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Abstract

Introduction: A defining hallmark of cancer is aberrant cell proliferation. Efforts to understand 

the generative properties of cancer cells span all biological scales: from genetic deviations and 

alterations of metabolic pathways, to physical stresses due to overcrowding, as well as the effects 

of therapeutics and the immune system. While these factors have long been studied in the 

laboratory, mathematical and computational techniques are being increasingly applied to help 

understand and forecast tumor growth and treatment response. Advantages of mathematical 

modeling of proliferation include the ability to simulate and predict the spatiotemporal 

development of tumors across multiple experimental scales. Central to proliferation modeling is 

the incorporation of available biological data and validation with experimental data.

Areas Covered: We present an overview of past and current mathematical strategies directed at 

understanding tumor cell proliferation. We identify areas for mathematical development as 

motivated by available experimental and clinical evidence, with a particular emphasis on 

emerging, non-invasive imaging technologies.

Expert Commentary: The data required to legitimize mathematical models are often difficult or 

(currently) impossible to obtain. We suggest areas for further investigation to establish 
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mathematical models that more effectively utilize available data to make informed predictions on 

tumor cell proliferation.

Keywords

computational; biophysical; cancer; oncology; cell growth

1. Introduction

Experimental studies focusing on elucidating the underlying mechanisms of tumor 

proliferation cross all physiological scales—from the classification of genes that lead to 

enhanced proliferation and survival, to the quantification of physical stresses such as 

pressure that spatially constrain the direction and quantity of tumor expansion [1, 2]. While 

a wealth of knowledge has been acquired for understanding tumor initiation, development, 

progression, and response to therapy, robust methods do not exist to reliably predict tumor 

growth and response to specific therapeutic regimens for the individual patient. Largely 

independent of the developments in cancer biology, investigators have developed a wealth of 

mathematical models and techniques to predict cancer development and response to therapy. 

These models can potentially be used to optimize therapy by exploring dosing regimens with 

cytotoxicity models that describe the effect on proliferation, cell signaling models that 

identify cellular transition rates for drug targeting, and tissue scale models that predict tumor 

response to therapy using patient-specific imaging data [3, 4].

Having accurate and biologically relevant predictive models of tumor proliferation would 

provide a rigorous framework to systematically test different cancer therapies—and do so 

more quickly and cheaply in the pre-clinical or (even) clinical setting. The availability of a 

validated mathematical model that can predict the spatiotemporal evolution of tumor growth 

would allow oncologists to intervene in an optimal way for the individual patient. A crucial 

facet of this modeling challenge is understanding and faithfully modeling proliferation itself. 

The capability to proliferate at elevated rates, and in often nutrient poor and toxic 

microenvironments, well beyond the capacity of normal cells, is the primary distinguishing 

characteristic of cancer cells [1]. In many regards, to study cancer is to study cellular 

replication, in general, and the regulators of cellular reproduction, in particular. The manner 

by which proliferation is characterized and implemented in a mathematical model for tumor 

growth is central to its ability to predict growth and treatment response for cancer (i.e., 

deviation from expected growth following treatment).

The term “proliferation” can be defined broadly as the net change in the number of cells per 

unit time, the mechanisms of which have been tabulated and classified into as many as 10 

different categories [1]. Here, we will discuss tumor cell proliferation models organized by 

scale: from individual cellular mechanisms to the tissue and cellular populations as a whole. 

Towards this end, we focus on the mathematical descriptions and associated results related 

to avascular growth and treatment, mechanical effects on growth, nutrient availability and 

consumption, the ability to evade the immune response, and tumor signaling pathways. In 

particular, many specific biological topics that can be intricately related to proliferation will 

not be discussed, such as genomics and therapeutic resistance and persistence. Thus, the 
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goals of this review are to: 1) present a brief background on basic mathematical strategies 

for modeling and understanding proliferation in cancer with an emphasis on strategies that 

have been compared to experimental data, 2) discuss biological topics related to cancer cell 

proliferation (ranging from cell signaling to mechanical properties at the tissue scale), and 3) 

identify areas that could enable clinical translation through better integration of experiment 

and theory.

2. Proliferation Modeling Background

The earliest attempts for modeling tumor growth utilized cell culture data to find analytical 

expression that could mathematical describe the changes observed in the cell population 

over time [5, 6]. Historically, modelers employ previous mathematical progress, such as (in 

the context of tumor cell proliferation) successful fits to bacterial cell population data and 

therapy resistance [7], human population survival in the actuarial sciences [8], and even 

ontogenetic growth [9]. Initially, exponential growth models were used, but as in vitro 
cancer cell population data was collected, it became clear that exponential growth was not an 

appropriate choice for accurately describing cancer progression beyond only the earliest 

phases of population growth. Later Gompertzian and logistic growth were found to represent 

cellular population data more accurately as these models contained additional free 

parameters (relative to exponential growth) that could capture the notion of a “carrying 

capacity” (i.e., the maximum number of cells a system can support) [5, 6]. These early 

mathematical models have been extended and/or used in much more sophisticated models 

for tumor proliferation studies. In this section, we have attempted to provide enough 

background to prepare the reader for some of the jargon used to introduce more 

comprehensive models within the scope of this review. As we cannot discuss all of the 

mathematical variations potentially applied to the modeling of tumor cell proliferation, the 

following background can provide a platform for the interested reader to explore other 

formulations in modeling the proliferation of tumor cells.

One approach to mathematical modeling proliferation is to employ “continuum” models that 

treat the quantities of a system (e.g., tumor cell population or nutrient concentrations) as 

smooth fields. The two major forms of continuum models are ordinary and partial 

differential equations (ODEs and PDEs, respectively). ODE models are commonly 

employed to represent the rates of production and consumption of molecular species [10]. 

These models assume that the cellular microenvironment is uniform, which is a fundamental 

limitation of the approach [10, 11]; however, this assumption does make ODE modeling 

more easily integrated with the data types frequently gathered from biological assays. 

Conversely, models built on PDEs consider both the temporal and spatial characteristics of 

tumor growth, thereby providing a natural means to characterize spatial heterogeneity. These 

models can be implemented in two or three dimensions, such as when simulating 

distributions of cells in vitro or total tumor mass from medical imaging data in vivo, 

respectively. Further, PDE models can be coupled more readily to features of the 

surrounding microenvironment including, for example, the mechanical impact of tumor 

development on surrounding healthy tissue [12, 13, 14, 15, 16, 17]. However, PDE models 

are generally more computationally expensive and require spatially defined data to intialize 
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and calibrate the parameters of the system, whereas ODE models generally require only 

temporal changes in the quantities of interest and are more straight-forward to implement.

To discuss some of the classical mathematical terms used to describe tumor cell populations’ 

growth (such as exponential growth), we begin with an ODE example describing the 

temporal change of a population of cells:

dN t
dt = gN t , (1)

where N t  represents the tumor cell number at time t, and g is the growth rate of the tumor 

cells, which can be a function. Eq. (1) is as example of an ODE because there is only one 

independent variable; in this case, t is such a variable representing time. For the simplest 

(and most common) version of Eq. (1), g is simply a constant value, r. In this case, Eq. (1) 

literally means that the change in population per time is equal to the constant rate r times the 

current population size. In particular, if r > 0, Eq. (1) predicts an ever-increasing population 

size. When this ODE is solved (where g is a constant r), the result is the equation for 

exponential growth: N t = N0ert, where N0 is the initial population size. Alternatively, the 

population can be represented using logistic growth, limiting population growth based on the 

ratio between population density and the carrying capacity, Nmax:

g N = r 1 − N
Nmax

. (2)

As the ratio of N /Nmax approaches 1, the term 1 − N
Nmax

 approaches zero, decreasing the 

overall rate of population growth. Importantly, Nmax can be influenced by several factors 

such as nutrient availability and physical space. Hahnfeldt, et al. [18] studied the change in 

carrying capacity due angiogenic control, where stimulators versus inhibitors of vascular 

genesis determined ultimate tumor size.

Other ODE representations of tumor cell proliferation incorporate additional features such as 

nutrient concentration or growth factors and in addition to population density (see Table 1). 

For example, Michaelis-Menten kinetics, where C can be concentration of nutrient or 

signaling molecule, is characterized by:

g C =
KmaxC
Kn + C , (3)

where Kmax is the maximal rate of proliferation, and Kn is the Michaelis-Menten constant, 

which is the concentration of the nutrient or signaling molecule when the growth rate is half 
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its maximum. Figure 1 presents graphical depictions of the changes in population behavior 

using the proliferation terms described in Table 1.

It is important to note that Eqs. (1)–(3) describe only some of the population-based, building 

blocks required for more detailed models describing tumor cell proliferation. For example, a 

PDE approach often employed for cancer modeling are reaction-diffusion models. Reaction-

diffusion based models use specific mathematical terms to characterize the diffusion and 

proliferation of the various “species” in the tumor (e.g., healthy cells, cancerous cells, or 

other tissue components like the extracellular matrix). For example if we let N x, t  represent 

the number of tumor cells at time t and position x in space, then we have:

∂N x, t
∂t = ∇ ⋅ D∇N x, t

diffusion
+ gN x, t

prolifferation
, (4)

where g is the growth rate (taking a form such as those in Eqs. (1)–(3)), D is the diffusion 

coefficient, and ∇ ⋅ and ∇ are the mathematical symbols for calculating the divergence and 

gradient, respectively (which describe the magnitude and direction of change in the quantitiy 

of interest). Here, diffusion refers to the general mobility and movement of cells from higher 

to lower cell densities. Therefore, this equation can represent populations of tumor cells 

changing in space and time, where they proliferate according to a defined growth term and 

spread according to the magnitude of the diffusion coefficient.

While continuum models describe an average of the interactions between tumor cells or with 

other cells in the body (e.g., connections/networks that may trigger changes in proliferation 

due to overcrowding and/or changes in signaling), discrete models are able to reproduce 

distinct cellular heterogeneity (and not mixed populations) inside the tumor mass and 

individual cellular dynamics for proliferation [19, 20, 21]. Discrete models have the 

advantage of capturing individual cell behavior and interactions among cells by defining 

distinct or individual components for each cell or chemical signal. Discrete models are often 

used in multi-scale models that combine the effects of more than one layer of tumor cell 

proliferation dynamics, such as intra- and inter-cellular signaling. This does, of course, come 

at an increase in computational cost due to the large number of equations required to govern 

all the interactions within the system.

In an attempt to achieve better spatial agreement with experimental results at the cell scale, 

discrete approaches such as cellular automata or agent-based models have been developed 

[22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33]. Cellular automata are mathematical models 

that simulate complex systems by well-defined rules. It is defined by distributing identical 

cells within a regular spatial lattice. Each cell has a value, or “state”, which is updated at 

each time-step based on a set of pre-defined rules explicitly describing how the nth cell 

changes based on its state and the states of its neighbors [19, 21]. For example, the 

probability that a tumor cell will proliferate or become necrotic can be based on nutrient 

availability, concentration of an inter-cellular signal, and therapy. Agent-based models can 

be thought of as generalizations of cellular automata models; they are designed to overcome 

the requirement that cells be constrained to a grid by instead representing cells as agents that 
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interact with each other [20]. This is particularly useful to model tumor growth as, due to the 

uncontrolled tumor proliferation, cellular division does not require a free empty place in the 

neighborhood of the cell to divide (this arrangement is typically required in the cellular 

automata model structure) [34].

3. Mathematical Modeling of Proliferation and Therapy across Scales

In this section, we discuss several biological topics of interest for studying cancer cell 

proliferation with examples of corresponding mathematical models that have been compared 

to experimental evidence—ranging from general cellular population models to cell specific 

models. In particular, we describe successful modeling strategies where results reveal 

additional knowledge about the biological phenomena. We begin by discussing how general 

population models can be extended to assess systemic treatment response and then describe 

tissue scale, spatial-temporal models. We continue with the effects of mechanical tissue 

properties on proliferation and describe spatial models that can include and reproduce this 

heterogeneity observed in tumors. We then consider particular biological factors including: 

vascular status, immune responses, the microenvironment and cell signaling, and 

intracellular dynamics. Finally, we introduce models that are designed to investigate these 

features as well as integrate the tissue and cellular scales.

3.1 Avascular Treatment Studies

Mathematical methods describing cancer cell growth as general populations have been 

extended to incorporate therapy. These investigations have focused on identifying means to 

improve the dose of therapeutic agents and the timing of their administration without 

considering angiogenesis (avascular). General models of treatment response have been 

complemented with specific models of both chemotherapy and radiation therapy. Essentially, 

the effect of chemotherapy is dependent on drug type, concentration, and exposure time. 

Eichholtz-Wirth and colleagues first demonstrated the dependence of cell survival on drug 

exposure time with the following empirical relationship:

SF = e−ktc, (5)

where SF is the fraction of surviving cells, and k is a “sensitivity constant” characterizing 

the efficacy of a treatments ability to kill tumor cells, t is the length of exposure to the drug, 

and c is drug concentration [35]. A population of cells highly sensitive to the therapy will 

have a large value of k, while more resistant populations will be characterized by smaller 

values of k. To resolve the temporal dynamics of the cellular response to therapy, Lobo and 

Balthazar proposed a compartment model to describe the relationship between drug 

application and the time lag until drug effects were realized [36]. Further, Lankelma et al. 
constructed a mechanism-based model relating treatment parameters to cell population 

dynamics by employing a host of clonogenic assays (an in vitro cell survival assay based on 

the ability of a single cell to form a colony) following various treatment times and drug 

concentrations to quantify cell population size over time [37]. Following a similar strategy, a 

mathematical model of drug-resistant ovarian tumor growth has been used to optimize drug 

Jarrett et al. Page 6

Expert Rev Anticancer Ther. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dosing with combination therapy of carboplatin and small molecule inhibitors that target an 

anti-apoptotic protein [38]. A recent model describing doxorubicin treatment for triple 

negative breast cancer and doxorubicin treatment provides both a template for studies 

quantitatively investigating treatment response in vitro and a scalable approach toward 

predictions of tumor response in vivo (see Figure 2 for a comparison of the model 

simulations to in vitro cell data) [39]. Thus, there is some evidence in the literature for 

mathematical modeling of tumor cell response at the population level in both the in vitro and 

in vivo settings.

Just as empirical models have developed for chemotherapy, others have been developed to 

describe radiation-induced cell death. The “linear quadratic” (LQ) model [40] describes the 

surviving fraction of cells as a function of radiation dose and radiosensitivity (similar to the 

SF):

S α, β, Dose = e−αDose − βDose2
, (6)

where S is the surviving fraction, α and β are radiosensitivity parameters, and Dose is the 

delivered radiation therapy dose in Gray (Gy). α and β have units of Gy−1 and Gy−2
, 

respectively, while Dose is reported in units of Gy. The LQ model was first introduced in 

1976, but more recently it has been incorporated in both ODE and PDE descriptions of 

tumor growth and response [41, 42, 43, 44, 45, 46, 47, 48, 49]. For example, Prokopiou et al. 
[41] modeled tumor growth before and after radiation therapy using a modified logistic 

equation wherein, after each fraction of radiation, the tumor volume is reduced by a factor 

determined by the LQ model:

V post, IR = V pre, IR − S α, β, Dose
LQ model

⋅ V pre, IR ⋅ 1 −
V pre, IR
Vmax

logistic

, (7)

where Vpost,IR is the volume following irradiation evaluated at discrete times, Vpre,IR is the 

pre-irradiation volume, and Vmax is the carrying capacity. The LQ model is also central to a 

three-dimensional PDE description of the growth and response of glioma cells to radiation 

therapy that is calibrated by patient-specific magnetic resonance imaging (MRI) data [49, 

50] shown below:

∂N x, t
∂t = ∇ ⋅ D∇N x, t

diffusion
+ r 1 − N x, t

Nmax
⋅ N x, t

prolifferation

− R x, t, Dose N x, t 1 − N x, t
Nmax

death

, (8)

where N x, t  is the number of tumor cells at position x and time t and R x, t, Dose x, t  is the 

cell death term defined as:
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R x, t, Dose x, t = 0 for t ∉ therapy
1 − S α, β, Dose x, t for t ∉ therapy ⋅ (9)

Rockne et al. [43] employed hypoxia measurements from FMISO-PET (18F-

fluoromisonidazole positron emission tomography) to spatially vary the radiosensitivity in 

the LQ term. Following each fraction of radiation, the hypoxia-modulated LQ model is used 

to calculate the probability of cell death within the tumor, which is then incorporated into a 

reaction-diffusion description of tumor growth. By incorporating a spatially-varying 

treatment factor (i.e., hypoxia modulated radiosensitivity), greater agreement was observed 

between the model and the data.

3.2 Mechanical Effects on Proliferation

Solid tumors respond to various mechanical stimuli affecting cancer cell proliferation. One 

type of stimuli, known as solid stresses (i.e., a force or load on a system causing mechanical 

deformations), is due to the mechanical energy accumulated within the tumor and 

surrounding host tissue as cancer cells strain (i.e., deform) the tumor microenvironment. The 

solid stress is not only responsible for large displacement of the host tissue (termed the 

“mass effect”) observed in various tumors but also can affect tumor growth in a both direct 

and indirect way [2]. In particular, in vitro experiments have shown that externally applied 

compressive stresses inhibit the proliferation of cancer cells and induce cell apoptosis [51, 

52]. Also, large intratumoral compression can collapse blood vessels, leading to reduced 

delivery of both treatment and nutrients, which subsequently affects tumor growth.

The mass effect of solid stress and its effect on tumor development can be incorporated in 

classical reaction-diffusion equations. For example, the diffusion coefficient of cancer cells 

(i.e., the parameter “D” in Eq. (8)) can be correlated with the local von Mises stress by 

solving an elasticity boundary problem between the tumor and host tissue [13, 53, 54]. 

Hormuth et al. assumed that solid stress would primarily affect the motility of tumor cells 

rather than the proliferation of cells [13]. Lima et al. expanded this approach to also have 

solid stresses effect the proliferation rate of cells [55]. Another way to incorporate solid 

stress is based on solid growth theory, which treats the tumor as a special case of a growing 

tissue [56, 57, 58]. In this approach, growth is described by the volume change across the 

tumor [59]. The total volume change, described using all the first order partial derivatives 

called the Jacobian, J, is divided into a growth component and an elastic component; i.e., J = 

JeJg in which Jg and Je denote the Jacobian due to growth and elastic deformation, 

respectively. The growth component is governed by a function (such as those discussed in 

section 2) dependent on nutrient concentration, population density, strain, and/or stress [16]. 

As the tumor volume increases, the mass effect of the tumor is modeled via a defined 

equation or set of equations describing the force equilibrium between the tumor and the 

healthy-appearing tissue, coupled through the elastic component of the system.

Both the reaction-diffusion and solid growth theory modeling approaches have been studied 

closely with experimental data at the tissue scale. Feng et al. [60] recently used a linearized 

growth model to map the spatial variation of volumetric growth across a murine model of 
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glioma using MRI data to quantify spatial heterogeneity of in vivo tumor proliferation. 

Conversely, Hormuth et al. have used reaction-diffusion based models to predict tumor 

development using in vivo murine MRI data with mechanical coupling to the healthy tissues 

affecting tumor growth and shape [13, 61]. See Figure 3 for a comparison of the reaction-

diffusion and solid growth theory models’ results for preclinical glioma data. Wong et al. 
aimed to predict pancreatic tumor growth with a reaction-diffusion type system in which 

tumor cell proliferation is affected by the mass effect of the tumor on surrounding tissues 

[62]. Integrating contrast-enhanced computed tomography (CT) and 18F-fludeoxyglucose 

(FDG) positron emission tomography (PET) data within their modeling framework, they 

found that more plausible biomechanical parameters could be estimated regarding the 

growth of the tumor. Similarly, Weis et al. leveraged a reaction-diffusion model to predict 

clinical breast tumor response to neoadjuvant therapy. They initialized the models with 

patient-specific MRI data and coupled the diffusion/mobility term to the stiffness properties 

of different breast tissues types [12, 63, 64], and the model was found to outperform clinical 

used methods for assessing tumor response to treatment. Jarrett et al. recently extended this 

model to account for patient-specific delivery of anti-proliferation treatments [65]. The 

ultimate goal of these mechanically-coupled models is to optimize patient therapy on an 

individual basis using in silico results to inform therapeutic decisions.

3.3 Effects of Nutrients on Proliferation of Tumor Cells

The term “nutrients” can represent a host of different molecular species that cells require for 

proliferation. For example, healthy cells preferentially utilize oxygen and glucose in 

oxidative phosphorylation to provide energy for proliferation (aerobic glycolysis), but cancer 

cells increase their rate of anaerobic glycolysis and utilization of lactate for energy (the 

Warburg Effect [66]) despite the presence of oxygen [67]. Depending on the availability of 

various nutrients within a tumor, methods of cellular metabolism can vary, causing either 

dampening or enhancing of tumor cell proliferation, thereby resulting in increased spatial 

heterogeneity of cell density and phenotypes. This metabolic heterogeneity has implications 

on the delivery and efficacies of therapy—and mathematical studies have indicated how 

changes in nutrient availability and delivery can dramatically affect tumor growth [68, 69].

Recently, Mendoza-Juez et al. [70] developed a mathematical model describing the almost 

symbiotic relationship between different regions of an avascular tumor and their metabolic 

phenotype. The model includes the growth and phenotype switching of two populations of 

cells undergoing either aerobic oxidation of glucose or anaerobic glycolysis. The model 

assumes there is a higher proportion of glycolytic cells (a Warburg phenotype) due to the 

excess production of lactate. To evaluate the interaction of these two phenotypes Mendoza-

Juez et al. use Eq. (10), below, to describe the temporal evolution of the aerobic oxidization 

phenotype (Po) as a function of the number of glycolytic cells (Pg), Po doubling time τ0 , 

carrying capacity (P*), switch time from Po to Pg τgo , switch function dependent on lactate 

(L) concentration χ L  , switch time from Pg to Po τog , inverse switch function dependent 

on L χ* L , and switch function dependent on glucose (G) concentration χ G :
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dPo
dt = 1

τ0
1 −

P0 + Pg
P* + 1

τgo
χ L Pg − 1

τog
χ* L χ G P0 (10)

Similarly, Eq. (11) describes the temporal evolution glycolytic cells (Pg), as a function of the 

doubling time of Pg τg :

dPg
dt = 1

τg
1 −

P0 + Pg
P* + 1

τgo
χ L Pg + 1

τog
χ* L χ G P0 (11)

For brevity, the ODEs describing the temporal evolution of G and L consist of consumption 

terms as a function of Pg and Po as well as a production term (for L only) as a function of Pg. 

As lactate levels increase, cells begin switching to the oxidative metabolism (utilizing 

lactate) to regulate pH levels, resulting in more Po cells proliferating. This model 

formulation accurately recapitulates metabolic behaviors in five different cell lines when 

compared to in vitro measurements of cell lines from cervix, colon, and glioma cancers. 

That is, the modeling framework was able to provide insight in to cell line specific metabolic 

fuel preferences, consumption rates, and thresholds for switching to an oxidative phenotype–

indicating that the mathematical model can deliver new information about the complex 

metabolic interactions of tumor cells that govern proliferation and may be important in 

larger-scale models of tumor growth.

Tumors, like healthy tissues, require functional vasculature to effectively deliver nutrients 

and to remove waste. As the diffusion distance for oxygen is approximately 140 μm [71] it is 

essential for tumors to recruit new vessels via angiogenesis to grow past 2–3 mm3 in size 

[50]. Tumor-induced angiogenesis often results in a disorganized (i.e., non-hierarchical) and 

inefficient vasculature networks that produce heterogeneous tumor perfusion [72, 73]. The 

resulting variation in nutrient (e.g., oxygen and glucose) and therapeutic delivery causes 

spatially-dependent variability in growth and therapy response rates [73, 74]. Several models 

describing tumor-induced angiogenesis have been developed that employ continuum 

descriptions or hybrids of continuum-type models [75, 76, 77, 78, 79, 80]. One model that 

incorporates tumor-induced angiogenesis and phenotype switching between normoxic, 

hypoxic, and necrotic cells is presented in Swanson et al. wherein a reaction-diffusion based 

model describes the dispersal, proliferation, and conversion of normoxic (proliferating), 

hypoxic, and necrotic cells as a function of local vasculature and angiogenic factors [80]. 

The modeling framework provides an in silico approach to identify predictable progression 

patterns such as the extent of hypoxic burden or necrotic regions in glioblastoma patients. 

Data from MRI are used to assign patient-specific proliferation and motility coefficients for 

the total tumor cell population (i.e., the sum of normoxic, hypoxic, and necrotic cells), while 

the remaining parameters may be calibrated or assigned from in vitro experiments. The 

model predictions of tumor grade, percentage of hypoxic cells, and necrotic radius were 

compared to patient derived histology or imaging measurements of the same features. The 

mathematical model demonstrated good agreement with patient measures of necrosis, 
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hypoxia, and tumor grade, potentially indicating the ability to predict dynamic changes in 

glioma histology and to test biological hypotheses related to patient response.

In Macklin et al., a patient-calibrated, agent-based model is developed to study ductal 

carcinoma in situ [23]. It is a hybrid model as the individual cells are modeled by an agent-

based model and the nutrient levels are modeled through a reaction-diffusion equation, 

where the proliferation of cells depends on nutrient concentration. The agent-based model 

tracks each cell, and each cell is subject to a series of forces due to cell-cell interactions 

(e.g., repulsion and attraction). The nutrient field is responsible for driving the proliferation 

of tumor cells and transitions between cell states (quiescent to hypoxic, and hypoxic to 

necrotic). The transitions between cell states are modeled as stochastic (random) events that 

are related to the cell’s state and microenvironment, and the mathematical model is 

calibrated with patient-specific, clinically-accessible histopathology data [81]. The model 

predicts the proliferative index (percentage of cycling cells), apoptotic index (the percentage 

of cells in apoptosis), cell density, and the viable rim. These predictions have strong 

agreement with clinical data. In Figure 4, we simulate this model in a different scenario, 

considering an isolated system (i.e., no tumor and nutrient flux through the boundary) to 

represent an in vitro assay. Observe how the model develops a viable rim surrounding the 

hypoxic cells and the necrotic core inside the tumor; this result is an example of the model’s 

ability to predict the geometry of the tumor morphology for individual patients and perhaps 

to, ultimately, guide surgical planning.

3.4 The Role of the Immune Response on Tumor Cell Proliferation

The response of the immune system to tumor development can be divided into innate and 

adaptive components. Innate immune responses are initiated rapidly by circulating immune 

cells (also known as antigen presenting cells), including macrophages and dendritic cells 

that recognize cellular distress signals or pathogens, such as viruses, bacteria, and cancerous 

cells. When these innate cells are activated, they phagocytize (engulf) pathogens and debris 

while also releasing cytokines and chemokines that trigger a cascade of immune cell 

activation including recruiting other effector and specialized cells (e.g., natural killer cells) 

to help clear infected or damaged tissue. Antigen presenting cells also travel to lymph nodes 

to present antigens (pathogen or tumor derived) to T cells, which initiates the adaptive 

immune response against that specific pathogen or tumor. The adaptive immune response 

generates long-lived memory through differentiation of both T cells and B cells. Production 

of immune-suppressive cytokines by the tumor is one mechanism by which tumors can 

evade the immune response [82, 83, 84]. Additionally, tumor associated immune cells can 

assume pro-tumor growth roles, down-regulating pro-inflammatory immune cells [85] and 

producing growth factors that promote neovascularization, potentially aiding in tumor 

growth [84].

ODE models that consider cancer proliferation and the immune response generally focus on 

T cell binding and chemical signaling between the immune and tumor cells [86, 87, 88]. A 

current limitation of such models is that they require detailed and temporally refined data for 

calibration and validation, which are extraordinarily difficult to measure in an intact system 

with routinely available methods. Therefore, some efforts have attempted to reduce these 
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systems into more tractable compartments designed to answer specific biological questions 

of tumor cell growth [89, 90, 91]. For example, it can be shown, using a simplified system of 

ODEs focusing on the interactions of natural killer cells and cytotoxic T lymphocytes 

(CTL), that the presence of an immune component is essential for suppressing tumor cell 

proliferation [92].

An example of a PDE model designed to predict the synergistic effects of combination 

immune- and chemotherapy was presented by Owen et al. [93]. Hypoxic regions of tumors 

are difficult to penetrate with drugs due to low and inefficient vascularity, but macrophages 

are abundantly present in these areas. Owen et al. designed a diffusible nanoparticle to 

preload into macrophages genetically engineered to activate therapeutic agents when 

exposed to hypoxia. The macrophages are injected into the bloodstream, and a magnetic 

field is applied to the tumor site to enhance accumulation of the macrophages. To model the 

synergy of immune and chemotherapy, the diffusible components, such as the inactive and 

activated drug forms, are represented with a PDE of the form,

Du∇2U x, t
diffusion

+ ρvΨu Ublood x, t − U x, t
vascular perfusion

+ Su x, t

source/
sink

− δuU x, t

particle
decay

= 0, (12)

Where U and Ublood are the concentrations in the tissue and blood, respectively, Su is the 

source/sink of the particle, δu is the rate at which the particle decays, ρv is the vascular 

density, and Ψu is the vascular permeability. Temporal dynamics are induced by the 

consumption or production of the particle through the source/sink term per unit time, t. 

Tumor and healthy cells are described with ODEs for the cell cycle, where proliferation is 

dependent upon different thresholds of the diffusible components of the model (i.e., high 

concentrations of activated drug results in cell death). These ODEs are coupled to Eq. (12) 

through the source/sink term as tumor and healthy cells produce and consume the particles 

throughout the tissue. Macrophages are also modeled with an ODE for their presence in 

hypoxic regions where the cells activate drug, which induces cell death for the cells going 

into cell division in that same area. Using this model, the authors found that standard 

therapies and macrophage-based approaches both reduce tumor volume, but the 

macrophage-based therapy is more effective at reducing cell proliferation in regions of 

hypoxia.

Pappalardo et al. developed an agent-based model to investigate the interaction between 

CTLs and tumor cells in a mouse model of melanoma [22]. The efficacy of treatment using 

tumor cell targeted CTLs is correlated with the ability of the cells to infiltrate the tumor, 

where specialized antibodies (e.g., anti-CD137) can enhance the effects of the CTLs. The 

model simulates the interactions between tumor and T cells, macrophages, 

immunoglobulins, dendritic cells, and several signaling molecules. Each cell has a state 

(e.g., activated, duplicating, or naïve) that can change when the cell interacts with other cells 

or molecules. The interactions are by a set of rules approximating the relevant biology. For 

example, when anti-CD137 interacts with activated T cells, the cell toxicity and proliferation 
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rates increase, and the chemotaxis sensitivity improves (i.e., the ability of the cells to 

infiltrate the tumor increases). The ABM is able to reproduce in vivo experimental tumor 

area for six different scenarios, generated by the combination of three therapeutic strategies: 

anti-CD137 monoclonal antibody and activated or non-activated T cells. When the tumor 

was treated with non-activated T cells or anti-CD137, there was no effect on the tumor 

growth when compared to the control case. Using either the treatment with activated T cells 

or non-activated T cells with anti-CD137, it is possible to observe a small reduction in tumor 

area. However, when applying the treatment with activated T cells and anti-CD137 the tumor 

is eliminated in less than 30 days. The numerical simulations successfully recapitulate the 

effects of anti-CD137 in increasing the infiltration of CTL into the tumor and subsequently 

reducing tumor proliferation; therefore, the model can potentially be used to systematically 

investigate alternative treatment strategies for in vivo experiments.

3.5 Effects of Tumor Signaling Pathways on Proliferation

Signaling pathways are groups or networks of molecules that control cellular functions. 

They are the fundamental drivers of cancer cell proliferation via their effects on cell cycle 

progression, death, differentiation, angiogenesis, motility, and metastasis [94]. Barr et al. 
studied how the interactions between cyclin-dependent kinases and anaphase-promoting 

complexes affect the cellular decision to transition from G1 into S phase of the cell cycle 

[95]. The authors generated clonal cell lines with three fluorescent proteins that are 

expressed during this transition. Using single cell protein level data, they were able to 

parametrize a continuum model for the cellular signaling for the G1 to S phase transition. 

The model developed is a system of ODEs, which the general form is given as:

d Xi
dt = kproduction − kconsumption, (13)

where [Xi] is the concentration of the ith component, i = 0,…,10, kproduction and kconsumption 

are the sum of all production and consumption terms, respectively. A particular example is 

the equation for the concentration of the early mitotic inhibitor 1 (Emi1), given as:

d Emai T
dt = ksemi Email m − kdemi Emai T, (14)

where ksemi is the synthesis rate, kdemi is the degradation rate, and the subscripts T and m 
indicate total and mRNA concentrations, respectively. The model predicts that increasing 

Emi1 levels throughout S phase are critical in maintaining irreversibility of the G1/S 
transition. To confirm the model’s prediction, the authors depleted Emi1 for cells in S phase 

by RNA interference whereby the cells would not have Emi1 for the next cell cycle. These 

cells were not able to duplicate their DNA and arrested proliferation between G1 and S 
stages. Therefore, this mathematical model can aid in understanding at the cell signaling 

level of proliferation through rigorously characterizing cell cycle transitions.
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When modeling a particular signaling pathway, not all interactions among the components 

are known. Molinelli et al. developed a framework to infer the network and predict the 

response to new drugs [96]. The authors measured 16 proteins in melanoma cell lines with 

Western blot experiments. The experiments used combinations several drugs that target two 

specific pathways (PI3K/AKT and RAF/MEK/MAPK), totaling 44 scenarios. Using a 

probabilistic algorithm and equations of the form given by Eq. (13), a model was built to 

capture all interactions of these pathways. As a prediction step, the authors perturbed 

different components of the network, simulating the effects of different drugs. The authors 

were able to observe that the perturbation of the protein kinases PLK1 (a catalyzing enzyme) 

would lead to the reduction in cell proliferation. Interestingly, the drugs used in the training 

dataset were not inhibitors of PLK1, meaning that the inferred model was capable of 

representing interactions not accounted for during the design of the model. To validate this 

prediction the cell viability was measured under a treatment with a PLK1 inhibitor. The 

experimental results confirmed the model prediction that inhibition of PLK1 results in 

reduced cell viability—indicating the ability of a mathematical model to provide a platform 

to predict the overall outcomes of complex cellular processes for proliferation.

4. Areas for Future Study

With the paucity of (known) first principles of biology (such as the “universal” growth law 

[9, 97]), the majority of biomathematical models applied to cancer are phenomenological in 

nature. This necessarily means that there is limited certainty when selecting the “best” 

models for describing tumor proliferation within a particular setting. Therefore, the models 

require updating with new biological discoveries and should be designed to answer specific 

hypotheses to ensure they account for all the (emerging) key components of proliferation. 

Often parameters (such as rates of proliferation and/or concentrations resistant cell 

populations), or even the variables of a model, are undefined and/or not yet quantifiable via 
current experimental technologies. As a result, many mathematical models can only be used 

to qualitatively describe tumor cell proliferation, and the in silico results have limited 

application for predicting the outcomes of, for example, alternative therapy regimens with 

any precision [4].

A central issue when developing predictive models is how to account for the uncertainties in 

observational data, mathematical and computational frameworks, and model parameters. 

The observational data, either in vitro or in vivo, are subject to randomness due to 

experimental noise and imprecision from measuring devices, which can lead to the incorrect 

definition of the domain geometry and quantities of interest estimation (e.g., tumor area/

volume, protein concentration, number of cells). The mathematical and computational 

frameworks are submitted to inadequacies in their underlying assumptions, mathematical 

abstractions, and model implementation. The model parameters are subject to uncertainties 

in their values or distributions/ranges. These uncertainties may lead to incorrect tumor size, 

location, and aggressiveness, over/under dosage of drugs, and misrepresentation of 

interactions among components in signaling pathways. One approach to quantify and 

incorporate the uncertainties is through a framework for statistical model selection, 

calibration, and validation (see, e.g., [55, 98, 99]). Within such a framework, the parameters, 

data, and model are represented by probability density functions, instead of the classical 
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deterministic approach. By considering the stochasticity present in the experimental data and 

mathematical methods, we can develop more meaningful predictive models.

For mathematical modeling to be of clinical relevance, the models developed must be of the 

form that can utilize clinically-available data. Clinically, tumors can be characterized with 

imaging, biopsies, blood biopsies, genetic sequencing, and immunological assays that can 

identify the cancer type and aggressiveness of the disease. These data can be incorporated 

into models as initial conditions or used for calibration to identify values of model 

parameters for which measurements are neither available nor possible. Further, quantitative, 

informative measurements can be used to help confirm mathematical model predictions or 

drive extensions or an expansion of the mathematical model’s scope. One particularly 

promising, non-invasive method of collecting individual patient data is imaging. Indeed, we 

[3, 4, 12, 13, 45, 61, 63, 100, 101] and others [14, 17, 43, 62, 102, 103] are investigating 

merging imaging data with mechanistic models of tumor growth, including voxel-pixel 

(image-to-model lattice) translation, hence a multi-resolution approaches [104]. Quantitative 

imaging methods, such MRI or PET, can provide patient-specific measures of an individual 

tumor spanning molecular to physiological and tissue levels [4]. These imaging modalities 

have the ability to characterize proliferation with a variety of different methods including 

serial diffusion-weighted MRI [105], FDG-PET [106], and 18F-Fluorodeoxythymidine 

(18FLT) PET [107].

5. Conclusion

Mathematical modeling in oncology has been developing in parallel to experimental 

approaches. Many in silico studies have shown this approach to be fruitful for advancing the 

mathematical frameworks and have furthered our understanding of tumor development 

specific to cancer cell proliferation at several scales. In this contribution, we presented 

several mathematical approaches and techniques to describe tumor cell proliferation 

dynamics. These approaches merit future mathematical and experimental investigation, 

particularly those defining therapeutic approaches. From the tissue scale to intracellular 

signaling, we highlighted specific examples of mathematical models that have been 

compared to pre-clinical and clinical data and are therefore relevant for future translational 

studies of the governing dynamics of proliferation. The next era of research into 

proliferation will be led by efforts developing models on the emerging and still-to-be-

defined first principles of biology [108], establishing models accounting for the uncertainty 

in simulation results and data, and embracing the intimate combination of modeling and 

experimentation.

6. Expert Commentary

Mathematical models of tumor proliferation must be assessed for their validity and verified 

against experimental evidence. Ultimately, if a model cannot be compared to an 

experimental quantity of interest directly, alternative mathematical models must be built to 

explicitly utilize the available experimental data. Models that are not centered on 

experimental clinical or preclinical data will have limited impact on medical practice. It is 
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not enough to mathematically simulate various hypotheses if the predictions cannot be 

compared to data readily available in preclinical or clinical investigations [4].

More investigation is required into currently established models of tumor proliferation for 

expansion and/or rebuilding. To assess plausibility of these models, uncertainty 

quantification techniques aim to assess the impact of uncertainty in the model construction, 

variation in parameters, and the propagation of experimental error in the model’s results. 

Application of uncertainty quantification techniques have been used to determine if the 

mathematical predictions are biologically relevant and align with the variations in 

corresponding experimental data, such as tumor size or cellular population numbers [55, 98, 

99]. Therefore, future tumor modeling efforts must account for these uncertainties to assess 

the validity of resulting predictions to adapt or redefine accepted and established models in 

the literature.

Sensitivity analysis aims to determine whether variations in specific parameters or elements 

of a model have the most significant impact on a mathematical model’s results [109, 110, 

111]. Application of sensitivity methods on current mathematical models can identify the 

driving parameters of these mathematical systems to target for experimental investigation or 

even model expansion if more detailed dynamics are required (e.g., identification of 

metabolic drivers of proliferation), and a better characterization of those pathways could 

improve modeling results. Additionally, the identification of non-sensitive parameters can be 

used for model reduction. More specifically, the necessity of individual parameters as well 

as parameter interactions that may prove to be irrelevant for current experimental studies or 

scales may lead to restructuring of model equations, which is especially useful for hybrid 

models where multiscale analyses are being developed [112].

More uniformity in the presentation and processing of data is needed to assimilate into 

mathematical models. While mathematical models are flexible, they require numerical input 

and validation. Mathematical models are limited by their defined structures, but they are also 

limited by the evidence used to initialize, calibrate, and verify the results. Non-uniformity in 

the collection and organization of imaging data presents another hurdle to the development 

of tumor models. While there exist very large publicly-available databases for medical 

images (e.g., The Cancer Imaging Archive run by the NCI), much of the data is collected 

with varying acquisition parameters (even for multiple scans of the same patient), thereby 

limiting its use for initializing and constraining predictive, mathematical models. From a 

cellular perspective, there is a paucity of quantitative measures of known interactions that 

lead to and sustain cancer. For many biological elements, protein and signaling networks 

critical in driving proliferation of cancerous cells can be identified, but the quantities and 

rates of the reactions between individual species have yet to be fully characterized. After all, 

the ability to alter a dynamic system directly depends on the ability to measure quantities 

accurately, temporally, and uniformly, and such rigorous measures will be needed ultimately 

to insure reproducibility and repeatability of studies. Further, prior to clinical adoption of 

mathematical models, more quantified data must be available for verification and validation 

of model predictions.

Jarrett et al. Page 16

Expert Rev Anticancer Ther. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Five-year View

Similar to other fields within cancer biology, the study of tumor proliferation will become 

increasingly quantitative both in terms of the data acquired to study the phenomena, as well 

as the mathematical models developed to analyze such data. On the one hand, improvements 

in model construction and analysis are required to adequately described—as well as place on 

a sound theoretical footing—the increase in quantitative experimental characterization of 

proliferation that will occur. While much has been said and written about the use of 

informatics-based, “Big Data” approaches to studying cancer biology and oncology, we 

posit that the necessity of developing mechanism-based, mathematical models will become 

increasingly important [4, 113, 114]. Furthermore, these models must be based in the 

established principles of physics and cancer biology. While empirical models have provided 

practical guidance in certain subfields of oncology (e.g., the linear quadratic model of 

radiation oncology is a notable success [115]), they are (almost by definition) limited in their 

ability to quantitatively characterize the underlying biology and, therefore, their ability to 

predict the effects of a particular intervention for an individual patient. On the other hand, 

experimentalists and clinicians must continue to embrace using quantitative and uniformly 

applied methods for data collection and dissemination. It is often stated that there is a 

tremendous amount of data available for modeling, but this is not really the case. In fact, the 

type of data required to populate predictive mechanism-based, mathematical models (be they 

empirical models or derived from first principles) is terribly limited. To address this 

shortcoming requires an unprecedented level of interdisciplinary collaboration between 

clinicians, experimentalists, and mathematical and computational modelers at the earliest 

phases of experimental and clinical trial design. This is already happening in some places 

and its continued growth is fundamental to the success of practical mathematical modeling 

of proliferation.
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Key Issues

• A variety of mathematical models have been built using continuum and 

discrete constructs to capture the dynamics of tumor cell proliferation.

• Mathematical models coupled with experimental data can to be valuable 

resources for studying proliferation across all scales for optimization of 

therapy or drug discovery.

• Mathematical model simulations can be used to reveal the driving forces of 

aberrant cell proliferation observed in cancer cells.

• Future modeling efforts describing tumor cell proliferation must aim to 

incorporate the available experimental preclinical and clinical data (such as 

from quantitative imaging methods) and evaluate mathematical models with 

sensitivity and uncertainty techniques to determine relevancy and accuracy of 

the model’s predictions.

• More uniformity in the processing and quantification of data is required (such 

as acquisition parameters for MRI and/or measuring rates of production/decay 

of molecules for signaling pathways) for the advancement mathematical 

models that can provide a framework for predicting tumor cell response to 

therapy and proliferative signaling.
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Figure 1: 
Panel (a) displays example population curves for exponential, logistic, Gompertz, and Allee 

type growth models. Observe that exponential growth is constant and therefore the 

population will grow without bound as opposed to the logistic, Gompertz, and Allee growth 

models, which are all bounded by the cell population size, but with differing growth phases 

(i.e., different steepness of growth). Panel (b) presents Michaelis-Menten type growth with 

examples of different concentration curves representing (for example) nutrient 

concentrations for cellular growth. The blue curve results from a constant source of nutrient, 

where the food source is constantly replenished. For the red curve, the nutrient decays with 

time due to (for example) wash out of nutrient degradation. The yellow curve results from 

the nutrient decreasing with cell number representing a sustainable, but limited source of 

food. Finally, the purple curve has nutrient that is periodic in time, where the nutrient decays 

and is replenished. Notice that using a constant nutrient source results in characteristically 

exponential growth of the population, and population dependent nutrient is similar to 

logistic.
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Figure 2: 
Control (red) and dose-response (blue) model fits for different subtypes of triple negative 

breast cancer cell lines: MDA-MB-468 (basal-like 1), SUM-149PT (basal-like 2), MDA-

MB-231 (mesenchymal), and MDA-MB-453 (luminal expressing androgen receptor). Each 

cell line was plated and serially imaged via fluorescence microscopy for 30 days following a 

six hour doxorubicin treatment (156 nM). Cells were grown for at least three days to allow 

for a pre-treatment proliferation rate to be estimated. Nuclear counts are displayed in black 

with error bars representing the 95% confidence interval from six experimental replicates. 

These counts are used to fit Eqs. (i-iii). Eq. (iv) is a weighted average approach being used to 

incorporate both Eqs. (ii) and (iii) in the treatment response model (i), with NTC,A and 

NTC,B being the solutions of Eq. (i) using the term kd(t,D) as described in Eqs. (ii) and (iii), 

respectively. The A and B subscripts refer to the two different model formulations for death 

(kd) defined in Eqs. (ii) and (iii), respectively. Model weights were calculated from the 
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Akaike Information Criterion for models (ii) and (iii). For this concentration and exposure 

time, we can see that doxorubicin acts reducing proliferation, but growth is resumed for 

greater times.
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Figure 3: 
A comparison of a solid growth theory model and a reaction-diffusion model is presented for 

a rat with a C6 glioma. Panel (a) shows a T2-weighted MRI of the central slice of the rat 

head while panels (b) and (c) show the estimated tumor cell number, N(x), on days 10 and 

14 in the region indicated by the white dashed box in (a). Panels (d-f) show an example of 

the linearized growth model calibrated over days 10 to 14. Panel (d) shows a schematic of 

volume change represented by Jg(x), the ratio between the growth-induced volume Vg and 

the initial volume V0 of the tumor. Panel (e) shows the spatial distribution of Jg(x) used to 

grow the tumor from day 10 to 14. The model simulated N(x) is shown in panel (f). Panel 

(g) shows a 1D example of a reaction (or proliferation) diffusion model of tumor growth. 

Outward expansion is governed by tumor cell diffusion (or motility) while increase in cell 

number is governed by tumor cell proliferation. Panel (h) shows the spatial distribution of 

k(x) used to grow the tumor from day 10 to 14. The model simulated N(x) is shown for the 

Jarrett et al. Page 29

Expert Rev Anticancer Ther. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



reaction-diffusion model in panel (i). While representing different phenomena, Jg(x) and 

k(x) generally have increased values in areas of rapid tumor expansion, and decreased values 

in areas of slow tumor expansion.
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Figure 4: 
Simulation of the hybrid model described in section 3.3 with the tumor cells modeled by an 

agent-based model (left column), and the nutrient diffusion by a reaction-diffusion equation 

(right column) at three different time points (corresponding to each row). The nutrient is 

consumed by the tumor cells, and if the nutrient concentration drops below a threshold, the 

tumor cells become hypoxic. As the nutrient is depleted, the hypoxic cells transition to 

necrotic cells. Panels (a) and (b) displays the simulation at 10 days—the tumor is 

heterogeneous mixture of proliferative (green), quiescent (grey), and apoptotic cells (purple). 
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Panels (c) and (d) displays the simulation at 12.5 days—(c) the tumor now presents hypoxic 

cells (yellow) at the center due to nutrient depletion (d). Panels (e) and (f) displays the 

simulation at 15 days—(e) the tumor becomes necrotic (blue) at the center due to continuous 

nutrient consumption (f).
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Table 1:

Example Models for describing population growth

Model type Qualitative description Growth equation Graphical description

Exponential Growth
[Malthus, 1798]

Constant unbounded 
growth where the 
growth rate is a constant 
value

g = r

Logistic Growth
[Verhulst, 1838]

Density dependent 
growth that linearly 
decreases with 
increasing population 
size

g N = r 1 − N
Nmax

Gompertzian 
Growth or 
Gompertz Law
[Gompertz, 1825]

Time dependent growth 
that decreases with 
increasing time

g t = λe−αt
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Model type Qualitative description Growth equation Graphical description

Michaelis-Menten 
Kinetics
[Michaelis and 
Menten, 1913]

Nutrient dependent 
growth that increases 
and then stabilizes

g C = KC
Kn + C

g = growth rate, r = growth rate constant, t = time, Nmax = carrying capacity, λ = maximal growth rate, α = rate of exponential proliferative 

degradation, C = nutrient concentration, K = maximum growth rate, Kn = Michaelis-Menten constant for the nutrient concentration by which the 

growth rate is half its maximum.
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