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Recent findings suggest that co-expression of NOS2 and COX2 is a strong prognostic indicator in triple-negative breast cancer
patients. These two key inflammation-associated enzymes are responsible for the biosynthesis of NO and PGE2, respectively, and
can exert their effect in both an autocrine and paracrine manner. Impairment of their physiological regulation leads to critical
changes in both intra-tumoural and intercellular communication with the immune system and their adaptation to the hypoxic
tumour micro-environment. Recent studies have also established a key role of NOS2–COX2 in causing metabolic shift. This review
provides an extensive overview of the role of NO and PGE2 in shaping communication between the tumour micro-environment
composed of tumour and immune cells that in turn favours tumour progression and metastasis.
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Introduction
Chronic inflammation is a hallmark of many tumour types
that leads to tumour growth, migration and metastasis
(Elinav et al., 2013). Tumour growth is determined not only
by the cancer cells but also by communication with cells in
the tumour micro-environment (TME) such as endothelial
cells (ECs), macrophages, tumour-infiltrating immune cells
such as T-cell, B-cell, dendritic cells (DCs), neutrophils and
natural killer (NK) cells (Junttila and de Sauvage, 2013). The
functional status of the immune cells in the TME is a critical
determinant of the ability of the tumour to escape immune
surveillance, a concept introduced over 60 years ago (Burnet,
1957). These cell populations in the TME vary in their ability
to produce key inflammatory enzymes NOS2 and COX2, re-
sponsible for biosynthesis of NO and PGE2. Together, they
contribute to tumour initiation and progression, as well as
well as stasis and tumouricidal effects (Ghosh et al., 2010;
Bogdan, 2015). To comprehensively understand the multi-
faceted and often dichotomous role of NO and PGE2 in tu-
mour biology, it is essential to consider that (i) both NOS
and COX enzymes have constitutively expressed isoforms
NOS1, NOS3 and COX1, respectively, which have overlap-
ping roles with the inducible isoforms NOS2 and COX2 in
cancer, and (ii) they have the ability to affect the cell intrinsi-
cally as well as neighbouring cells extrinsically. The effects of
NO do not require cell surface receptors, while those of PGE2
are mediated by the PG receptors EP1, EP2, EP3 and EP4,
combinations of which are expressed in a variety of cells
(Sugimoto and Narumiya, 2007). Thus, NO and PGE2 are crit-
ical in initiating an inflammation-driven communication
network in the TME. This review discusses their role in the
tumour, highlighting the collaboration between the tumour
cell and the immune system with a focus on immune regula-
tion and cellular metabolism in human physiology.

NOS2–COX2 as a driver of breast cancer
progression and metastasis leading to
poor prognosis
Breast cancer (BC) is the most common type of cancer among
women with an estimated 252 710 new cases and 40 610
deaths in 2017 in the USA alone (DeSantis et al., 2017). It is
now widely accepted that BC is highly heterogeneous with
multiple subtypes. Triple-negative breast cancer (TNBC),
which lacks the expression of oestrogen receptors (ERs),
progesterone receptors and human EGF receptor 2
(HER2), is an aggressive subtype that accounts for 15% of all
BC patients, is highly metastatic and has poor prognosis.
The most common treatment for BC is surgery, often in con-
junction with radiation therapy, chemotherapy or blocking
receptors using antibodies or receptor antagonists. In the case
of TNBC, there is a lack of targets for receptor-blocking
therapies, and multi-drug resistance is a major problem. Over
the last decade, many reports have demonstrated the associa-
tion between NOS2 and poor outcome in a variety of cancers,
including ER-negative (ER�) BC (Glynn et al., 2010a;
Granados-Principal et al., 2015). Molecular mechanisms of
NO function include regulation of metalloproteinase activity

(Ridnour et al., 2007), a crucial factor in tissue remodelling,
and induction of cancer stem cell (CSC)-like characteristics
by up-regulating c-Myc and CD44 that are unfavourable
prognostic markers associated with a basal-like signature in
BC (Sorlie et al., 2001; Nielsen et al., 2004; Ben-Porath et al.,
2008; Glynn et al., 2010a; Ambs and Glynn, 2011). Inhibition
of NOS2 as a therapeutic approach has shown promising
results in a TNBC xenograft model (Heinecke et al., 2014;
Granados-Principal et al., 2015). Administration of a
pan-NOS inhibitor and, to a lesser extent, a NOS2 inhibitor,
extended radiation-induced tumour growth delay by
suppression of the immunosuppressive cytokine IL-10 and
pro-inflammatory immune polarization in the non-
metastatic SCC/C3H tumour model, thus demonstrating
potential role of NOS2 in immunomodulation of the TME
(Ridnour et al., 2015).

The other inflammation-associated enzyme, COX2, en-
hances the metastatic phenotype of breast tumours and is as-
sociated with poor patient outcome (Ristimaki et al., 2002).
Increased COX2 expression occurs early in BC. It has been de-
tected in ductal carcinoma in situ (Half et al., 2002), as well as
invasive breast carcinoma (Takeshita et al., 2005) and meta-
static lesions (Costa et al., 2002). High expression of COX2
in ER� breast tumours is associated with activation of the
Akt pathway and poor patient outcome (Prueitt et al., 2007;
Glynn et al., 2010b), suggesting that co-expression of
NOS2–COX2 in ER� BC may be a strong predictor of poor
outcome. In our recent epidemiological study in ER� disease,
co-expression of NOS2–COX2 in tumours predicted 33%
patient survival compared with 95% survival of ER� patients
with low NOS2–COX2 expressing tumours, indicating an
important interaction between these two enzymes in
determining the outcome of ER� BC patients. Furthermore,
the use of COX inhibitors [nonsteroidal anti-inflammatory
drugs (NSAIDs)] along with NOS2 inhibition significantly
reduced primary tumour load in a TNBC xenograft mouse
model (Basudhar et al., 2017).

Investigation of the molecular mechanisms driving
TNBC showed that NO induced COX2 and PGE2 induced
NOS2, thus creating a positive feedforward loop as a result
of NOS2–COX2 crosstalk (Figure 1). TNF receptor-associated
factor 2 (TRAF2) was identified as a key protein in
NO-mediated induction of COX2. Interestingly, in basal-like
MDA-MB-468 BC cells, TRAF2 was activated in a TNF-α-de-
pendent manner, while in the more aggressive
mesenchymal-like MDA-MB-231 cells, endoplasmic reticulum
stress (ERS) was themain activator of this pathway even though
TNF-α-mediated activation of COX2 was also accessible.
This was supported by elevated levels of X-box binding protein
1, a marker of ERS in TNBC (Chen et al., 2014). This highlights
BC subtype-specific effects of NO in driving poor prognosis.
Apart from TNF-α, NO also induced IL-8, CCL2 and GM-CSF,
while PGE2 up-regulated IL-6, and all of these factors may
contribute to TME remodelling. Thus, together, NOS2 and
COX2 generate a highly immunosuppressive TME and drive
poor disease prognosis.

Exosomes have generated much interest in cancer biology
in the last decade (King et al., 2012; Azmi et al., 2013; Boelens
et al., 2014) with several reports showing its key role in cancer
development, metastasis, immunosuppression and drug re-
sistance by driving CSC phenotype, angiogenesis, and the
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hypoxia-driven epithelial–mesenchymal transition (EMT).
Both NOS2 and COX2 are involved in exosome-mediated
immune regulation. In a lung cancer model, exosomes were
involved in transferring COX2 to neighbouring immune cells
(Kim et al., 2018). Furthermore, breast tumour-derived
exosomes are critical in macrophage polarization and metas-
tasis (Piao et al., 2018). PGE2 and TGF-β from tumour-derived
exosome are important mediators of myeloid-derived sup-
pressor cell (MDSC)-mediated tumour progression (Xiang
et al., 2009).

A key difference between murine models and humans is
the differential induction of NOS2. In humans, NOS2 expres-
sion is highly regulated and modest compared with mouse
physiology. In this regard, small non-coding regulatory RNAs
are becoming increasingly important in NOS2 regulation.
MicroRNA (miR)-939 has emerged an important regulator of
NOS2 translation as it is believed to bind to 30-UTR to block
cytokine-mediated NOS2 expression in human hepatocytes
(Guo et al., 2012). Interestingly, Di Modica et al. (2017)
showed that higher levels of miR-939 are expressed in TNBC
compared with other BC subtypes. Apart from miR-939,
miR-146a and miR-26a also can down-regulate NOS2 expres-
sion in humans by modulating levels of inflammatory cyto-
kines in glial cells and binding to 30-UTR in T-cell
lymphoma respectively (Li et al., 2011; Zhu et al., 2013). Sim-
ilar to NOS2 regulation, miRs also play a role in regulation of

COX2. Some of the miRs that have been invoked in COX2
regulation are miR101, miR-146a, miR-26b, miR-16, miR-
199a and miR-122 (Ochs et al., 2011). In BC, these miRs have
been reported to play a critical role. Down-regulation of both
miR-146a and miR-146b expression in breast tissues is
correlated with development and increased tumourigenic
potential of BC and associated with high levels of IL-6, a
cytokine associated with COX2 overexpression in TNBC
(Li et al., 2015; Basudhar et al., 2017). A similar profile
was established for lower miR-26b expression in inflamma-
tory BC compared with normal breast tissue along with as-
sociation of miR-26a to tumour cell proliferation again
emphasized the role of NOS2–COX2 in BC (Liu et al.,
2011; Zhao et al., 2015; Ding et al., 2018). Recently miR-
122, a regulator of COX2, has been associated with
reprograming oncometabolism in the TME by modulating
glucose metabolism in the premetastatic niche to promote
metastasis (Fong et al., 2015). While its association with
NOS2 is not reported, miR-122 mimics have been shown
to down-regulate NOS2 (Liu da et al., 2016). Thus, the col-
laboration of NOS2 and COX2 to drive poor disease prog-
nosis led us to investigate the infiltration of immune cells
in the TME.

Leukocyte profiling of patient samples based on RNAseq
analysis of the TCGA PanCancer Atlas ER� samples showed
that the immune signature of patients with high

Figure 1
Increased levels of NO and PGE2 drives tumour growth and its vascularization. PGE2 effects are mediated by EP1–EP4 receptors, while NOS1
and NOS3 produce physiological levels of NO, and NOS2 is important in pathophysiological function. In tumour biology, co-expression of
NOS2–COX2 is associated with poor patient survival. In basal A-like cells, TRAF2 is activated in a TNF-α dependent manner, while in the more
aggressive mesenchymal-like cells, ERS was the main activator of COX2 even though TNF-α-mediated pathway is also accessible. NO and PGE2
also lead to tumour vascularization and angiogenesis.

Role of NOS2–COX2 signalling in cancer and immune system
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NOS2–COX2 levels is vastly different fromhighNOS2 or high
COX2 alone (Figure 2). To comprehensively understand the
role of NO and PGE2 in tumour biology, it is important to ap-
preciate that their cellular signalling is tightly controlled

based on their rates of production from different cell types
and cellular proximity in TME, which determines the intra-
cellular flux of NO and PGE2 and hence their pro-tumorigenic
and anti-tumorigenic properties.

Figure 2
Leukocyte profiling in ER� patient samples. The RNA-Seq leukocyte subset data for the TCGA PanCancer Atlas ER� samples were downloaded from
the cBioPortal.org, and the predefined leukocyte signature markers’ information was downloaded from the cibersort.stanford.edu. Data on dif-
ferentially expressed leukocyte markers, generated from RNA-Seq, were uploaded to the CIBERSORT and processed against the LM22, a
predefined leukocyte marker subset. The relative percentage for each leukocyte subtype were presented as (A) stacked bar chart, and (B) the table
represents cell types from the signature genes files and columns that represent deconvolution results of each mixture sample. All results are re-
ported as relative fractions normalized to 100% across all cell subsets.
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Discrete levels of NO and PGE2 in cancer
determine pro-tumorigenic and
anti-tumorigenic properties

The role of NO in tumour biology is complex and tightly
controlled by its cellular concentration, duration of release
and location due to its short half-life and high diffusion con-
stant in contrast to signalling by ligand–receptor binding.
This leads to differential effects on tumourigenic versus
tumouricidal signalling pathways (Ridnour et al., 2008). The
balance between ROS/reactive nitrogen species (RNS) and an-
tioxidants is dysregulated in tumours, thus initiating tumour
progression. The perceived role of NO in signal transduction
has grown over the years (Basudhar et al., 2016). Most of its bi-
ological signalling is due to either its direct reaction with
metal centres or nitrosation of biomolecules. Nitrosylation
of metal centres occur at a low concentration of NO and can
be broadly classified as physiological response, while protein
nitrosation is an indicator of nitrosative stress, which is criti-
cal for the understanding of various pathophysiological con-
ditions. Thiol nitrosation is involved in inhibition as well as
activation of key signalling pathways.

The effect of different fluxes of NO in tumour cells was
studied using donor compounds and has been reviewed
recently (Somasundaram et al., 2018). In brief, low flux
(<100 nM) NO regulates normal physiological functions
such as BP control. Intermediate levels (200–700 nM) lead
to tumour proliferation and metastasis (or wound healing
and tissue restoration in normal tissue) by activating the
PI3K/PKB (Akt) pathway, ERK and stabilization of
hypoxia-inducible factor-1 (HIF-1α). At high levels
(500–1000 nM), NO is associated with an anti-tumour effect
through activation of p53 and other anti-proliferative pro-
teins. This dichotomous role of NO provides two distinct
therapeutic windows: (i) utilization of NOS inhibitors or (ii)
increasing NO concentration using NO donor compounds.

The effect of COX2-derived PGE2 occurs in autocrine or
paracrine manner through four different receptors in
humans, EP1–EP4, of which EP3 exists in at least eight differ-
ent isoforms due to differential mRNA splicing, providing
an additional level of functional control (Sugimoto and
Narumiya, 2007).While EP1 (KD = 25 nM) and EP2 (KD = 5 nM)
receptors have low binding affinity to PGE2, the EP3
(KD = 0.33 nM) and EP4 receptors (KD = 0.59 nM) can bind
to PGE2 at a very low concentration (Abramovitz et al.,
2000). This provides a concentration-dependent signalling
mechanism in the TME. EP2 and EP4 receptors are key
mediators of anti-inflammatory and immune-suppressive
effects through activation of the cAMP/PKA/cAMP response
element-binding protein pathway (Subbaramaiah et al.,
2008). In addition, EP2/EP4 receptor-mediated induction of
the GSK-3β/β-catenin pathway leads to the production of
several pro-tumourigenic transcription factors, for example,
cyclinD1, c-Myc and VEGF. EP4 receptors can also activate
the PI3K pathway, leading to tumour growth and metastasis
(Fujino et al., 2002). PGE2 levels are further controlled by
the rate of desensitization upon ligand–receptor interaction.
EP4 receptors are rapidly desensitized, leading to a rapid burst
of PGE2 -mediated signalling, while EP2 receptors havea long-
lasting effect (Kalinski, 2012). EP1 and EP3 receptors can

activate PLC-mediated stimulation of calcium, leading to ac-
tivation of the MAPK, nuclear factor of activated T-cells and
NF-κB signalling pathways. Activation of EP3 receptors can
also lead to inhibition or induction of cAMP, based on the
isoform present (Woodward et al., 2011). The involvement
of EP1 and EP4 receptors has been demonstrated in breast tu-
mour growth and metastasis (Kawamori et al., 2001; Ma et al.,
2006). Targeted inhibition of these receptors is emerging as
new therapeutic area in cancer.

The tumour biology of PGE2 is based on a large body of lit-
erature that shows tumour regression in BC and other cancers
with NSAIDs, which are COX inhibitors (Cha and DuBois,
2007). Recently, a crosstalk between osteoprotegerin, fatty
acid synthase and COX2 has also been implicated in highly
invasive BC (Goswami and Sharma-Walia, 2016). PGE2 may
also mediate CXCR2 signalling, playing a role in BCmetasta-
sis and chemoresistance (Xu et al., 2018). Like IL-8 and TNF-α,
high levels of IL-6 in BC patient serum are also a poor prog-
nostic marker. In TNBC cell lines, PGE2 induces IL-6 that con-
trols growth, metastasis and CSC renewal (Basudhar et al.,
2017). Although the role of PGE2 in tumour biology and im-
mune system regulation is well established, there are not
many reports demonstrating the underlying mechanism. Re-
cently, Zelenay et al. (2015) showed for the first time that
PGE2 -mediated pro-tumourigenic effects are due to immune
evasion in a murine model of BrafV600E-mutated melanoma,
where a synergistic effect of COX inhibition with anti-PD-1
blockade showed promise as adjuvant to immunotherapy.
Another study demonstrated NOS2 and COX2 are important
regulators of Dickkopf (DKK)1 expression, a predictor of lung
versus bone marrow metastasis in BC. DKK1 expression sup-
pressed COX2-mediated recruitment of neutrophils andmac-
rophages in lung metastasis through the non-canonical WNT
pathway but at the same time DKK1 promoted bone metasta-
sis by regulating canonical WNT signalling of osteoblasts
(Zhuang et al., 2017). On the other hand, NOS2 induces the
WNT pathway by inhibition of DKK1 in BC (Du et al.,
2013). Together, NOS2 and COX2 are important modulators
of tumour progression and metastasis.

Role of NOS2–COX2 in tumour
vascularization
Vascular endothelium is the barrier between blood and the
tissues, which controls tumour initiation, development and
metastasis. A rapidly proliferating tumour requires extensive
tumour vascularization and elevated angiogenesis. The im-
mature neovasculature can inhibit immune cell extravasa-
tion, limiting tumour surveillance. Endothelial NOS (eNOS
or NOS3), a mediator of VEGF activity, is the primary endog-
enous source of NO in ECs. NOS3 activity is regulated by
post-translational modification, binding to regulatory pro-
teins such as heat shock protein 90 and CaM and intracellular
localization. In addition, PGE2 can also induce VEGF via EP2
and EP4 receptors. Recently, the crosstalk between NO and
PGE2 was demonstrated by PGE2/EP4-mediated dephosphor-
ylation of eNOS at Thr495, stimulating NO production and va-
sodilation (Hristovska et al., 2007). Low levels of NO (<1 nM)
inhibit thrombospondin-1 (TSP1), a secreted protein in-
volved in EC proliferation that blocks NO-mediated
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angiogenesis through the ERK pathway (Ridnour et al., 2005).
During inflammation, as NO flux increases, TSP1 levels start
to increase, partly due to a protein tyrosine phosphatase
MKP-1-mediated dephosphorylation of ERK. This leads to
TSP1-mediated inhibition of the NO–cGMP pathway, causing
inhibition of angiogenesis through its binding to CD47 re-
ceptor, which has emerged as an immune checkpoint
(Matlung et al., 2017). At high TSP1 levels, it also binds to
CD36, a free fatty acid transporter that is involved in eNOS
activation by myristate, thereby inhibiting NO signalling
(Isenberg et al., 2007, 2009). In endothelial biology,
both NO and PGE2 play important roles in the tumour
vasculature.

In the BC TME, TNBC cells can produce GM-CSF and
CCL2 in the presence of NO, while PGE2 -mediated IL-6
release leads to recruitment of monocytes through tumour
vasculature, which are then activated to become tumour-
associated macrophage (TAM) (Roca et al., 2009; Qian and
Pollard, 2010; Basudhar et al., 2017). GM-CSF also induced
EC angiogenesis emphasizing the interplay between BC
and EC in the TME (Bussolino et al., 1991). NO also has a
concentration-dependent role in expression of intracellular
adhesion molecules that are involved in recruitment of T
lymphocytes and monocytes. At low concentration, NO is
critical for activation of vascular cell adhesion protein
1, intercellular adhesion molecule 1 (ICAM-1) and
E-selectin, while high flux of NO down-regulates their ex-
pression inhibiting recruitment of immune cells (Sektioglu
et al., 2016).

A crosstalk between tumour cells and ECs can bemediated
by PGE2 as well. For example, high concentration of PGE2 can
act through EP1 receptor signalling to enhance expression of
ICAM-1 in oral cancer cells leading to increased cell motility
(Yang et al., 2010). In brain ECs, PGE2 induced ICAM-1 ex-
pression through EP4 receptors (Park et al., 2013). Moreover,
cellular communication between metastatic BC and ECs is
also controlled by α3β1 integrin, which is highly expressed
in BC and regulates invasion and metastasis through MMP-
9. Integrin α3β1 is an upstream regulator of COX2 in BC
and a potential therapeutic target for immunomodulation
(Mitchell et al., 2010). The role of NO in MMP-mediated sig-
nalling is well documented, revealing a role of both NO and
PGE2 in regulating BC and EC interactions (Ridnour et al.,
2007; O’Sullivan et al., 2014). Thus, low NO flux and short-
term PGE2/EP4 receptor signalling can induce T lymphocyte
and monocyte recruitment at the tumour site.

Dysregulated metabolism in the TME characterized by
low nutrient and oxygen supply and low pH due to increased
lactate secretion makes it challenging for ECs to survive and
proliferate in the TME. Low oxygen and glucose
deprivation-mediated stabilization of HIF-1α induces VEGF
and VEGF-R2 leading to tumour vascularization (Tang et al.,
2004; Yun et al., 2005). Moreover, IL-8 from tumours can also
drive EC proliferation and angiogenesis (Li et al., 2003). Like
tumour cells, ECs overexpress the glucose transporter 1
(GLUT1) and utilize the glycolytic pathway for energy re-
quirements even in the presence of oxygen (Yeh et al., 2008;
Parra-Bonilla et al., 2010). This allows maximum oxygen
transport to the tumour and is beneficial for their survival
and increased tumour vascularization. In tumour-associated
EC, induction of VEGF by COX2 can increase the expression

of phosphofructokinase 2, a key enzyme involved in synthe-
sis of fructose-2,6-bisphosphate, which is an allosteric activa-
tor of phosphofructokinase 1 in the glycolysis pathway
(Zhang et al., 2018). A hallmark of increased glycolysis in
TME is high lactate concentration, which can be taken up
by ECs through the monocarboxylate transporter 1 and con-
verted to pyruvate for use in the tricarboxylic acid (TCA) cycle
in the presence of oxygen (Sonveaux et al., 2012). This im-
plies a role of NOS2–COX2 in regulation of BC–EC interac-
tion in the TME as well as regulation of EC cellular
metabolism, thereby promoting tumour progression and
metastasis.

Regulation of NO and PGE2 in the
immune system
The immune system consists of a wide variety of cell types lo-
cated in specific niches throughout the body. An appropriate
balance of immune cells is required to mount an effective re-
sponse to disease. Infection has been established as a precur-
sor of approximately 20% of malignant tumours (de Martel
et al., 2012). The levels of NOS2 and COX2 produced by the
immune system and their effect on tumour cells and the
TME determine tumourigenic versus tumouricidal response.
A complete understanding of these effects is required to deter-
mine themechanisms underlying chemoresistance and effec-
tiveness of immunotherapy.

NOS2–COX2 in the innate immune
system
Persistent chronic inflammation, marked by increased re-
lease of pro-inflammatory and oncogenic mediators, makes
the micro-environment susceptible to tumourigenesis. The
innate and adaptive immune system can inhibit or en-
hance tumour initiation. Mediators released by these cells
can influence each other’s activity. Many innate immune
cells such as monocytes/macrophages, NK cells, DC, eosin-
ophils and mast cells biosynthesize NO as discussed below.
PGE2 and NO levels in the macrophages can determine pa-
tient prognosis in several disease conditions especially in-
fections, diabetes and cancer (MacMicking et al., 1997;
Tessaro et al., 2015; Liu da et al., 2016; Brune et al., 2017;
Oleson et al., 2018). Therefore, response to inflammation
and hence inflammation-associated cancers (like BC) is de-
pendent on NOS2–COX2 signalling in macrophages, which
is important for macrophage polarization and the regula-
tion of tumour progression. The COX2/ PGE2 signalling
pathway contributes to immune evasion and resistance to
cancer therapy by suppressing the activity of innate im-
mune cells such as DC and NK cells (Liu et al., 2015). In
the past decade, several studies have shown how bioener-
getic status controls the fate and function of immune cells.
In the following sections, we will address NOS2/NO and
COX2/PGE2 signalling and how it modulates innate im-
mune cell function, along with a discussion of their meta-
bolic pathways.
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Macrophages
The presence of TAMs in BC has been associated with im-
proved tumour vasculature, increased invasion and metasta-
sis and immune escape (Figure 3) (Ruffell et al., 2012).
Studies have shown that local low-dose irradiation and
cytosine–phosphorothioate–guanine oligodeoxynucleotides,
a toll-like receptor (TLR) agonist, can differentiate TAMs into
NOS2+ macrophages, which in turn can facilitate infiltration
of T-cells into the TME (Klug et al., 2013; Sektioglu et al.,
2016). However, more recent studies have shown that these
infiltrated T-cells are often exhausted in TNBCs as they be-
come more invasive (Gil Del Alcazar et al., 2017). This points
towards the possibility of several alternative modes of im-
mune escape that may be employed by the more aggressive
cancers. The polarization of TAMs and downstream signal-
ling events are dependent on the interaction between cancer
cells and macrophages. COX2 inhibitors have been found to
have chemopreventive effects in many cancers by reducing
arginase (Arg)1 expression, increasing the chemokine
CXCL1 and potentially reprogramming macrophages into
NOS2-expressing, anti-tumour cells (Ruffell et al., 2012). This
also throws light on the involvement of PGE2 in tumour pro-
gression. Chemokines such as colony-stimulating factor 1
and CCL2 produced by the tumour cells recruit macrophages
into the TME, while tumour-derived PGE2 and cytokines such
as IL-10 signal through EP2/4 receptors and IL-10R, respec-
tively, to activate a loop that regulates NOS2 and/or Arg1,
hence determining the immune status of the tumour (Ruffell
et al., 2012). An additional determinant of the functional ef-
fects of these pathways within the TME is HIF-1α (Ruffell
et al., 2012). The relationship between NOS2, hypoxia and
COX2/PGE2 in macrophages within the TME has been suc-
cinctly described by a few reviews (Obermajer et al., 2012;
Ruffell et al., 2012; Ridnour et al., 2013; Brune et al., 2017). Be-
haviour of inflammatory cancers such as breast, ovarian, pan-
creatic, gastric (mainly colorectal and oesophageal) and
bladder carcinomas within the TME during tumourigenesis
and response to therapy is regulated by the metabolic status
of the micro-environment contributed largely by macro-
phage metabolism (Na et al., 2018).

NO produced by stimulated macrophages regulates the
micro-environment, and this paracrine effect modulates re-
sponse to infections and anti-cancer therapies. NO can affect

cellular respiration and reduce O2 consumption, thus
converting the TME into an environment that utilizes ‘aero-
bic glycolysis’ for energy production (Beltran et al., 2000).
This oncometabolism helps tumours escape the surveillance
of the immune system. A recent paper reveals that NO pro-
duction within macrophages is differentially regulated at
the level of transcription between various species, and this
could contribute to pathogen host restriction (Young et al.,
2018). This species-specific regulation of NOS2 and associ-
ated NO production/arginine metabolism could also lead to
differences between interactions of tumours with the im-
mune system as well as response to immunotherapy. Human
macrophages have been found to produce low amounts of
NO in response to inflammatory stimuli, and the detection
of NO in this model has been difficult (Weinberg et al.,
1995). Hence, the effects of macrophage NO in the TME
especially with regard to immunometabolism have largely
been studied in murine macrophages.

In murine macrophages, IFN-γ + LPS induces NOS2 and
COX2, while in human macrophages, it induces COX2 and
indoleamine 2,3-dioxygenase (IDO), an enzyme that me-
tabolizes tryptophan to kynurenine. IDO has been linked to
immunosuppression through attenuation of T-cell activity.
In macrophages, IDO1 up-regulated M2-associated effector
molecules (IL-10, CXCR4) and reduced M1 [C–C chemokine
receptor type 7 (CCR7) and IL-12p35] phenotypic markers
(Wang et al., 2014). Conversely, IDO knockdown in THP-1
cells showed preference for M1 compared with M2 markers
suggesting a role of IDO in macrophage differentiation to-
wards anM2 phenotype. Though IFN-γ is generally associated
with M1 polarization, it can also facilitate immunosuppres-
sion, perhaps via the induction of IDO.

Espey et al. (2000) showed that IFN-γ with different com-
binations of cytokines and TLR activators could produce dif-
ferent levels of NO, which in turn determines their
nitrosative capacity and downstream intracellular and inter-
cellular effects within the local environment. The level of
NO has been shown to directly regulate the metabolic state
of macrophages by inhibiting oxidative phosphorylation
(OXPHOS) and making them glycolytically committed. Fur-
thermore, NO inhibition of OXPHOS resulted in IL-10 pro-
duction antagonizing NOS expression. Thus, NO regulation
of OXPHOS and the negative feedback of IL-10 form a meta-
bolic rheostat (Baseler et al., 2016). The same study by Baseler

Figure 3
NOS2–COX2-mediated signalling in TAMs. LDI, low-dose irradiation; CpG ODN, CpG oligodeoxynucleotide.
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et al. (2016) delineating the effect of IL-10 on macrophage
metabolism suggests that IL-10, anti-inflammatory cytokine
produced by stimulated macrophages can control their pro-
pensity for glycolysis by regulating the levels of NO. More re-
cently, it was found that IL-10 had a multi-pronged effect on
metabolically reprogramming macrophages in inflammatory
bowel disease (Ip et al., 2017).

Apart from regulating glycolysis, IL-10 inhibited caspase
1-mediated inflammasome activation and also helped main-
tain healthy mitochondria as well as prevent accumulation
of dysfunctional mitochondria by turning on an autophagic
mechanism (Ip et al., 2017). Increased IL-10 can inhibit VEGF
production and subsequently neovascularization, from ‘M1’-
polarized and not ‘M2’-polarized macrophages (Wu et al.,
2010). Hypoxia-induced VEGF was also not affected by IL-
10 but IFN-γ-induced VEGF was. This study showed that high
NOS2 expression was required for IL-10 to inhibit VEGF, but
if the cells expressed high NOS2 and Arg1, IL-10 again had
no anti-inflammatory effect (Wu et al., 2010). NO-mediated
inhibition of mitochondrial OXPHOS has also been impli-
cated to be the reason for the inability of IL-4 to convert M1
macrophages back to M2 (Van den Bossche et al., 2016).

Infantino et al. (2013) found that the enzyme ATP citrate
lyase plays a role in human macrophage response to inflam-
mation by directly regulating NO, ROS and PGE2 levels, thus
hinting at a possible link (direct or indirect) between NO flux
and metabolism-driven response in human macrophages as
well. These studies point towards an unequivocal role for
NO in macrophage metabolism. However, there is a need to
understand that in vivo macrophages are exposed to a pleth-
ora of stimuli, further complicated by fuel restrictions and
do not always fully conform to either the M1 or the M2 defi-
nition (Van den Bossche et al., 2017).

Neutrophils
Neutrophils are one of the first responders in the host im-
mune system and produce high ROS and RNS (in rodents).
The flux of ROS in neutrophils is a major determinant of tu-
mour outcome. NO/cGMP signalling and direct NO-
mediated modifications lead to tuning of these ROS levels.
Unlike infectious disease, in the tumour-associated neutro-
phils, there is a reduction in ROS levels, thus switching their
function from anti-tumour to pro-tumourigenic (Sagiv et al.,
2015). In BC, high neutrophil-to-lymphocyte ratios are as-
sociated with poor patient survival (Ethier et al., 2017). Tu-
mour cells play an important role in recruiting neutrophils
by secreting chemoattractants such as IL-8 and LTB4, an ei-
cosanoid signalling pathway parallel to COX2 pathway
(Lammermann et al., 2013). Furthermore, IL-8 is produced
by tumour cells in the presence of NO and associated with
poor prognosis in TNBC (Glynn et al., 2010a; Hartman
et al., 2013; Basudhar et al., 2017). NO also induces GM-
CSF in TNBC, which can in turn amplify IL-3 receptor ex-
pression, thus inducing responsiveness of neutrophils to
IL-3 that is commonly produced by T-cells or mast cells
(Smith et al., 1995).

While the role of PGE2 in neutrophil function in BC is still
being elucidated, activated neutrophils can also be a source of
PGE2. Early literature suggested a role of PGE2 in neutrophil

migration in general (Van Epps et al., 1978). In colonic epi-
thelial cells, PGE2 stimulates IL-8 leading to neutrophil re-
cruitment to TME, thus contributing to tumour progression
and metastasis (Yu and Chadee, 1998; Hartman et al., 2013;
Wang et al., 2015). Furthermore, IL-8 is also responsible for
a neutrophil-mediated increase of Arg1 in TME in a non-small
cell lung cancer model, which can then reduce influx of L-ar-
ginine to the NOS pathway and suppress cytotoxic T-cell
functions through arginine deprivation, thus leading to an
immunosuppressive TME (Rotondo et al., 2009). T-cells also
secrete cytokines that lead to increased neutrophil infiltra-
tion. Recent studies showed that γδ T-cells enhanced IL-17-
mediated recruitment of neutrophils in turn leading to me-
tastasis in the TME of BC (Benevides et al., 2015; Coffelt
et al., 2015). Tumour-derived IL-1β is a key mediator of γδ T-
cell activation as well as tumour NOS2 expression. ROS-
producing neutrophils mediate suppression of macrophage
NOS2 resulting from the anti-tumour activity of cytotoxic
CD8+ T-cells (Bingisser et al., 1998; Mazzoni et al., 2002;
Governa et al., 2017). Taken together, these results suggest
that neutrophils can have pro-tumourigenic properties.

Another important property of neutrophils is the reorga-
nization of the extracellular matrix by MMPs, a key compo-
nent of tumour progression and metastasis. MMP-9 has
been associated with cancer progression and is mainly pro-
duced by neutrophils. MMP-9 activation is tightly con-
trolled by NO levels. As mentioned earlier, there is a
reduction in RNS levels produced by neutrophils in the
TME. At low levels, the NO–cGMP pathway inhibits tissue
inhibitor of metalloproteinase-1 (TIMP-1), thus in turn in-
creasing MMP-9. Moderate levels of NO can directly activate
MMP-9 presumably by attacking the zinc thiolate site
(Ridnour et al., 2007). MMP-9 also induces angiogenesis by
releasing VEGF. Thus, MMP-9 supports neutrophil-mediated
metastasis in the TME.

Neutrophils are almost entirely dependent on glycolysis
for their energy requirements, as they have extremely fewmi-
tochondria (Fossati et al., 2003; Chacko et al., 2013). In a TME
with depleted nutrients and oxygen, neutrophils show dis-
tinct properties. Tumour-associated neutrophils demonstrate
increased expression of NOS2, IL-6 and IL-10 compared with
splenic MDSCs (Elpek et al., 2014). In neutrophils, NOS can
also increase cGMP and decrease TSP-1 as discussed above.
This can lead to decreased ROS due to antioxidant properties
of NO. Thus, it is reasonable to conclude that ROS-mediated
killing would be attenuated by an increase in NOS2 in the
TME. Furthermore, IL-8 generation is maintained, and
elastase is also up-regulated in neutrophils under hypoxic
conditions and taken up by tumour cells leading to prolifera-
tion (McGovern et al., 2011; Kerros et al., 2017). TGF-β is also
induced under hypoxia, leading to pro-tumourigenic effects
of neutrophils (Fridlender et al., 2009).

NK cells
NK cells, a major component of innate immunity and one of
the three major lymphoid cell populations in blood, play an
important role in host resistance against viral infections and
tumours without prior sensitization (Figure 4). NK cells pro-
duce several cytokines and are notable for their production
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of high levels of IFN-γ. The maturation and differentiation of
NK cells are regulated by various stimuli, including IL-15 that
is essential for normal NK cell development (Becknell and
Caligiuri, 2005). Cytokines such as IL-15, IL-12 and IL-2 aug-
ment the cytolytic activity of NK cells against tumours (Wu
and Lanier, 2003). Studies have previously shown that in-
creased NO production through NOS2 contributes to IL-2-
mediated enhanced cytotoxicity and IFN-γ production (Hibbs
Jr. et al., 1992; Diefenbach et al., 1998; Cifone et al., 1999;
Furuke et al., 1999; Cifone et al., 2001). Depletion of L-argi-
nine, the substrate of NOS and Arg, has a profound impact
on NK cells functions that was reflected in lower cytotoxicity
and decreased NK cell viability (Lamas et al., 2012). Increased
production of NO has been linked to enhanced cytotoxic ac-
tivity of NK cells in s.c. tumour-transplanted animals when
compared with i.p. tumour-bearing animals. This discrep-
ancy was attributed to substantially reduced NOS activity in
the latter case (Jyothi and Khar, 1999).

Association of PGs (PGE2 and PGD2) with suppressed cy-
tolytic activity of NK cells was established early in the 1980s
with cAMP identified as a key meditator for PGE2-induced
suppression (Bankhurst, 1982; Goto et al., 1983). While
IL-2-stimulated NO production and enhances NK cytotoxic-
ity, PGE2 suppressed IL-2 activated NK cell cytotoxicity
(Baxevanis et al., 1993). Also, in resident splenic NK cells,
PGE2 suppressed NK cell activity primarily via EP4 receptors
(Holt et al., 2011). PGE2 is also known to down-regulate
IL-15-mediated human NK cell function such as IFN-γ
production at the protein and transcriptional levels. The
down-regulation of surface expression of the common
γc-chain that is used by the IL-2, IL-4, IL-7, IL-9, IL-15
and IL-21 receptors was suggested as the potential mecha-
nism (Joshi et al., 2001). In another study, PGE2 antagonized
the potent synergistic induction of IFN-γ production from
NK cells by IL-12 and IL-18 (Walker and Rotondo, 2004).
These studies showed that PGE2 is capable of suppressing
NK cell activity in various scenarios, thereby limiting innate
inflammatory processes. As NK cells are crucial for killing tu-
mour cells, inhibition of COX should be considered as an ad-
juvant in cancer therapy. In immune competent Balb/cByJ
mice, tumour growth of s.c. implanted mammary tumour

cells was suppressed in indomethacin (COX1/COX2 inhibi-
tor) and celecoxib (COX2 inhibitor) treatment groups
(Kundu et al., 2005). Both inhibitors limited tumour metasta-
sis, an effect that was found to be dependent on NK but not T-
cell function.

Several mechanisms exist by which NK cells can kill can-
cer cells, such as antibody-dependent cell-mediated cytotox-
icity even in tumours that are resistant to T-cell killing. In
spite of this, NK cell-based immunotherapy has been unsatis-
factory in clinical settings in part due to evasion mechanisms
used by cancer cells to avoid NK cell-mediated killing. As an
example, tumour-derived mesenchymal stem cells exert their
immunosuppressive activity by secretion of soluble factors
including PGE2, that suppressed NK cell function. Inhibition
of PGE2 synthesis and IL-6 activity restored NK cell activity
(Galland et al., 2017). Tumour-derived PGE2 was also critical
in NK cell dysfunction in several cancers such as gastric can-
cer, melanoma and colorectal carcinoma (Pietra et al., 2012;
Li et al., 2013, 2016; Mao et al., 2014; Liu et al., 2015).

Dendritic cells
Dendritic cells (DCs) are key regulators of innate immunity
and play a crucial role in forming the bridge between the in-
nate and adaptive arms of the immune system (Figure 4). As
a part of the innate response, immature DCs constantly scan
for pathogens through pattern recognition receptors such as
the TLR. Upon binding of TLR ligands, the DC undergoes
maturation that involves various transformations, such as in-
creased expression of major histocompatibility complex
(MHC) molecules and migration to lymph nodes to present
antigens to T-cells, and expression of wide range of proteins,
including cytokines and chemokines. DCs play a crucial role
in maintaining the balance of adaptive immunity and im-
mune tolerance. Tumour-infiltrating DC (TIDC) are present
in the immune-suppressive TME and have been well docu-
mented in different cancer types. They can have good or poor
prognostic properties depending upon antigen-presenting
capability and expression of co-stimulatory molecules
(Karthaus et al., 2012; Janco et al., 2015). In colorectal

Figure 4
Tumour cells interact with MDSCs to mediate an immunosuppressive TME with NO and PGE2 as the key players.
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carcinoma, higher TIDC numbers were associated with
shorter disease-free and overall survival (Sandel et al., 2005),
whereas in melanoma, TIDC correlated with regression of tu-
mour (Ladanyi et al., 2007). NO can sensitize tumour towards
DC-mediated apoptosis. Pretreatment of lymphomas cells
with NO donor sensitized them towards DC-mediated cyto-
toxicity, and this activity enhancement involved Fas engage-
ment and loss of survivin protein expression (Huang et al.,
2005). In BC, 42% of breast adenocarcinomas contain TIDC,
and their population decreased in fibrous tumours
(Lespagnard et al., 1999).

DC-derived NO controls effector and regulatory functions
of DCs by inhibiting effector DC development (Si et al.,
2016). NO not only influences effector DC development but
also modulates cytokine expression and release from LPS-
matured DC. NO does so by sustaining IL-1β and IL-23 ex-
pression that is inhibited in the presence of NO scavenger
carboxy-PTIO. These cytokines in turn are crucial for DCs to
induce IL-17-producing T-cells, thereby effectively main-
taining inflammation during infection (Obregon et al.,
2015). It has also been reported that NO donor treatment or
overexpression of either NOS2 or NOS3 alone can induce ex-
pression of MHC II and essential co-stimulatory molecules
CD80 and CD86 in immature DCs. Enhancement of surface
localization of MHC II was attributed to interaction of NOS2
with CD74 that prevents CD74 degradation by caspase
(Huang et al., 2008).

To meet the increased metabolic demands upon activa-
tion, DCs undergo rapid glycolytic reprogramming. Bind-
ing of TLR agonist leads to metabolic transition from
OXPHOS to aerobic glycolysis and is promoted by
PI3K/Akt signalling (Krawczyk et al., 2010). Mechanistic
target of rapamycin (mTOR), a kinase involved in regulat-
ing different cellular process, is a downstream target of
many growth factor receptors and is also activated by the
PI3K/Akt signalling pathway. It plays a critical role in regu-
lating DC life span upon activation after TLR stimulation,
and its inhibition by rapamycin prolongs life span of DC
(Amiel et al., 2012). Hypoxia, a hallmark of the cancer
micro-environment, has also been studied extensively for
DC activation (Jantsch et al., 2008; Kohler et al., 2012;
Naldini et al., 2012). It has been previously shown that
hypoxia alone did not activate murine DCs, but hypoxia
combined with LPS resulted in an increased DC activation
signature compared with LPS alone (Jantsch et al., 2008).
It was accompanied by increased accumulation of HIF-1α
and enhanced glycolytic activity that indicates hypoxia
stabilized HIF-1α plays a crucial role in DC activation in
inflammatory states under low oxygen tension. Moreover,
HIF-1α also plays a crucial role in the differentiation and
migration of DCs generated under hypoxia (Kohler et al.,
2012). Enhanced glycolysis is a trademark of several im-
mune cells that enables them to generate sufficient ATP
and other required biosynthetic intermediates quickly that
can in turn help them to carry out their specific immune
functions. As an example, NADPH has multiple functions
in immune cells: to generate ROS by the enzyme NADPH
oxidase, or lipid synthesis to support endoplasmic reticu-
lum synthesis (Everts et al., 2014).

Serbina et al. (2003) identified a TNF-α/NOS2-producing
(Tip)-DC subset in spleens of Listeria monocytogenes-infected

mice. (TIP)-DC subset was shown to exert a direct role in kill-
ing microbes, thereby mediating the innate immune re-
sponse. A recent study showed that interaction between
anti-tumour CD8+ T-cells and NO producing Tip-DCs regu-
lates tumour growth in mouse model (Marigo et al., 2016).
In contrast, NOS2 in human DCs is yet to be identified. It
has been previously shown that conventional GM-CSF and
IL-4 differentiated monocyte-derived human DC do not
produce NO (Nishioka et al., 2003). However, a recent report
suggests maturation of human DCs, upon inflammatory
cytokine exposure that led to pronounced expression of
neuronal NOS (NOS1), suggesting a regulatory role for NO
(Adler et al., 2010).

There are several reports that show NO plays a complex
role in regulating DC immune responses as well as their cel-
lular metabolism. Similar to macrophages, down-regulation
of OXPHOS in activated DCs has been attributed to NO
(Everts et al., 2012). Using real-time metabolic flux analysis,
researchers have previously shown that in inflammatory
blood monocyte-derived DCs that express NOS2, mitochon-
drial activity is lost gradually after activation by TLR agonists
(Everts et al., 2012). During the early stage of activation,
there is a transient increase in OXPHOS followed by collapse
in mitochondrial function, which coincides with increased
NOS2 expression and NO production. Inhibition of this early
glycolytic reprogramming severely decreases the DC capabil-
ity to migrate and stimulate T-cells (Everts et al., 2014). Early
glycolytic reprogramming occurs through the kinases TBK1-
IKKε and is responsible for supporting the de novo synthesis
of fatty acids required for DC activation. While TBK1-IKKε
are responsible for the early increase of glycolysis, long-term
glycolytic commitment happens through NOS2 and HIF-1α,
whose expression are increased via PI3K signalling (Everts
et al., 2014). More recently, it has been shown that glucose
represses DC inflammatory outputs via a signal transduction
mechanism that involves mTOR complex 1 (mTORC1),
HIF-1α and NOS2 (Lawless et al., 2017). In the AMP-activated
protein kinase/mTORC1 glucose-sensing signalling axis,
decreasing glucose concentrations leads to loss of HIF-1α
expression and decreased NOS2 expression and NO
production. Alternatively, HIF-1α expression can be
attenuated by glucose levels independently of mTORC1
signalling, presumably through GlcNAcylation. Glucose-
based repression could shed light on how T-cells regulate
the DC micro-environment, thereby controlling DC-induced
T-cell responses.

In the absence of functional OXPHOS, DC depend
heavily on glycolysis for ATP production, a phenomenon
that has been observed under in vitro as well as in vivo con-
ditions (Everts et al., 2012). This NO-mediated commit-
ment to glycolytic metabolism occurs only in DC subsets
that biosynthesize NO. In conventional DC (cDC) that do
not express NOS2, the switch to glycolytic metabolism fol-
lowing TLR stimulation was not observed. However, a re-
cent in vivo study in cDC showed long-term diminished
mitochondrial activity and enhanced glycolysis, albeit in
a NO-dependent manner (Pantel et al., 2014). These
immunometabolism studies in DC are still in their infancy,
and much needs to be discovered before a detailed picture
can be drawn (Dong and Bullock, 2014; Everts and Pearce,
2014; Thwe and Amiel, 2018).
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Expression of COX2 and/or production of PGE2 in DC
cells in response to inflammatory stimuli have also been well
documented (Harizi et al., 2001, 2010; Fogel-Petrovic et al.,
2004; Long et al., 2004; Cho et al., 2011). Mouse DC, pro-
duced in vitro from bone marrow cells, showed significant
PGE2 production that was inhibited in the presence of the
COX-inhibitor indomethacin (Harizi et al., 2001). Upon LPS
simulation, expression of both COX1 and COX2was evident,
and addition of exogenous PGE2 led to diminished MHC II
expression. Similarly, upon activation with agonist anti-
CD40 monoclonal antibody, dose-dependent induction of
PGE2 synthesis via COX2 was observed (Harizi et al., 2010).
CD-40 stimulated PGE2 production was proposed to repre-
sent a negative feedback mechanism whereby it limits the
propagation of Th1 responses and involves EP2 receptors.
Human DCs express little COX2 constitutively. However,
upon LPS stimulation, increased COX2 mRNA and PGE2 syn-
thesis were observed, while pro-inflammatory PGD2 was not
detected (Fogel-Petrovic et al., 2004).

The role played by PGE2 in DC biology is varied and often
contrasting. (Harris et al., 2002; Scandella et al., 2002). The ef-
fect of several PGs on DCmaturation has been examined, and
PGE2 was found to be the most potent (Steinbrink et al.,
2000). PGE2 also inhibited TNF-α release from activated bone
marrow-derived DCs as well as IL-27 in murine DCs
(Vassiliou et al., 2003; Hooper et al., 2017). PGE2 elicits differ-
ential migratory patterns in monocyte-derived DC (MDC) as
compared with peripheral blood DC (PDC) (Luft et al.,
2002). MDC acquired a migratory phenotype when exposed
to pro-inflammatory cytokines or CD40L or intact bacteria
only in the presence of PGE2. Pro-inflammatory-type MDCs
were generated when stimulated with CD40L or intact
Escherichia coli in the absence of PGE2. In contrast,
CD1b/c(+) PDC acquired migratory potential irrespective of
the activator. Functional CCR7 (a key factor in DC migration
into draining lymph node) was shown to be enhanced on co-
stimulation with PGE2 in MDCs. CCL2, the key DC-produced
Treg-attracting chemokine, is up-regulated when DCs are ma-
tured in the presence of PGE2. Elevated production of CCL2
persists even when PGE2 is removed. The study showed how
DC targeting of the regulatory versus pro-inflammatory
T-cells is imprinted at the stage of DC maturation
(Muthuswamy et al., 2008). Previously, it has been shown
that a positive feedback loop between PGE2 and COX2
redirected the development of CD1a+ DCs to
CD14+CD33+CD34+ monocytic MDSCs and up-regulated
production of several MDSC-associated suppressive factors
such as IDO1, IL-4Rα and IL-10 (Obermajer et al., 2011). Tu-
mour COX2 has been shown to suppress DC function by re-
ducing cell surface expression of CD11c, MHC class I, MHC
class II, CD80, and CD86 (Sharma et al., 2003). Thus, NO-
mediated and PGE2-mediated alteration in DC function and
differentiation is likely a key player in ability of tumour cells
to escape immunoediting.

Immature myeloid cells or
myeloid-derived suppressor cells
Myeloid-derived suppressor cells (MDSCs, CD11b+CD33+HLA-
DR�) are a population of immature myeloid cells that are a

hallmark of an immunosuppressive TME due to their ability
to inhibit NK, DC, CD4 and CD8 T-cells, thus blocking the in-
nate and adaptive immune systems (Figure 4) (Gabrilovich
et al., 2012). A recent study in BC patients showed high levels
of tumour infiltration of immature myeloid cells that were
not fully differentiated into monocytes or granulocytes
[MDSC subtypes referred as monocytic (mMDSC) and granu-
lar (gMDSC)] and expressed high Arg1 (Toor et al., 2017). This
is in line with reduced activity and proliferation of cytotoxic
T-cells in BC (Gil Del Alcazar et al., 2017). In a mouse model,
tumour-infiltrating mMDSCs induce EMT-mediated metasta-
sis and CSC-like phenotype, while gMDSCs support metasta-
tic niche by mesenchymal–epithelial transition (Ouzounova
et al., 2017). NOS2 expression along with IL-6, IL-1a, Arg1,
vimentin and TGFB1 gene induction by 4T1-mMDSC cocul-
ture was identified as an inducer of EMT and cancer stem
cellness as well as a suppressor of the anti-tumour immune
response. MDSCs regulate signalling and metabolism in the
TME in multiple ways. L-Arginine is a key amino acid that
serves as a substrate for NOS2 and Arg1. L-Arginine is rapidly
depleted in the TME by Arg1, thus reducing proliferation and
effector function of cytotoxic T-cells (Rodriguez et al., 2004).
While NOS2-mediated NO production by immune cells is
associated with anti-tumour activity, it is also involved in
MDSC-mediated immunosuppression in advanced-stage
non-small cell lung cancer patients (Liu et al., 2010). MDSCs
can also inhibit T-cell signalling through RNS-mediated ni-
tration of the T-cell receptor and inhibition of JAK/STAT,
MAPK and PI3K-mediated IL-2 signalling, while MDSCs from
the NOS2 knockout mouse were not immunosuppressive
(Mazzoni et al., 2002; Nagaraj et al., 2007). IDO-mediated
tryptophan depletion linked to T-cell exhaustion also aug-
ments MDSC activity in BC and correlate to lymph node me-
tastasis (Yu et al., 2013). Similar to NOS2, COX2 also
supports MDSC-mediated suppressive activity. The 4Tl
tumour model in EP2 receptor knockout syngeneic mice
had delayed tumour growth and reduced MDSC suggesting
involvement of the PGE2/EP2 receptor axis (Sinha et al.,
2007). MDSCs can also up-regulate PGE2 in the TME, which
also is an immunosuppressive molecule (Eruslanov et al.,
2010). Furthermore, HIF-1α-mediated expression of pro-
grammed death-ligand 1 under hypoxia in MDSCs, TAMs
and DCs also plays a critical role in T-cell exhaustion (Noman
et al., 2014). Under hypoxic conditions, MDSCs can also dif-
ferentiate into TAM, thus further supporting an immunosup-
pressive TME (Corzo et al., 2010). Human MDSCs are also
involved in immune polarization by converting Th17 T-cells
to Tregs via production of TGF-β and retinoic acid (Hoechst
et al., 2011). Similar to Tregs, tumour-infiltrating MDSCs
preferentially use fatty acid oxidation over glycolysis, and
inhibition of this pathway showed a synergistic decrease in
tumour size with both chemotherapy and adoptive cellular
therapy (Hossain et al., 2015). Thus, MDSCs play a pivotal
role in maintenance of an immunosuppressive TME.

NOS2–COX2 in the adaptive immune
system
There are twomain components in the adaptive immune sys-
tem: B lymphocytes or B-cells and T lymphocytes or T-cells
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that originate in the bone marrow then migrate to thymus,
lymph nodes and spleen. Adaptive immune system is antigen
specific and activated by the presence of danger signals.
Tumour-specific antigens can lead to an adaptive immune re-
sponse. The immune cells that migrate towards the malig-
nant tumour are referred as tumour-infiltrating lymphocytes
(TILs). This population consists mainly of T-cells and B-cells
and also contains NK cells. High TIL levels are strongly associ-
ated with a positive patient prognosis. In this section, the
effect of endogenous and exogenous NO and COX2 on the
adaptive immune system and their crosstalk with the tumour
is discussed.

T-cell
Niedbala et al. published a series of papers (Niedbala et al.,
2007, 2013, 2014) that examined the effect of different
levels of NO on different murine T-cell populations (Figure 5).
Low concentrations of NO donor DETA/NO (5–10 μM) signif-
icantly enhanced the differentiation of Tc1 and Th1 subtypes
through cGMP in both human and murine models without a
significant effect on Tc2 or Th2 cells, while>40 μMDETA/NO
inhibited Tc1 and Th1 differentiation. Furthermore, they
found that the increased IFN-γ but not IL-5 (characteristic
of Tc2 and Th2) was dependent on a NO-mediated increase
in the expression of IL-12Rβ2. Obermajer et al. (2013) showed
NO–cGMP-dependent differentiation of human CD4+ cells
to Th17 (producers of IL-17 and IFN-γ) below 50 μM
DETA/NO.

NO exerts a key role in the modulation of Tregs character-
ized by expression of the Foxp3 transcription factor
and CD25 on the cell surface. NO had no effect on prolifera-
tion of CD4+/CD25+ Tregs. However, NO was capable of
converting CD4+CD25� to CD4+CD25+FOXP3� Tregs
through an NO–cGMP-independent pathway (Niedbala
et al., 2007). This process was driven by (i) p53, a tumour
suppressor protein; (ii) IL-2, a cytokine that stimulates
the growth of T-cells; and (iii) CD134, a TNF receptor
superfamily member. CD4+CD25+FOXP3� Tregs induced
immunosuppressive cytokines IL-4 and IL-10 but not
IL-2, IFN-γ or TGF-β unlike CD4+CD25+FOXP3+ Tregs that
up-regulate TGF-β and induce Th17 development (Xu

et al., 2007). Another study demonstrated that the IL-
12p40 homodimer induces NO production via IL-12Rβ1,
which then subsequently down-regulates the FOXP3
marker of Tregs in naïve mouse splenocytes (Brahmachari
and Pahan, 2009). These results are in line with the gener-
ation of NO-induced CD4+CD25+FOXP3� Treg subtype.
While CD4+CD25+FOXP3+ Tregs suppressed Th1 without
affecting Th17, NO induced Tregs down-regulated Th17
response through the aryl hydrocarbon receptor (AHR) and
increased IL-10 without affecting Th1 cell differentiation
(Niedbala et al., 2013). AHR is known to have a dual function
of up-regulation of phase I and II xenobiotic metabolizing
enzymes such as P450s and binding to HIF-1α to activate
the hypoxia response element (HRE) of target gene pro-
moters. NO induces stabilization of HIF-1α, thus favouring
HRE activation in response to metabolic changes in the
TME. This leads to up-regulation of target genes in tumour
as well as immune cells and supports tumour progression.
These results suggest that the location and duration of NO
production will control generation of Th1 versus Th17 cells.
In BC, IL-17A is produced by TILs and has been implicated
in proliferation and chemoresistance through the ERK
pathway (Cochaud et al., 2013). In TNBC, IL-17+ T-cells were
associated with reduced patient survival, while there was no
prognostic correlation in other BC subtypes (Allaoui et al.,
2017). NO also induced Th9 subtype (IL-9 and IL-21
producers) at ~100 μM DETA/NO in a p53-dependent
manner (Niedbala et al., 2014). This subtype is associated
with anti-tumour activity in the TME (Vegran et al., 2015).

Similar to NO/NOS2, PGE2/COX2 also plays an important
role in T-cell function. This idea was first presented by
Goodwin and Ceuppens (1983) and led to investigation of
its role in different subtypes of T-cells. While COX2 is
expressed in humanT-cells and up-regulated upon activation,
there was no corresponding PGE2 synthesis (Pablos et al.,
1999). However, inhibition of the COX pathway increased
IL-2 production and T-cell proliferation, which was further
verified by PGE2-mediated inhibition of naïve T-cell expan-
sion and activation through down-regulation of the JAK3 sig-
nalling pathway and increased cAMP, which reduced CD25
expression (Rincon et al., 1988; Kolenko et al., 1999; Pablos
et al., 1999). PGE2 can also shift the balance from pro-
inflammatory Th1 towards the immunosuppressive Th2

Figure 5
Differentiation of naïve CD4+ T-cells to different subtypes in the presence of NO and PGE2 in the TME. NO shows a concentration-depen-
dent role in T-cell-mediated tumour response, while PGE2 plays a mainly immunosuppressive role, in the TME.
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subtype in the TME by selective inhibition of Th1 generation
(Betz and Fox, 1991). However, this phenomenon is highly
dependent on CD28. Yao et al. (2009) reported that strong
CD28 stimulation induced the Th1 subtype, while weaker ac-
tivation suppressed it. They also found that PGE2 suppressed
differentiation of naïve CD4+ cells to Th17 subtype in the
presence of TGF-β and IL-6, while facilitating Th17 expansion
in the presence of IL-23. In humans, IL-1β and IL-23 are
mainly responsible for Th17 generation. PGE2 increased
IL-17 and reduced IFN-γ production from activated CD4 cells
(Boniface et al., 2009; Napolitani et al., 2009). It also increased
EP2 and EP4 receptors leading to increase in ROR-γt and down-
regulation of T-bet, thus shifting the balance towards
the Th17 subtype. PGE2 also enhanced the activity of
CD4+CD25+ Tregs and induced FOXP3 in CD4+CD25� cells,
making them Treg-like. Thus PGE2 plays an important role
in modulating Treg mediated immunosupressive activity.

Alterations in glucose, amino acids and lipids together
with oxygen content in the TME play an important role
in T-cell differentiation and response. T-cells rely on glu-
cose metabolism for their activation, differentiation and
function. Glucose uptake is mainly mediated by Glut1 in
T-cells, which is expressed at a significantly higher level in
activated cells and regulated by PI3K–Akt pathway
(Wieman et al., 2007; Macintyre et al., 2014). Glucose is
then converted to pyruvate followed by two ATP molecules.
The fate of pyruvate is dependent on the subtype of cell.
Naïve and memory T-cells utilize TCA cycle and OXPHOS,
while activated T-cells undergo aerobic glycolysis to form
lactate along with OXPHOS to support the energy require-
ments of rapid proliferation and differentiation (Cao et al.,
2014). A comparison of CD8 and CD4 showed that CD8
favoured glycolysis, while CD4 favoured OXPHOS due to
higher mitochondrial content. A closer look at different
subtypes showed that Th1, Th2 and Th17 rely on glycolysis
and OXPHOS, while Tregs mainly depend on OXPHOS
(Shi et al., 2011). While the effect of NO and PGE2 on T-cell
metabolismhas not been established, there are indirect clues to
their involvement. Hypoxia, a keymodulator of the TME, leads
to NO-mediated HIF-1α stabilization, which acts as a metabolic
checkpoint in differentiation of Th17 through themTOR path-
way over Th1, Th2 or Treg subtypes (Shi et al., 2011). PGE2 also
induced HIF-1α stabilization in prostate cancer and thus can
lead to immunomodulation of the TME (Liu et al., 2002).
Hypoxia is also associated with overexpression of GLUT1 in
activated T-cells, a phenomenon observed in TNBC, as well as
increased migration and cancer stem cellness (Oh et al., 2017).
Inhibition of glycolysis changes the balance between Th17
and Treg in favour of Tregs (Shi et al., 2011). NOS2 also
promoted IL-2 production, proliferation and glycolysis in γδ
T-cells, which along with neutrophils have been implicated as
a driver of tumour progression and metastasis in BC (Coffelt
et al., 2015; Douguet et al., 2016). In the TNBC TME, the T-cells
have been reported to be exhausted (GilDel Alcazaret al., 2017).
This can be partly attributed to constant competition with
the tumour for glucose requirement leading to hypo-
responsiveness and low IFN-γ levels (Chang et al., 2015). Naïve
T-cells, memory CD8 and Tregs also rely on fatty acid oxidation
for their energy requirements (Michalek et al., 2011; van der
Windt et al., 2012). These studies highlight the importance of
glucose metabolism and fatty acid oxidation in T-cell

proliferation and differentiation, which likely controls pro-
tumour versus anti-tumour response.

Amino acids such as tryptophan, arginine and glutamine
also play a critical role in T-cell proliferation and activation.
In BC TME, Th1 cell activation led to IFN-γ-mediated induc-
tion of IDO that metabolizes tryptophan to kynurenine,
while Th2 production of IL-13 down-regulated IDO
(Godin-Ethier et al., 2009). Depletion of L-tryptophan in the
TME led to reduction of T-cell proliferation, as well as TGF-
β-mediated Treg cell differentiation and inhibition of Th1
and Th17 subtypes, thus leading to an immunosuppressive
TME (Munn et al., 2005; Yan et al., 2010). This shows the
self-limiting ability of Th1 response, which is key to patho-
gen response without harming host system; however, it plays
a debilitating role in tumour clearance and promotes CSC
phenotypes. As seen with tryptophan, depletion of arginine
also impairs T-cell activation and proliferation (Rodriguez
et al., 2007). CD4 and CD8 cells utilize Arg2 for L-arginine
metabolism for increased survival and anti-tumour activity
(Geiger et al., 2016). High L-arginine levels favour OXPHOS
over glycolysis, which in turn promotes memory cell forma-
tion. Thus, metabolism of L-tryptophan and L-arginine has
contrasting effects on macrophage and T-cell function, dem-
onstrating the complexity of the TME. Increased levels of
glutamine in the TME is associated with favourable Th1
and Th17 differentiation in vitro, while Th2 cells do not de-
pend on it (Nakaya et al., 2014). Glutamine deprivation is
favourable for Treg differentiation (Klysz et al., 2015). Thus,
crosstalk of glucose, amino acid and lipid metabolism con-
trols the fate of T-cell.

B-cell
In BC, B-cell infiltration can be significant, and it is a strong
prognostic indicator of metastasis-free survival (Schmidt
et al., 2008; Erdag et al., 2012; Iglesia et al., 2014). Even
though they are the second most abundant population of
TILs, the role of B-cells is less well understood in cancer biol-
ogy. In the TME, B-cells have the capability to recognize anti-
gens through B-cell receptors as well as present antigen and
modulates other innate and adaptive immune cells. Like
T-cells, B-cells can differentiate to different subtypes and se-
crete cytokines that contribute to pro-tumour or anti-tumour
effects. In the TME, regulatory B-cells are phenotypically sim-
ilar to activated mature B2 cells with reduced proliferation
and induce TGF-β-dependent conversion of resting CD4+

T-cells to FoxP3+ Tregs, thus promoting BC metastasis
(Olkhanud et al., 2011).

The effects of NO and PGE2 on B-cells have been exam-
ined in both normal B-cells and B-cell leukaemias (Bogdan,
2015). Splenic B-cells exposed to NO donors are rescued
from programmed cell death. This was shown to be through
a cGMP mechanism that maintained Bcl-2 expression.
Conversely, NO inhibition in vitro decreased Bcl-2 while in-
creasing Bax leading to more apoptosis (Genaro et al.,
1995; Hortelano and Bosca, 1997). Further studies shown
that in IL-4 stimulated B-cells, both cAMP and cGMP con-
tribute to increased IgE and sCD23 (Paul-Eugene et al.,
1995). In Epstein–Barr virus-infected human B-cells, NOS2
expression inhibits apoptosis (Mannick et al., 1994). One
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study suggests that nitrite at micromolar concentration was
capable of enhancing DNA synthesis in LPS-stimulated
splenic B-cells (Takagi et al., 1992). Since nitrite can be
reduced to NO and cGMP under hypoxia, this may be a
pathway that stimulates B-cell-mediated conversion of Th1
to Th2 (Taylor-Robinson and Phillips, 1994). With respect
to B-cell lymphoma, there was a correlation between
apoptosis and NOS2 in human samples (Atik et al., 2006),
which is in contrast to other human cancers where NOS2
is associated with increased progression and poor outcome.
Though there are less details, high levels of NOS2 may in
fact be critical for the control of B-cell lymphoma. NO donor
DETA/NO was shown to enhance killing of B-cell lymphoma
with fludarabine. This effect of elevated levels of NO is
consistent with a study by Stuehr and Nathan (1989) that
suggested NO from macrophages kills leukaemic cells.
However, another study suggests that IL-4 and LPS lead to
increased NOS2 and anti-apoptotic effects in B-CLL
(Levesque et al., 2003). This suggests that a more detailed
analysis of both normal B-cells and B-cell lymphomas, and
the role of NO is needed.

While it has been shown that primary B-cells of human
origin produce NOS2 and it plays an important role in immu-
noglobulin expression by B-cells in influenza virus A infec-
tion, the role in BC still needs to be investigated (Jayasekera
et al., 2006; Olkhanud et al., 2011). Recently, Saini et al.
(2014) showed that NOS2 through the NO–cGMP pathway
plays an important role in the survival of plasma cells, which
are terminally differentiated B-cells that produce large
amounts of antibody. ERS and NOS2 crosstalk was also
implicated in this signalling process. They also showed an as-
sociation of NOS2 signalling through the IL-6 and APRIL
pathway in B-cell maintenance and survival. As PGE2 is a ma-
jor inducer of IL-6, this hinted at a possible role of COX2 in
the function of plasma cells. This is supported by reduction
of CD138+ plasma cells and Blimp-1, an essential plasma cell
transcription factor, upon inhibition of COX2 activity and
PGE2-mediated IgE production (Carini et al., 1981; Bernard
and Phipps, 2010). However, COX2-mediated PGE2-cAMP
regulation leads to reduced proliferation and differentiation
of B-cells (Carini et al., 1981). B-cells can also produce
COX2 upon activation with CD40L and anti-IgM antibody
(Ryan et al., 2005). This observation is in agreement with an
association of high levels of CD40L in serum of BC with im-
munosuppression (Huang et al., 2012). Furthermore, PGE2
in the TME can induce IL-6 production by TNBC that binds
directly to iCD5+ on B-cell and up-regulates its expression,
thus forming a feedforward loop via STAT3, and these B-cells
promoted tumour growth (Zhang et al., 2016). Taken to-
gether, these studies show how ERS, NOS2 and COX2 may
be necessary for maintaining homeostasis of B-cell-mediated
immunity.

Conclusions
Over the past decade, it has become increasingly evident that
the efficacy of cancer therapy will depend on (i) the ability to
successfully target tumour cells and (ii) activation of the
immune system to control tumour progression. NOS2/NO
and COX2/PGE2 have emerged as key players in shaping the

TME through regulation of cytokine-mediated signalling as
well as cellular metabolism. NO-mediated cellular effects are
diffusion dependent, while the PGE2 effect is mediated by
EP1–EP4 receptors, which are expressed by specific cell types.
TNBC is an inflammation-driven cancer, so it is not surprising
that co-expression of high NOS2 and COX2 leads to
dramatically reduced patient survival. This phenotype is
supported by a feedforward mechanism of NOS2 activation
by PGE2 and COX2 activation by NO that also involves key
cytokines such as IL-8, IL-6 and TNF-α. Moreover, BC is asso-
ciated with a high frequency of PI3KCA mutations and loss
of PTEN, a tumour suppressor. This leads to aberrant
PI3K–Akt–mTOR signalling, and NO plays a critical role in
this by promoting mutation and post-translational modifica-
tion of key proteins. Growing evidence suggests that
metabolic reprogramming of both the tumour cells and the
immune cells in the TME due to depleted levels of glucose,
amino acids and low oxygen leads to a competition for
resources that is crucial in determining their crosstalk as well
as dictating the phenotype and function of immune cells, for
example, M1 versus M2 macrophages or NADPH utilization
for producing ROS. Further insights into the interface
between metabolism and immunity can lead to novel
therapeutic approaches.

Nomenclature of targets and ligands
Key protein targets and ligands in this article are
hyperlinked to corresponding entries in http://www.
guidetopharmacology.org, the common portal for data from
the IUPHAR/BPS Guide to PHARMACOLOGY (Harding
et al., 2018), and are permanently archived in the Concise
Guide to PHARMACOLOGY 2017/18 (Alexander et al.,
2017a,b,c,d,e).
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