. PI3K/AKT is the target of PI3K-inhibitors like duvelisib, that have recently 

demonstrated good activity in TCL (43, 44). It seems evident that the use of checkpoint 

inhibitors in TCL with oncogenically activated TCR pathways needs to be preceded by some 

special considerations(43).

Immunotherapeutic strategies for T cell leukemia and lymphoma

As discussed in the previous section, the development of immunotherapies for certain TCL 

subsets is supported by preclinical and correlative evidence. However, the role of 

immunotherapy for TCL in the clinic is still controversial. There are several strategies to use 

the immune system against TCL (figure 1) can be classified into five main categories: I. 

complete substitution of the patient immune system, i.e. allogeneic stem cell transplantation 

(allo-HCT); II. killing of tumor cells by targeting them with monoclonal antibodies or 
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immunoconjugates; III. reinvigoration of exhausted anti-tumor T cells, i.e. immune 

checkpoint inhibitors (ICI); IV. induce an immune response against tumor antigens, i.e. 

vaccines or the stimulation of the immune system via the toll-like receptors molecules; V. 

adoptive cell transfer of tumor specific lymphocytes; VI. additional approaches. In the 

following paragraphs, we will discuss these approaches in detail and present the latest results 

for each of them (table 1).

I. Allogeneic stem-cell transplantation

One of the first immunotherapies used for T cell lymphoma and leukemia is allogeneic stem 

cell transplantation. In allo-HCT the entire hemopoietic and immune system of the patient is 

substituted with one derived from an HLA-matched donor(45). This strategy has 

demonstrated to be the only curative option for a subset of TCL(46-48), however treatment-

related mortality and late graft versus host complications could impact long-term quality of 

life (46-48). For eligible patients with aggressive TCL subtypes, allo-HCT represents an 

option in the relapsed/refractory setting (46-48).

Results from the international BMT registries have shown that 31% of the patients with TCL 

remain disease free 3 years after allo-HCT. A recent report on the largest series of TCL 

patients (n=284) that underwent allo-HCT showed overall survival (OS) and progression-

free survival (PFS) rates at 2 years of 61.1% and 47.8%, respectively (48). The rate of 

transplant-related mortality (TRM) at 1 year was 13.2% (95% CI: 8.3 – 18.1). Acute graft-

versus-host disease (GVHD) of any grade was reported in 42.3%, and 34.5% of the patients 

developed chronic GVHD. Response to the last therapy prior to transplant impacted on PFS. 

The median PFS reached in patients who received allo-HCT while in CR and was 36.8, 19.2 

and 4.9 months for patients in PR, stable disease or progressive disease, respectively. The 

type of transplant donor impacted on TRM: cumulative TRM at 6 months was 2.9% for 

patients with a match-related donor, 7.8% with a matched-unrelated donor, and 14.8% with 

mismatched donors. The majority of the relapses after allo-HCT occurred within 12 months 

(48). For T lymphoblastic lymphoma/leukemia, allo-HCT is still an important treatment 

strategy. In a recent retrospective report, 37 patients (median age 21y, range 8 – 47) were 

transplanted with different techniques (27% from a matched sibling, 65% from a 

haploidentical family donor, 5% from matched unrelated donor and 3% from cord blood). 

OS and PFS at 3 years were 71.7% and 69.5%. TRM was 13.5% and grade III-IV acute 

graft-versus-host disease (aGVHD) 16%. Allo-HCT done in first complete remission (CR) 

was associated to improved OS (3 year OS 79.1% vs 39.1%, p=0.001)(47).

Unfortunately, lymphoma or leukemia relapses after allo-SCT are common and donor 

lymphocyte infusion (DLI) is an option, in particular for T-ALL, where there is extensive 

experience (49-51). The rational of DLI is the adoptive transfer of tumor (recipient)-reactive 

T cell clones to boost graft-versus-lymphoma/leukemia effect. However, efficacy of this 

procedure in this context is rather limited, especially in highly aggressive diseases, with 

ORR of 15-29% (52). In PTCL, DLI has demonstrated anecdotal activity, but in some cases 

at the cost of high-grade GVHD (46).
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II. Monoclonal antibodies and immunoconjugates

Monoclonal antibody immunotherapy has been one of the most explored modality of 

immunotherapy for TCL. So far three alemtuzumab, brentuximab vedotin (BV) and 

mogamulizumab have been approved by the Food and Drug Administration (FDA) for TCL.

Alemtuzumab is a humanized anti-CD52 monoclonal antibody. CD52 is a surface co-

stimulator of T cell activation and proliferation(53) and is expressed on both T and B 

lymphocytes and monocytes. However, monocytes and natural killer (NK) cells appear to be 

more resistant than lymphocytes to alemtuzumab-mediated lysis (54). The reason for this 

seems to be the lower density of CD52 on these cells(54). CD52 is expressed in 40% of 

PTCL-NOS(55), as well as on MF/SS and T-PLL. A phase II Swedish and German trial for 

PTCL in the relapsed/refractory setting reported an overall response rate (ORR) of 36% 

(5/14 patient responded, CR 3, 21%). However, a high rate of opportunistic infections 

occurred. Five patients died from infectious complications and an unexpected level of 

hematological toxicity prompted early termination of the trial. Another study conducted in 

MF/SS heavily pre-treated patients showed an ORR in 12/22 (55%) with 32% CR rate. In 

this trial several patients also experienced infective complications (50%)(56). Alemtuzumab 

demonstrated response rate that can exceed 90% in T-PLL, but in patients without a 

consolidation with allogeneic stem-cell transplantation the median OS for those achieving 

CR is short (17-33 months) (57-59). Based on these results, Alemtuzumab is now considered 

the standard first line therapy for T-PLL. In a phase II study on patients with HTLV1 

associated ATLL, an objective response was achieved in 15 of 29 patients, but duration of 

response was only 14.5 months (60).

Another target that has been evaluated for T cell neoplasms is CD30. CD30 is a cell 

membrane protein of the tumor necrosis factor receptor family. It is expressed on activated T 

and B cells. Brentuximab vedotin (BV) is a CD30-targeted immunoconjugate and was the 

first to demonstrate activity in patients with anaplastic large cell lymphoma (ALCL). In a 

phase II trial of 58 patients with relapsed disease, BV was administered intravenously at a 

dose of 1.8 mg/kg every 3 weeks. ORR was 86% with 57% CR, and a median PFS of 13.3 

months. However, the median duration of response was 12.6 months (61). The phase II study 

conducted in patients with relapsed/refractory PTCL enrolled 22 PTCL-NOS and 13 AITL. 

ORR was 41% for PTCL-NOS and 54% for AITL (62). BV has also demonstrated activity 

in CD30+ CTCL. A large phase III international randomized study of BV versus physician’s 

choice (PC) in CD30+ CTCL, showed superiority of BV in achieving an objective global 

response lasting at least 4 months (56.3% vs 12.5%, CI 18.4 – 26.1, p<0.0001) (63). A 

longer-term update of this study showed a time-to-next-treatment (TTNT) significantly 

longer for BV versus PC (median 14.2 vs 6.1 months respectively). Peripheral neuropathy 

associated with BV was one of the biggest concerns in this study, but 86% of the patients 

experienced a complete resolution or improvement of this symptom after stopping the drug 

(64). These studies led to a broad FDA approval of BV for relapsed/refractory CD30+ 

systemic ALCL in the US in 2011 and for CD30+ CTCL and primary cutaneous ALCL in 

2017.

Mogamulizumab (KW-0761) is a humanized anti-CC chemokine receptor-4 (CCR4) 

monoclonal antibody (65-67). CCR4 is normally expressed on type 2 helper T cells and by 
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the neoplastic T cell clones of PTCL (in 34%)(68), CTCL(in 31-100%)(69) and ATLL (in 

88.3%)(70). In ATLL, CD4+, CD25+, CCR4+ T cells are the main HTLV1 reservoir. CCR4 

is also a poor prognostic factor as CCR4+ PTCL-NOS have demonstrated a shorter survival 

compared to CCR4-negative ones (71, 72). A multicenter phase II study with 

mogamulizumab for relapsed/refractory CCR4+ PTCL and CTCL showed an ORR of 35% 

(95% CI 20% - 53%) with 14% CR. In this study, limited responses were recorded in PTCL-

NOS (16 patients, ORR 19%, 6% CR), better in AITL (12 patients, ORR 50%, 25% CR) and 

in CTCL (8 patients, ORR 37%, 0% CR) (67). A phase III study of mogamulizumab vs 

vorinostat, the universally available standard of care in CTCL, named MAVORIC is ongoing 

(NCT01728805), preliminary results show ORR of 28.0% for mogamulizumab vs 4.8% for 

vorinostat. Median PFS was superior in the mogamulizumab arm (7.7 vs 3.1 months). 

Patient-reported outcomes showed greater symptom reduction and improved functional 

status, favoring mogamulizumab. The most common adverse events were infusion reactions 

and skin rash (73). In relapsed/refractory ATLL (65), this drug has demonstrated a response 

rate of 31%, with 13% complete responses. This is a promising result for ATLL, considering 

the extremely low responses to conventional chemotherapy (74-76). Mogalizumab was 

approved in 2014 for ATLL in Japan, and most recently in 2018 also by the FDA.

Daratumumab is a monoclonal antibody directed against CD38, a type II-transmembrane 

glycoprotein mediating signaling transduction in immune cells. CD38 is broadly expressed 

in leukocytes, including thymocytes, activated T and B cells and plasma cells. Some subsets 

of TCL, as well as T-ALL express CD38 (77). In ENKT lymphoma, high CD38 expression 

has been associated to inferior outcome (78). Preclinical data on NKTL cell lines show 

induction of antibody-dependent cytotoxicity (ADCC) by daratumumab. Investigators also 

found that all-trans retinoid acid (ATRA) given before daratumumab could enhance CD38 

expression on T cells, leading to improved results (79). A report of the use of daratumumab 

for post-allotransplant ENKT (80) has demonstrated a complete remission with associated 

normalization of EBV titers. A phase II international study of daratumumab for relapsed/

refractory ENKL is ongoing in Asia (NCT02927925). Preclinical data on patient-derived 

xenografts (PDX) models of T-ALL demonstrated efficacy in 14 of 15 murine models (77). 

However, a phase II trial in T-ALL evaluating another CD38-directed antibody isatuximab 

(NCT02999633) was terminated early due to unsatisfactory benefit/risk balance.

ADCT-301 (camidanlumab tesirine) is an anti-CD25 (IL-2Rα) immunoconjugate, 

promoting the delivery into target cells of the cytotoxin SG3199. CD-25 is normally 

expressed in on activated T cells, activated B cells, some thymocytes, myeloid precursors, 

and oligodendrocytes(81). Expression of CD25 can be detected on 42-50% of PTCL, 54% of 

CTCL, as well as on 58-78% of HL and 40% of DLBCL. An international phase I study is 

ongoing in the relapse/refractory setting for all these disorders. Interim results for 12 heavily 

pretreated T-cell lymphoma patients showed an ORR of 33%, however all responses were 

PR (82).

When compared to B cell lymphomas, TCL seem to lose more easily their surface markers 

with time and probably with treatment (83, 84). Thus, since the treatment with monoclonal 

antibodies eliminates the T cell clones expressing a specific marker, re-treatment with the 

same drug must be carefully evaluated.
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III. Immune checkpoint inhibition

The PD1 receptor on T cells and its ligands PD-L1 and PD-L2 expressed on tumor cells or 

myeloid cells, inhibit T-cells activation and proliferation (85). The PD-1 pathway is critical 

in regulating effector T-cells response in tissues by suppressing T-cell activity and limiting 

tissue damage (86). By upregulating the ligands for PD1, tumor cells block the antitumor 

immune responses sent by the microenvironment(86).

ICI like anti-PD1 or anti-CTLA4 antibodies have led to promising responses in solid 

tumors(87-90) and in HL (91-93). In 2010, the FDA approved the anti CTLA4 ipilimumab 

for melanoma(86). Since 2014, the FDA has approved the anti-PD1 pembrolizumab and 

nivolumab, and the anti-PD-L1 atezolizumab, avelumab, and durvalumab for several solid 

tumors (in particular melanoma, lung cancer, urothelial carcinoma, colorectal cancer, hepatic 

carcinoma, Merkel-cell carcinoma)(94). For hematologic malignancies, nivolumab was 

approved in 2016 for HL, pembrolizumab in 2017 for HL, and in 2018 for primary 

mediastinal large B-cell lymphoma(94). Therefore, broadening the use of ICI for T cell 

neoplasms is a desirable potential treatment option. The activity of targeting the PD1 

pathway has been demonstrated in T-cell lymphomas with increased PD-L1 expression in 

the tumor microenvironment (95, 96). However, as ICI can also target the PD1+ or PD-L1+ 

neoplastic T cells together with TIL, there is the concern that they can also activate tumor 

cells. Nevertheless, ICI have been tested in TCL. Recently, Lee Ratner and colleagues 

related in a letter to the New England Journal of Medicine about the activating effect of the 

checkpoint inhibitor nivolumab on ATLL. Nivolumab was being studied in a phase 2 clinical 

trial (NCT02631746), but after the first three patients enrolled, it was evident that the drug 

was causing progression of disease. PD1 in these cases could have worked as a tumor 

suppressor, and its inhibition might have enhanced disease progression (42). Some 

additional perplexities for the use of PD1 inhibition arise in the context of bridging therapy 

to allo-HCT. Investigators observed higher incidence and severity of graft versus host 

disease in B-cell lymphoma patients treated with checkpoint inhibitors prior to allo-

HCT(97). However, in other TCL subset cases, like the ENKL, treatment with the anti-PD1 

monoclonal antibody pembrolizumab led to promising efficacy with limited toxicities (98, 

99). Patient numbers are still very small: in the pembrolizumab study, 7 relapsed/refractory 

patients were treated, with an ORR of 100% with 5/7 patients achieving CR (99). In a recent 

report, 3 refractory patients with high tumor load treated with nivolumab also achieved a 

response, in one case response was seen after just one dose (100). As mentioned, ENKL is 

classically associated with EBV infection, that upregulates the expression on lymphoma 

cells of PD-L1. Binding of PD-L1 on lymphoma cells by PD1 on effector T cells suppresses 

T cell toxicity, allowing ENKL to escape this regulation. This mechanism can explain the 

favorable activity of this class of drugs in ENKL. Based on these results, a protocol using 

pembrolizumab in frontline for patients with localized stage disease is opening at the 

MSKCC. For these patients, the classical chemotherapy will be given only if not achieving 

CR after pembrolizumab and localized radiotherapy.

Despite the good response seen in ENKL, nivolumab has demonstrated modest activity in 

other types of TCL. A phase I trial included, among other histologies, 5 relapsed/refractory 

PTCL patients, that showed an ORR of 40% (all were PR). The patients who responded 
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seemed to achieve durable control of disease (101). In a phase II multicenter study, 24 

relapsed/refractory MF and SS patients were treated with pembrolizumab. The ORR was 

38% with 1 CR and 8 partial responses (PR), also in this case, patients with response 

achieved durable response (8/9 of those patients sustained responses for a median of 32 

weeks). As for adverse events, skin flare was observed in some SS patients. There were 3 

immune-related toxicities. These included 2 pneumonitis and one grade 3 diarrhea(102). At 

the MSKCC, a new combination of BV and nivolumab is under investigation for the 

relapsed-refractory population of PTCL and CTCL, and for other CD30+ lymphomas in a 

phase I-II study (NCT02581631).

IV. Vaccines

Dendritic cell-based vaccines have been extensively investigated in B-cell lymphomas while 

experience in T-cell lymphomas has been limited to CTCL, and with varying results (103). 

Intratumoral injection of autologous lysate of dendritic cells (104) or of a toll-like receptor-9 

(TRL9) agonist combined with radiation (103), have demonstrated to induce a T-cell 

immune response against the lymphoma, a response that has been seen in other cancers. 

Also, some patients could benefit from an abscopal effect, with the reduction of lesions of 

the body not directly infiltrated with the lysate.

V. Adoptive cell transfer of tumor specific lymphocytes

EBV-directed cytotoxic CTL—Immunotherapy using antigen-specific cytotoxic T cells 

(CTL) targeted against Epstein-Barr virus (EBV) is another promising immunologic strategy 

that can be used in EBV-driven diseases. The major clinical experience with EBV-CTLs has 

been in EBV-associated post-transplant lymphoproliferative disease (PTLD) and HL 

(105-107). In recent years, EBV-CTLs therapy has also been applied to ENKL as 

consolidation post chemo-radiotherapy or in the relapsed/refractory setting (108). Responses 

to this approach were observed in 13 of 21 patients with EBV+ lymphoma (11 CR). Six T-

cell lymphomas (5 ENKT, 1 PTCL) received EBV-CTLs as consolidation, 2 patients resulted 

to be primary refractory, and all the others maintained a continuous CR. Other 7 T-cell 

lymphoma patients were treated with active disease (5 ENKT and 2 PTCL). Responses were 

seen for 4/7 patients (3 patients achieving CR)(108). At MSKCC a phase I-II trial with EBV-

CTLs for all EBV-driven diseases is currently ongoing (NCT00002663).

CAR-T cells—In 2017 the FDA approved the first gene-therapy for cancer, Kymriah 
(Novartis), an anti CD19 chimeric antigen receptor T cell (CART) product. Few months later 

another CART19 product, Yescarta (Kite/Gilead), was also approved by the FDA. A 

chimeric antigen receptor is a synthetic protein that is developed by the fusion of an 

extracellular antigen-recognizing domains (typically a single-chain variable fragment 

derived from a monoclonal antibody) and intracellular signaling domains (CD3ζ and CD28 

or 4-1BB). (28) Anti-CD19 CART led to impressive clinical responses in CD19+ B-cell 

acute lymphoblastic leukemia and non-Hodgkin lymphoma (109). There is therefore great 

interest in developing CART therapy for T cell neoplasm. However, one of the issues of 

using CART to target TCL and T-ALL is, the potential targets that are expressed in tumor 

cells might also be expressed also in CART cells, potentially causing fratricide. Several 
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strategies are under preclinical development and a limited number of these approaches have 

already reached clinical trials.

Multiple preclinical studies have evaluated different antigens as the target for CART: CD30 

(110, 111), CD5(112), CD3(113), CD4(114), CCR4(115) and more recently CD7(116, 117). 

Interestingly the two reports on CART7 used CRISPR-Cas9 to knock-out CD7 on CART 

cells and avoid CART-CART fratricide. A possible drawback of these approaches is that in 

clinical trials, if effective, these CART products will cause profound T cell aplasia could put 

the patient at serious risk of potentially fatal infections. To overcome this issue, an 

interesting approach was proposed by Maciocia et al(118). The authors developed CART 

cells that can specifically target one of the 2 variants of the constant regions of the TCR: C1 

or C2. Therefore, once the tumor-specific constant region is known, a specific CART 

product could be administered killing tumor cells and normal T cells with the same TCR 

constant region but sparing the ones with the other variant. A potential limitation of this 

approach is that a subset of TCL and several T-ALL lack surface TCR expression (119). 

This approach could potentially reduce toxicity and will be evaluated in clinical trials in the 

future.

The groups at Baylor College of Medicine and at the University of North Carolina have 

tested anti-CD30 CART in patients with HL and CD30+ ALCL. The reported results in 2 

patients with ALCL(120) showed 1 CR that persisted 9 months after the fourth infusion of 

CD30 CAR-Ts. Although CD30 may also be expressed by normal activated T cells, no 

patients developed impaired virus-specific immunity. Other centers in China are evaluating 

similar approaches in clinical trials (NCT02274584, NCT02958410, NCT02259556). Anti-

CD5 CART cells are now evaluated in a clinical trial at Baylor College of Medicine 

(NCT03081910). Other groups are using CAR NK cells for TCL/T-ALL, for example, anti-

CD7 CAR-pNK (NCT02742727).

VI. Additional approaches

Tumor-associated macrophage activation—Typically, TAM infiltration in tumor is 

correlated with poor prognosis(121). Increasing CD47 expression is a way for tumor cells to 

escape phagocytosis as CD47 binds a signal-regulatory-protein (SIRP-α) on the surface of 

macrophages sending a “do-not-eat-me” signal (122). Targeting and blocking this molecule 

promotes tumor cell phagocytosis by IFN-γ-primed macrophages (123). At present time, 

three phase I clinical trials are testing CD47 antagonists (Hu5F9-G4, CC-90002, and 

TTI-621) enrolling T and B cell lymphomas. Some early reports have shown activity of 

macrophage activation in B cell lymphoma and solid cancer (124), but for T cell lymphoma 

early phase trials are still ongoing (NCT02663518, NCT03013218, NCT02953509). The 

modulation of TAM has been also demonstrated to be the underlying mechanism of IFN-α 
and INF-γactivity in CTCL (especially MF), suppressing the recruitment of T-regulatory 

cells and lymphoma cells in the skin, and decreasing the production of cytokines by TAMs. 

IFN-α has been used for CTCL since 1984, and evidences of the clinical efficacy are 

impaired due to heterogeneity in treatment schedule, patient selection and methodology. As 

a result, ORR ranges from 0 to 80%, without a clear correlation between dose and 

response(125-128)
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Bispecific antibodies—Bispecific antibodies anti-CD30/CD16A (AFM13) have been 

developed to redirect NK cells against CD30+ diseases (129). CD16A is a receptor for the 

IgG Fc domain, with an activating function on NK cells and macrophages. Direct 

engagement of NK cells towards CD30 with AFM13 is supposed to induce lymphoma cell 

killing trough NK cell-mediated and T cell-mediated cytotoxicity. This strategy is under 

evaluation for HL with some encouraging preliminary results(130). In TCL this idea could 

very interesting to investigate because of the stimulation of NK cells and not T towards the 

tumor. For CD30+ T-cell lymphoma, a phase I/II protocol is ongoing, enrolling PTCL and 

cutaneous-ALCL (NCT03192202).

Conclusions and future directions—T cell neoplasms represent a group of diseases 

with an unmet medical need. Currently, there are limited effective treatment options with 

overall poor prognostic outcomes for patients with these diseases. The overall survival for 

most patients with T cell leukemia and lymphoma is poor, and there is a dire need for novel 

therapies. Immunotherapy has shown unprecedented responses in cancer patients, and 

several approaches are now being also evaluated for T cell leukemia and lymphoma. At 

present time, the immunotherapeutic treatment options include BV, alemtuzumab, 

mogalizumab, IFNγ for SS, pembrolizumab for systemic MF and refractory ENKL and 

allogeneic transplantation. However, these approaches are usually reserved for selected cases 

with relapsed and refractory disease and responses are far from optimal.

One of the main issues in the development of effective immunotherapies with monoclonal 

antibodies for T cell neoplasms is the fact that normal T cells also share the potential tumor 

targets. Effective anti-T cell therapies like alemtuzumab in TCL, anti-CD3 (OKT3)(131) or 

anti-CD-2 siplizumab(132) in T-ALL have led to significant toxicity in clinical trials, mostly 

infections and infusion-related reactions, due to T cell depletion and/or activation. An 

exception to this paradigm is targeting CD30 with BV that is leading to manageable toxicity 

and clinical responses in CD30+ ALCL; however, responses are not durable. On this regard, 

the use of CART for T cell neoplasm will necessarily include strategies to reduce toxicity or 

specifically recognize tumor cells, like CART targeting the tumor-specific TCR constant 

region.

Immune checkpoint inhibitors show promising results in several cancers however, in some 

subset of T cell neoplasms like ATLL, ICI can lead to tumor activation. Using ICI for T cell 

neoplasms is challenging because both immune effector cells and tumor cells are T 

lymphocytes and can potentially express PD-1 or other exhaustion markers. Studies of the 

PD-1 expression in tumor cells and the TME need to be performed in order to support the 

rationale to test new T-cell immunotherapies. As an example, virus-driven neoplasm like 

ENKL are exquisitely sensitive to ICI.

It is likely that each T cell leukemia and lymphoma subset will require tailored 

immunotherapy based on a deep understanding of the tumor characteristics but also of the 

patient immune system and tumor-microenvironment.
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Figure 1. 
Diagram showing the different published approaches to target T cell leukemia and 

lymphoma.

All approaches in the figure and references:

Monoclonal Ab and ICI: (42, 56 – 65, 67, 71 – 73, 77, 80, 82, 98 – 102)

EBV-directed CTL (105 - 108)

CAR-T and NK (110 - 120)

Bi-specific Ab (129 - 130)

Vaccines (103 - 104)
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Table 1.

Results of immunotherapy in clinical trials

Strategy Disease Response Reference

Monoclonal antibodies

CD30; brentuximab vedotin ALCL ORR 86% (CR 57%) Pro, JCO 2012

PTCL, AITL ORR 41%(PTCL), 54%(AITL) Horwitz, Blood 2014

Prince, Lancet 2017

CD30+ CTCL TTNT 14m (BV) vs 6m (PC) Horwitz, Blood 2017

CD52; alemtuzumab PTCL ORR 36% (CR 21%) Enblad 2004

MF/SS ORR 55% (CR 32%) Lundin, Blood 2003

T-PLL ORR 90%, med. OS 17 – 33 mo Dearden, Blood 2001

CCR4; mogamulizumab ATLL ORR 50%, med. PFS 5.2 mo Ishida, JCO 2012

CCR4+ PTCL/CTCL ORR 35%, med. PFS 3 mo Ogura, JCO 2014

CTCL ORR 28%, PFS 7.7 mo Kim, Blood 2017

CD38; daratumumab ENKT NA-ongoing NCT02927925

CD38; isatuximab T-ALL Closed-no response NCT02999633

CD25; camidanlumab tesirine 
(ADCT301)

PTCL ORR 33% (all PR) Horwitz, Blood 2017

CD30/CD16A; bispecific (AFM13) CD30+ CTCL NA-ongoing NCT03192202

Checkpoint inhibition

pembrolizumab ENKL ORR 100% (5/7 CR) Kwong, Blood 2017

MF/SS ORR 38% (1/8 CR) Khodadoust, Blood 2016

nivolumab PTCL ORR 40% (all PR) Lesokhin, JCO 2016

ATLL Closed-disease progression NCT02631746

BV + nivolumab CD30+ PTCL, CTCL NA-ongoing NCT02581631

Macrophages activation

 - CD47 Hu5F9-G4 CTCL, PTCL NA-ongoing NCT02216409

 - CD47 CC-90002 TCL NA-ongoing NCT02663518

 - CD47 TTI-621 TCL NA-ongoing NCT03013218

EBV-CTLs EBV+ ENKL in CR after RT 4/6 maintained CR Bollard, JCO 2014

EBV+ ENKL and PTCL active 
disease

4/7 ORR (3 CR)
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