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Nitric oxide (NO) is a gas that induces relaxation of smooth muscle cells in the vasculature. Because NO reacts with
oxyhaemoglobin with high affinity, the gas is rapidly scavenged by oxyhaemoglobin in red blood cells and the vasodilating effects
of inhaled NO are limited to ventilated regions in the lung. NO therefore has the unique ability to induce pulmonary
vasodilatation specifically in the portions of the lung with adequate ventilation, thereby improving oxygenation of blood and
decreasing intrapulmonary right to left shunting. Inhaled NO is used to treat a spectrum of cardiopulmonary conditions,
including pulmonary hypertension in children and adults. However, the widespread use of inhaled NO is limited by logistical and
financial barriers. We have designed, developed and tested a simple and economic NO generation device, which uses pulsed
electrical discharges in air to produce therapeutic levels of NO that can be used for inhalation therapy.
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Introduction
NO is a gas that is produced in the body by a family of three
NOS. The enzymes use oxygen and L-arginine to produce
NO and L-citrulline. NO stimulates soluble guanylate
cyclase (sGC) to synthesize cGMP, which activates
cGMP-dependent PKG, leading to vascular relaxation.
PDEs catabolize cGMP, thereby limiting its activity (Ichinose
and Zapol, 2017b). In the presence of oxygenated
haemoglobin (Hb), NO is rapidly metabolized to form nitrate
and methaemoglobin. In erythrocytes, methaemoglobin re-
ductase converts methaemoglobin to ferrous-Hb.

Drugs that generate NO, such as nitroglycerin and so-
dium nitroprusside (SNP), have long been used to reduce
blood pressure (BP) and treat angina pectoris. NO-donor
compounds can also dilate the pulmonary vasculature, but
their efficacy is limited by systemic hypotension. In patients
with lung injury, NO-donor compounds given systemically
may induce vasodilatation in regions of the lung that are
poorly ventilated, thereby increasing ventilation-perfusion
mismatching and leading to systemic arterial hypoxaemia.
Frostell and colleagues reasoned that NO administered via in-
halation would relax the pulmonary vasculature but, upon
reaching the bloodstream, would be rapidly scavenged by
Hb thereby preventing systemic vasodilatation (Frostell
et al., 1993). These investigators observed that inhalation of
NO produced a dose-dependent decrease in pulmonary ar-
tery pressure and pulmonary vascular resistance in awake
sheep with pulmonary hypertension. No effect of inhaled
NO was observed in sheep with normal pulmonary vascular
tone (Frostell et al., 1991). The pulmonary vasodilator ef-
fects of breathing NO were readily reversible upon discon-
tinuation of breathing the gas. Breathing NO did not alter
systemic arterial BP. The selective dilation of the pulmo-
nary vasculature induced by NO has been observed in a
wide range of species, including man. Pilot studies in criti-
cally ill newborns with acute pulmonary hypertension
showed that inhaled NO improved oxygenation without
causing systemic hypotension (Kinsella et al., 1992; Roberts
et al., 1992). Subsequent randomized, placebo-controlled
studies confirmed these results and led to the approval of
inhaled NO to treat hypoxic newborns by the US Food
and Drug Administration in 1999, by the European
Medicine Evaluation Agency and European Commission
in 2001 and by the Ministry of Health, Labour and Welfare
of Japan in 2008 (NINOS group, 1997; Kinsella et al., 1997;
Roberts et al., 1997; Clark et al., 2000).

A number of studies now indicate that inhaled NO has
an important role in treating pulmonary hypertension of
paediatric and adult patients with respiratory and cardiac
failure (Kinsella et al., 1992; Roberts et al., 1992; Krasuski
et al., 2000; Cockrill et al., 2001; Ozturk et al., 2016). In-
haled NO can also be used during cardiac catheterization
to determine the vasodilatory capacity of the pulmonary
vascular bed in patients with pulmonary hypertension. A
data meta-analysis was conducted on 1240 preterm infants
who received either placebo (nitrogen gas) or NO >5 p.p.m.
for a minimum of 7 days (Askie et al., 2018). This study
suggested that inhaled NO prevented bronchopulmonary
dysplasia (BPD) in preterm African American infants and
was presented as an example of a racially customized therapy

for infants with BPD. Recent studies suggest inhaled NO may
prevent ischaemia-reperfusion injury and reduce haemolysis-
induced vasoconstriction and renal failure after prolonged
cardiopulmonary bypass (Lei et al., 2018). This review article
will focus on recent developments in the use of NO
inhalation therapy to treat patients with acute respiratory
distress syndrome (ARDS) and the vascular consequences of
haemolytic diseases. In addition, advances in the develop-
ment and testing of an inexpensive, lightweight portable
NO generating device from air will be described. The use of
inhaled NO in other clinical areas including paediatric and
adult pulmonary hypertension and chronic obstructive
pulmonary disease have been reviewed elsewhere (Ichinose
and Zapol, 2017a).

Inhaled NO in acute respiratory distress
syndrome
ARDS is characterized by pulmonary hypertension and in-
creased intrapulmonary shunting of blood through
hypoventilated regions. Pulmonary hypertension contrib-
utes to pulmonary oedema and can cause right ventricular
dysfunction and heart failure. The use of inhaled NO for
the treatment of ARDS is one of the most widely studied
pharmacological interventions over the past three decades.
In 10 patients with severe ARDS, inhalation of NO from
5–20 p.p.m. for 3 to 53 days reduced pulmonary arterial
pressure, decreased intrapulmonary shunting and improved
arterial oxygenation without producing systemic vasodila-
tation (Rossaint et al., 1993). Benzing and colleagues dem-
onstrated that inhalation of 40 p.p.m. NO vasodilated
pulmonary vasculature and thereby lowered pulmonary
capillary pressure in patients with acute lung injury
(Benzing and Geiger, 1994). However, subsequent clinical
trials reported disappointing results, in that inhalation of
NO did not improve the survival rate in patients with ARDS
(Troncy et al., 1998; Gerlach et al., 2003; Taylor et al.,
2004). These randomized, controlled trials were unfortu-
nately performed in the 1990s, before low-volume ventila-
tion was shown to be beneficial in patients with ARDS.
With the widespread adoption of the low tidal volume
ventilation strategy, Bronicki et al. enrolled 55 paediatric
patients with ARDS in a prospective, randomized placebo-
controlled trial of inhaled NO that showed a significant
reduction in duration of mechanical ventilation and a sig-
nificantly greater survival without the need for using extra-
corporeal membrane oxygenation (Bronicki et al., 2015). In
161 children with ARDS, Dowell and coworkers demon-
strated that inhalation of NO, for at least 1 h, within 3 days
of ARDS onset was associated with a decrease in the aver-
age number of days that patients required ventilator sup-
port (Dowell et al., 2017). In an open-label prospective
crossover pilot study, breathing 20 p.p.m. of NO signifi-
cantly improved oxygenation in 15 adult patients with
ARDS (Albert et al., 2017). Accumulating evidence suggests
that NO inhalation therapy is beneficial in patients with
ARDS. Large randomized trials are needed to determine
whether inhaled NO improves survival of adult patients
with ARDS.
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Inhaled NO in haemolysis
Endothelial cells produce NO, which acts as a potent dilator
of vascular smooth muscle cells. NO depletion can lead to va-
soconstriction, impaired tissue perfusion and inflammation.
During haemolysis, plasma NO is consumed by circulating
plasma free oxyhaemoglobin, which is transformed into
methaemoglobin by the dioxygenatoin reaction. Breathing
NO converts circulating cell-free oxyhaemoglobin to
methaemoglobin, thereby reducing the ability of
oxyhaemoglobin to scavenge intrinsic NO. Minneci and
coworkers used water-induced haemolysis in dogs to investi-
gate the effect of free Hb on vascular tone and renal func-
tion. By scavenging endothelium-derived NO, free Hb in
plasma induced vasoconstriction and decreased creatinine
clearance (Minneci et al., 2005). Dogs that were treated with
inhalation of 80 p.p.m. NO had decreased haemolysis-
induced hypertension and renal dysfunction. Based in part
on these observations, it has been proposed and in many
cases proven that NO inhalation attenuates the vasocon-
striction that is associated with clinical haemolysis, includ-
ing haemolysis induced by, or associated with, prolonged
cardiopulmonary bypass, sickle cell anaemia, malaria and
blood transfusion.

Cardiac surgery
Pulmonary hypertension is a recognized risk factor for mor-
tality in cardiac surgery. In a murine model of cardiac arrest,
Kida and coworkers showed that inhaled NO exerts protec-
tive effects and improves outcomes after cardiac arrest and
cardiopulmonary resuscitation with or without therapeutic
hypothermia (Kida et al., 2014). In 33 paediatric patients
who underwent a palliative surgical procedure to treat
univentricular heart, Latus and colleagues found that inhala-
tion of NO increased pulmonary and systemic blood flow,
demonstrating beneficial effects on cardiac output and tissue
perfusion (Latus et al., 2016). Elmi-Sarabi and colleagues con-
ducted a meta-analysis of 10 studies including 434 patients,
to compare the efficacy of inhaled aerosolized vasodilators
(including NO) in the treatment of pulmonary hypertension
during cardiac surgery (Elmi-Sarabi et al., 2017). The authors
concluded that inhaled NO improved right ventricular per-
formance when compared to i.v. administered agents.
Janssens and coworkers conducted a multicentre, double-
blind, randomized controlled trial of inhalation of NO in
250 patients with ST-elevation myocardial infarction
(STEMI) (Janssens et al., 2018). Inhalation of NO at 80 p.p.
m. for 4 h in these patients after cardiac catheterization was
safe, and there was a tendency towards decreased rates of ad-
verse events at 4 months (P = 0.10) and 1 year (P = 0.06) in
patients who received NO. The results suggest that further
studies of the potential benefits of inhaled NO in patients
with STEMI are needed.

The most common complication associated with
prolonged cardiopulmonary bypass (CPB) is acute kidney in-
jury (AKI), which markedly increases postoperative mortality
(Karkouti et al., 2009; Wrobel et al., 2015). Prolonged CPB
causes haemolysis with high levels of circulating plasma Hb
that scavenges NO via the dioxygenatoin reaction, depleting
endogenous NO and causing vasoconstriction, proximal re-
nal tubular injury and AKI. Lei and colleagues conducted a

single centre, prospective, randomized, double-blind con-
trolled trial involving 217 patients with normal kidney func-
tion, who underwent elective multiple valve replacement
surgery that required prolonged CPB (Lei et al., 2018). The in-
cidence of AKI in patients treated with NO decreased from 63
to 50% (P < 0.05). Treatment with inhaled 80 p.p.m. NO dur-
ing (via oxygenator) and for 24 h after the operation was safe,
with blood methaemoglobin levels remaining below 10%.
Based on these observations, inhalation of NO may prove to
be beneficial for patients undergoing prolonged cardiac
surgery.

Sickle cell disease and cerebral malaria
Sickle cell disease (SCD) is an autosomal-recessive disorder
caused by mutations in the β-globin gene. Mutant Hb S poly-
merizes in erythrocytes, altering the shape of red blood cells
and causing occlusion of small blood vessels. Patients with
SCD experience episodes of severe pain (vaso-occlusive cri-
sis), with subsequent damage to major organs, and premature
death. There has been considerable interest in the possible
contribution of NO depletion to the pathogenesis of SCD
and a potential role for inhaled NO as a treatment for SCD.
Case reports (Atz andWessel, 1997; Sullivan et al., 1999; Head
et al., 2010) and a single-institution, placebo-controlled study
(Weiner et al., 2003) suggested beneficial effects of NO inhala-
tion in patients with SCD. However, Gladwin and colleagues
performed an 11 centre, double-blind, randomized, placebo-
controlled clinical trial involving 150 SCD patients and
found that breathing 80 p.p.m. NO for up to 72 h, with pulsa-
tile inspiratory delivery of NO through nasal prongs, did not
decrease the duration of painful crisis (Gladwin et al., 2011).
Maitre and colleagues conducted a prospective, double-blind,
randomized, placebo-controlled clinical trial in 100 adult
SCD patients with acute chest syndrome, which is character-
ized by fever and/or respiratory symptoms accompanied by
new abnormalities on their chest radiograph. Inhalation of
80 p.p.m. NO for 3 days did not reduce the rate of mortality
in this group of patients (Maitre et al., 2015). Future trials
should targetmore severely ill SCD patients with hypoxaemia
and/or acute pulmonary hypertension and investigate
whether inhalation of NO provides benefit to this subgroup
of patients.

Cerebral malaria is themost severe neurological complica-
tion of infection with Plasmodium falciparum, with a mortal-
ity rate of approximately 20%. Survivors of cerebral malaria
often experience long-term cognitive and neurological defi-
cits (Idro et al., 2007; Serghides et al., 2011; Postels et al.,
2012). In a murine model of cerebral malaria, treatment with
40 p.p.m. NO improved survival by inactivating
NO-scavenging by free Hb in the plasma (Gramaglia et al.,
2006). Serghides and colleagues demonstrated that mice
treated with NO during infection had reduced systemic
inflammation and endothelial cell activation, decreased
intercellular adhesion molecule 1 (ICAM-1) expression,
preserved integrity of the blood–brain barrier and decreased
parasite accumulation in the brain (Serghides et al., 2011). In
addition, inhaled NO co-administered with artesunate
(a medication currently used to treat malaria), starting
5.5 days after infection, improved the murine survival rate
compared to treatment with artesunate therapy alone
(Serghides et al., 2011). Hawkes and colleagues performed a
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randomized, blinded, placebo-controlled trial in which
standard artesunate treatment was supplemented with either
80 p.p.m. NO in air (delivered by nonrebreathing mask) or air
alone. In 180 children with severe malaria, inhaled NO did
not significantly decrease angiopoietin-2 levels, an endothe-
lial biomarker of malarial severity. There was also no observed
effect of NO treatment on clinical outcomes, including
mortality (Hawkes et al., 2015). Mwanga-Amumpaire and
colleagues performed a randomized open-label, phase II,
controlled trial of breathing 80 p.p.m. NO in air or air alone
in 92 children with cerebral malaria in Uganda (Hawkes
et al., 2011; Mwanga-Amumpaire et al., 2015). Although this
trial did not demonstrate a reduction in mortality or neuro-
logical impairment in children treated with NO, breathing
NO for 48 h was safe and was associated with an increase in
methaemoglobin and plasma nitrate levels (Mwanga-
Amumpaire et al., 2015). In the future, it may be valuable to
focus NO inhalation therapy on cerebral malaria patients
with laboratory evidence of NO scavenging and pulmonary
or systemic vasoconstriction.

Blood transfusion
For many decades, Hb-based oxygen carriers (HBOCs) have
been investigated as substitutes for the use of red blood cells
in blood transfusions. One of the major obstacles hindering
the successful clinical development of HBOCs is systemic va-
soconstriction. Yu and colleagues demonstrated in mice that
HBOCs cause systemic vasoconstriction by scavenging NO
produced by endothelial NOS (also known as NOS3; Yu
et al., 2008). Administration of inhaled NO before an i.v. infu-
sion of HBOCs prevented systemic vasoconstriction without
causing methaemoglobinaemia in mice and sheep (Yu et al.,
2008, 2009a). Inhalation of NO, at a concentration as low as
5 p.p.m., prevented HBOC-induced pulmonary vasoconstric-
tion in healthy awake lambs. Yu and coworkers studied the
effects of HBOC infusion on mice with endothelial dysfunc-
tion caused by diabetes mellitus or by consuming a high-fat
diet for 4–6 weeks. The endothelial damage induced by these
conditions resulted in decreased NO bioavailability and in-
creased susceptibility to HBOC-induced vasoconstriction
(Yu et al., 2010). Inhaled NO can prevent the systemic vaso-
constriction induced by infusion of HBOCs in these mice
with endothelial dysfunction. In a case report, Marrazzo
and colleagues described an 87-year-old patient with acute
life-threatening anaemia (Hb level at 40 g·L�1) (Marrazzo
et al., 2018). This patient had a history of an anti-Jk3 alloanti-
body and could only receive packed red blood cells lacking
the Jk3 antigen, which is an extremely rare phenotype in
most populations. Therefore, two units of HBOCwere admin-
istered for compassionate use. The administration of inhaled
NO combined with HBOC infusion improved cardiac output,
arterial oxygen content, lactate clearance and reduced vaso-
pressor requirement in this patient. In the future, treatment
with inhaled NO may prove to be a novel strategy that per-
mits the use of HBOC transfusion without causing systemic
and pulmonary hypertension.

During ex vivo storage, red blood cells (RBCs) undergo nu-
merous biochemical, structural and functional alterations,
which are collectively termed the ‘storage lesion’. Transfu-
sion of blood that has been stored for more than 2 weeks
was associated with an increased rate of infection and

multiorgan failure, longer hospitalizations and increased
mortality (Koch et al., 2008; Weinberg et al., 2008; Zimrin
and Hess, 2009). In diabetic mice, inhalation of 80 p.p.m.
NO prevented systemic vasoconstriction and hypertension
associated with transfusion of RBCs stored for 14 days (Yu
et al., 2012). Lei and colleagues used a murine model of
haemorrhagic shock, in the setting of hyperlipidaemia-
induced endothelial dysfunction and decreased NO bioavail-
ability, to investigate the effects of NO on stored-blood
induced injury. Inhalation of NO during transfusion of
14-day-old blood decreased tissue injury, inflammation and
mortality (Lei et al., 2012). Baron and colleagues developed
a model of autologous blood transfusion in lambs and found
that inhaled NO attenuated the pulmonary hypertension in-
duced by transfusion of red blood cells stored for 40 days
(Baron et al., 2012). Furthermore, in a sheep model of
haemorrhagic shock, inhalation of NO attenuated the pul-
monary hypertension and inflammation associated with
transfusion of 40-day-old red blood cells (Baron et al., 2013).
Berra and coworkers demonstrated in human volunteers that
inhalation of NO prevented pulmonary hypertension associ-
ated with the transfusion of autologous leukoreduced blood
stored for 40 days (Berra et al., 2014). The results of these stud-
ies suggest that inhaled NO should be considered as an ad-
junctive therapy for blood transfusion, especially in
critically ill patients with pulmonary hypertension, endothe-
lial dysfunction and acute lung injury.

Generating NO from air using pulsed
electrical discharges
NO inhalation therapy requires gas cylinders and a cylinder
distribution network, a complex delivery device to regulate
NO and oxygen (O2) concentrations, and trained respiratory
therapists. Formany hospitals, inhaled NO is themost expen-
sive drug used in neonatal medicine (Subhedar and
Dewhurst, 2007). Because of the complexities and expense
of delivering NO, this treatment is not available in many
parts of the world and is not practical for outpatient use. Sev-
eral approaches have been used to produce NO for biomedical
purposes, including chemical methods and various electrical
systems (Namihira et al., 2000, 2002; Stoffels et al., 2006;
Kuhn et al., 2010). However, these reactions produce large
amounts of toxic byproducts, such as nitrogen dioxide
(NO2) and ozone, and therefore require complex purification
systems (Samaranayake et al., 1999; Hu et al., 2007). Lovich
and colleagues proposed that NO might be produced by cata-
lytic conversion of liquid NO2/N2O4. However, this approach
would require a large amount of highly toxic NO2 as the
starting material (Lovich et al., 2014). Ren and coworkers de-
veloped a NO releasing system that used a copper (II)-tri(2-
pyridylmethyl) amine complex to mediate electrochemical
reduction of nitrite. Unfortunately, the system only produced
very low levels of NO (Ren et al., 2014, 2015). Subsequent
modifications, based on the electrochemical reduction of ni-
trite using copper (II)-ligand as a mediator, increased the yield
of NO, from 400 p.p.b. to 500 p.p.m. (Qin et al., 2017). How-
ever, the instability of the mediators and the short lifespan of
the copper-complex covered electrodes (currently less than
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48 h) suggest that this approach requires further investiga-
tion and improvement.

Recently, our group designed, developed and tested a
lightweight, portable and economical NO generator system
that uses pulsed electrical discharges (Figures 1 and 2) (Yu
et al., 2015). The NO generator produces NO in a therapeutic
range (5–80 p.p.m.) at gas flow rates of 0.5 to 5 L·min�1. Irid-
ium electrodes were found to be superior to stainless steel,
nickel, carbon and tungsten electrodes in that they produced
the least amount of NO2 during NO production. The small
amount of potentially toxic gases and metals that were pro-
duced in the electrically generated plasma were removed by
a small (12 g) in-line, calcium hydroxide (Ca (OH)2) scaven-
ger and a high-efficiency particulate absorption (HEPA) filter.
In lambs with acute pulmonary arterial hypertension,

breathing electrically generated NO reduced pulmonary arte-
rial pressure, as effectively as NO diluted from a conventional
cylinder (Yu et al., 2015). To save energy, reduce the con-
sumption of the scavenger and preserve the electrodes, we
improved the NO generator by triggering NO production
only during inspiration. The newly developed NO generator
can be installed in series with the ventilator or can be used
to inject NO into the airway via a transtracheal catheter.

Prolonged use of the NO generator resulted in erosion of
the surface of the electrodes, potentially introducing contam-
inating metal particles into the gas stream (Yu et al., 2016).
We used quadrupole mass spectroscopy to show that a single
HEPA filter was sufficient to remove all metal particles from
the effluent gas. Mice breathing electrically generated NO,
50 p.p.m. in air for 28 days, did not develop pulmonary in-
flammation or structural changes, and no trace metals were
detected in the lungs of these mice (Yu et al., 2016).

Berra and colleagues tested the NO generator on six
healthy volunteers and six patients with chronic pulmo-
nary hypertension (Berra et al., 2016). Each subject received
25 p.p.m. of NO for 10 min, and no adverse effects were
detected. In six patients with chronic pulmonary hyperten-
sion, the acute pulmonary vasodilator haemodynamic
effects of electrically generated NO were similar to those
seen using NO obtained from commercially available cylin-
ders (Berra et al., 2016).

To develop a lighter NO generator for potential portable,
outpatient use, we designed a miniaturized version of the
prototypic NO generator, designated the ‘mini-NO generator’
(Yu et al., 2018). The mini-NO generator weighs approxi-
mately 14 g and consists of two iridium electrodes within a
ceramic insulator surrounded by a 3mm aluminium housing.
Two HEPA filters are used to contain the 0.8 g Ca(OH)2 scav-
enger and to remove potential metal particles released from
the electrodes during NO generation (Figure 3). When placed
adjacent to the endotracheal tube of anaesthetized rabbits
with acute pulmonary hypertension, the mini-NO generator
induced selective vasodilatation of the pulmonary vascula-
ture. We showed that a small amount of Ca(OH)2 scavenger
(0.8 g) was sufficient to remove potentially toxic gases.

Figure 1
Producing NO by pulsed electrical discharge from air (from Yu et al.,
2015; used with permission).

Figure 2
Detailed internal components of the NO generator. Purple arrows indicate gas entering and leaving the device. Black arrows indicate the sensors
and pump that are connected to or controlled by the circuit board. Air or an O2/N2 mixture is pumped and filtered through a 0.22 μm
high-efficiency particulate absorption (HEPA) air filter. The gas flow rate is measured with a meter. Sensors for O2, NO and NO2 indicate the
concentration of each gas. The electrodes are powered by a microcontroller circuit. The Ca(OH)2 scavenger and a 0.22 μm filter remove potential
toxic gases (NO2 and O3) and metal particles before delivery of the gas. (From Yu et al., 2015; used with permission). O3, ozone.
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Figure 3
Photograph (A) and schematic (B) of the mini-NO generator. The generator contains iridium discharge electrodes, a NO2 scavenger consisting of
0.8 g of Ca(OH)2, a 0.22 μm filter, a gas flow tube (e.g. 70mL·min�1 airflow) to facilitate NO delivery, a mini-air pump, resonant power supply and
Bluetooth controller. The device is surrounded by a ceramic insulator. (From Yu et al., 2018; used with permission).

Table 1
Summary of potential therapeutic applications of inhaled NO therapy

Cardiopulmonary
diseases

Acute respiratory distress syndrome (ARDS) (Rossaint et al., 1993; Benzing and Geiger, 1994; Troncy et al., 1998;
Gerlach et al., 2003; Taylor et al., 2004; Bronicki et al., 2015; Albert et al., 2017; Dowell et al., 2017)

Chronic obstructive pulmonary disease (COPD) (Barbera et al., 1996; Yoshida et al., 1997;
Vonbank et al., 2003; Hajian et al., 2016)

Bronchopulmonary dysplasia (BPD) (Schreiber et al., 2003; Ballard et al., 2006; Kinsella et al.,
2006; Askie et al., 2018)

Interstitial lung disease (ILD) (Blanco et al., 2011)

Cardiac or lung transplantation (Stobierska-Dzierzek et al., 2001; Fojon et al., 2005; Moreno
et al., 2009; Tavare and Tsakok, 2011)

Myocardial ischemia/reperfusion injury (I/R) (Hataishi et al., 2006; Janssens et al., 2018)

Cardiac arrest and cardiopulmonary resuscitation (Minamishima et al., 2011; Kida et al., 2014; Derwall et al., 2015)

Univentricular heart surgery (Latus et al., 2016)

Pulmonary hypertension during and after cardiac surgery (Elmi-Sarabi et al., 2017)

ST-elevation myocardial infarction (Janssens et al., 2018)

Elective multiple valve replacement surgery-prolonged CPB (Lei et al., 2018)

Haemolytic
diseases

Sickle cell disease (Atz and Wessel, 1997; Sullivan et al., 1999; Weiner et al., 2003; Head et al., 2010; Gladwin et al.,
2011; Maitre et al., 2015)

Cerebral malaria (Gramaglia et al., 2006; Serghides et al., 2011; Hawkes et al., 2015;
Mwanga-Amumpaire et al., 2015)

Stored blood transfusion (Yu et al., 2008, 2009b, 2010, 2012; Baron et al., 2012, 2013;
Lei et al., 2012, 2018; Berra et al., 2014; Marrazzo et al., 2018)
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Scanning electron microscopy and energy-disperse X-ray
spectroscopy measurements demonstrated that a single
HEPA filter was sufficient to remove all trace metal particles
produced during prolonged NO generation (Yu et al., 2018).
An airflow of 70 mL·min�1 was sufficient to maintain the
housing of the mini-NO device at an acceptable low tempera-
ture during prolonged NO generation.

In summary, the electric plasma NO generator pro-
duces therapeutic levels of NO from air, with scavenging
and filtration systems that effectively eliminate toxic gas
and metallic impurities from the effluent gas. The device
provides safe, efficient and economical NO generation,
which will expand the applications of NO therapy to hos-
pitalized and ambulatory patients around the world.
Table 1 lists conditions that may benefit from treatment
with inhaled NO.

Conclusions
Inhaled NO is the first drug to produce selective pulmonary
vasodilatation without reducing systemic arterial pressure.
Inhaled NO is a life-saving therapy in children and adults
with a variety of diseases. By 2018, an estimated half a million
of Americans with various causes of pulmonary hypertension
had received NO inhalation therapy. With the recent break-
through invention and testing of an electric NO generator, a
simple, lightweight and economic device to produce NO
from air by pulsed electrical discharge, inhaled NO will be af-
fordable and available to patients in developing countries.
Furthermore, this portable NO generator is likely to expand
the indications for inhaled NO therapy, especially for patients
in the ambulatory setting.

The newly developed NO generator can produce thera-
peutic levels of NO gas, which can be delivered through a
face mask, nasal cannulas, an endotracheal tube or a ven-
tilator. Because the device is lightweight and inexpensive,
we anticipate that the device will have a wide range of
applications including (i) treatment of hospitalized pa-
tients with cardiac and/or pulmonary diseases, to replace
heavy and expensive tanks; (ii) treatment of outpatients
with chronic respiratory illnesses, either in the ambula-
tory setting or at home; (iii) facilitation of research and
preclinical studies; (iv) treatment of patients who are fac-
ing extreme conditions, such as those with respiratory
failure who are injured on the battle field or while fight-
ing fires; and (v) treatment of pulmonary arterial hyper-
tension, for example, in hypoxic mountain climbers
(Scherrer et al., 1996).

Nomenclature of targets and ligands
Key protein targets and ligands in this article are
hyperlinked to corresponding entries in http://www.
guidetopharmacology.org, the common portal for data from
the IUPHAR/BPS Guide to PHARMACOLOGY (Harding
et al., 2018), and are permanently archived in the
Concise Guide to PHARMACOLOGY 2017/18 (Alexander
et al., 2017).
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