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Abstract

From natural ecology1–4 to clinical therapy5–8, cells are often exposed to mixtures of multiple 

drugs. Two competing null models are used to predict the combined effect of drugs: response 

additivity (Bliss) and dosage additivity (Loewe)9–11. Here, noting that these models diverge with 

increased number of drugs, we contrast their predictions with growth measurements of four 

phylogenetically distant microorganisms including Escherichia coli, Staphylococcus aureus, 
Enterococcus faecalis and Saccharomyces cerevisiae, under combinations of up to ten different 

drugs. In all species, as the number of drugs increases, Bliss maintains accuracy while Loewe 

systematically loses its predictive power. The total dosage required for growth inhibition, which 

Loewe predicts should be fixed, steadily increases with the number of drugs, following a square-

root scaling. This scaling is explained by an approximation to Bliss where, inspired by R. A. 

Fisher’s classical geometric model12, dosages of independent drugs add up as orthogonal vectors 

rather than linearly. This dose-orthogonality approximation provides results similar to Bliss, yet 

uses the dosage language as in Loewe and is hence easier to implement and intuit. The rejection of 

dosage additivity in favour of effect additivity and dosage orthogonality provides a framework for 

understanding how multiple drugs and stressors add up in nature and the clinic.

In both nature and the clinic, cells are often exposed to combinations of multiple stresses 

and drugs. In natural ecosystems, such as the soil, dozens of microbial species capable of 

producing different antimicrobial compounds coexist in very close proximity, thus exposing 

each other to a mixture of multiple stressors1–4. In clinical settings, drug combinations, 

aimed at reducing side effects and counteracting resistance13–17, are becoming increasingly 

important in treatment for infectious diseases and cancer5–8,18,19. It is therefore of wide 

importance to understand how cell growth is affected by combinations of a multitude of 

stressors, and thereby the general rules of high-dimensionality drug arithmetic.
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When combined together, drugs can interact to synergize or antagonize each other’s effects 

relative to a null additive model. Synergy occurs when the combined effect of drugs is larger 

than expected based on their individual effects. Conversely, drugs can also antagonize each 

other, leading to a combined effect that is smaller than expected. These interactions are 

important in clinical settings as a way of increasing treatment potency and selectivity20–22 or 

slowing selection for resistance14,17,23. Importantly, the definition of both synergy and 

antagonism relies on comparing the effect of drug combinations with a null model of 

‘additive expectation’6,24–27.

There are two primary models for the null effect of drug combinations6,28: the Bliss 

model10,29, which assumes response additivity; and the Loewe model9,11, which assumes 

dose additivity. According to Bliss, the combined effect of two drugs E1+2 is simply the sum 

of their individual effects30, E1+2 = E1+E2, where Ei = (g0 − gi)/g0 is the effect of drug i on 

the normalized growth rate g/g0 (Fig. 1; when effects are measured on the basis of total yield 

rather than growth rate, Bliss additivity becomes multiplicativity; Supplementary Note 1). In 

contrast, according to Loewe additivity, the effect of drugs in combination is determined not 

by the sum of their normalized effects, but rather by the sum of their normalized dosages, 

such that their combined effect is the same across all combinations that have the same total 

normalized dosage. Namely, according to Loewe, lines of equal combination effect in drug-

dosage space (isoboles) are linear26 (Fig. 1). For example, if two drugs are additive with 

respect to Loewe, their 50% inhibition isobole is a straight line satisfying 

d1/d1
50 + d2/d2

50 = 1, where di is the dose of drug i and di
50 is the dose at which drug i alone 

causes 50% growth inhibition (IC50). Although conceptually different from one another, 

mechanistic support is available for both the Bliss and the Loewe models31 and there is no 

agreement on which model should generally be used32–35. Models that implement pairwise 

interaction data as well as higherorder interactions can improve multidrug predictions of 

either Bliss or Loewe21,36–39. Yet, regardless of pairwise interactions, it remains unknown 

which of these two null models best predicts the combined effect of multiple drugs.

Here, measuring bacterial response to antibiotic combinations, we contrast the Bliss and 

Loewe models for an increasing number of drugs, where we show that expectations of these 

models increasingly diverge. We focus on four very different organisms: Escherichia coli as 

a model Gram-negative bacterium, Saccharomyces cerevisiae as a model eukaryote and the 

clinically important Gram-positive pathogens Staphylococcus aureus and Enterococcus 
faecalis. Quantifying their response to combinations of up to ten different drugs, we find that 

the Bliss model maintains accuracy with increased number of drugs, while the Loewe model 

loses its predictive power. Indeed, in contrast to Loewe, which predicts that the total drug 

dosage required for inhibition is constant, we find that total dosage increases monotonically 

with the number of drugs. Interestingly, our data show that this increase follows a square-

root scaling, inspiring a simple model for orthogonality of dose additivity that follows a 

classical evolutionary optimization principle developed by R. A. Fisher12.

To contrast the Bliss and Loewe models, we calculated how their predictions scale with 

increased number of drugs. As a natural measure of the combined potency of multiple drugs, 

we considered the total drug dosage needed to achieve a given level of inhibition. Defining 
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‘total dosage’ (D) as the sum of the concentration of the individual drugs weighted by their 

corresponding IC50 values, D = ∑idi / di
50, the ‘combination potency’ (D50) is the total 

dosage D that yields 50% growth inhibition. As the number of drugs N increases, Loewe 

additivity predicts that the combination potency remains fixed, DLoewe 
50 (N) = 1. The 

prediction of Bliss, on the other hand, depends on the individual dose response curves of the 

different drugs. Assuming a Hill equation40 for the single-drug dose response 

Ei (di) = 1/[1 + (di
50/di)

h], where h is the Hill coefficient, and equating the Bliss prediction of 

the combined effect E1..N = Σi=1..N Ei to 50%, yields the Bliss-predicted scaling of 

combination potency with the number of drugs: DBliss
50 (N) = N(2N − 1)−(1/h). Thus, while 

Loewe predicts that the total dosage required for inhibition is constant, Bliss predicts that it 

increases with the number of drugs (assuming Hill coefficient, h > 1). The two models can 

therefore best be contrasted by measuring the combined action of increased number of 

drugs.

Starting with E. coli, we considered ten mechanistically different antibiotics and measured 

their growth-inhibitory effect individually as well as in combinations with increased number 

of drugs. We chose antibiotics acting on a range of cellular functions, including cell wall 

synthesis, DNA replication, transcription and translation (Supplementary Table 1). 

Measuring optical density (OD) versus time of bacterial growth on gradients of each of the 

individual drugs, we determined the dose response curve g(di) for each of the drugs (Fig. 2a 

and Supplementary Fig. 1). These dose response curves are well fitted by Hill functions, 

defining the concentrations di
50 of 50% inhibition for each of the drugs in isolation 

(Supplementary Fig. 13a,b).

Moving to drug pairs, we measured their combination potency and compared it to Bliss and 

Loewe predictions. We first measured the full response surface across two-dimensional dose 

gradients for two drug pairs: tetracycline and ciprofloxacin (TET–CIP) and tetracycline and 

erythromycin (TET–ERY), representing well-known examples of antibiotic antagonism and 

synergy (Fig. 2b,c response surface and IC50 isoboles; Supplementary Fig. 12a)41,42. Using 

the growth measurements of the individual drug gradients Ei(di), we derived the response 

surface and the IC50 isobole predictions of Loewe (straight line connecting the points [d1
50, 

0] and [0, d2
50]) and Bliss (the set of all points [d1, d2] satisfying E1(d1) + E2(d2) = 50%, 

Methods). As expected, the measured IC50 isobole lies above these predictions for the TET–

CIP pair (indicating antagonism) and below for the TET–ERY pair (indicating synergy). 

While these two-dimensional gradients allow clear definition of synergy and antagonism, 

they require many growth measurements and become combinatorically prohibitive in a high-

dimensional multidrug space.

To effectively sample the concentration space of multiple drugs, we performed growth 

measurements along a ‘co-potent’ line38, a curve in concentration space where the individual 

drugs have equal potencies in isolation (E1(d1) = E2(d2) =.. = EN(dN), Fig. 2b–e). This co-

potent line sampling method vastly reduces the dimensionality of the required measurements 

while guaranteeing that null models are evaluated in a region in drug concentration space 
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where all drugs are active, rather than one in which the combined effect is dominated by a 

subset of drugs. Identifying the point P = (d1,d2,…,dN) on the co-potent line where growth is 

inhibited by 50% yields the combination potency, DData
50 = ∑idi / di

50. This measured 

combination potency was contrasted with the expected potencies DBliss
50  and DLoewe

50 , defined 

as the points along the co-potent line where the single-drug-based calculations of Bliss and 

Loewe predict 50% inhibition (Methods). The interaction between drugs was then defined as 

the deviation between the observed and predicted potencies of the combination 

ε = log (DData
50 /DModel

50 ), which captures the extent of antagonism (ε > 0) and synergy (ε > 0) 

(Fig. 2d,e).

Measuring combination effects for all drug pairs, we find that their joint potencies are 

similarly well predicted by both the Bliss and the Loewe models. For each of the 45 drug 

pairs, we measured their dose response along co-potent concentration gradient and 

determined their combination potency, DData
50  (Methods, Fig. 2f and Supplementary Figs. 12b 

and 13a). Comparing these combination potencies with predictions of the Bliss and Loewe 

null models, we find that both positive (ε > 0, antagonism) and negative (ε > 0, synergism) 

deviations are prevalent with respect to either model (Fig. 2f,g). This prevalence of both 

antagonism and synergy among drug pairs overwhelms any small deviations between the 

two models (Fig. 2g; σ(εBliss) = 0.39; σ(εLoewe) = 0.39; < εBliss> − <εLoewe> = −0.066, t-
test: P = 0.42). Further, clustering drugs on the basis of these pairwise interactions, defined 

with respect to either Bliss or Loewe, leads to similar grouping by mechanism of action 

(Supplementary Fig. 2; possible small advantage to Bliss in resolving fine functionality 

differences)43. The similarity of pairwise null predictions, the prevalence and magnitude of 

pairwise interactions with respect to both models, and their similar correlation with cellular 

function prohibit distinction of the Loewe and Bliss null models based on drug pairs.

However, for increasing number of drugs, we find that the combined effect is well predicted 

by Bliss, while the Loewe prediction systematically diverges. Given that predictions of the 

two models should diverge with increased number of drugs, we measured the combined 

effect of multiple combinations with a varying number of antibiotics. We chose 35 

combinations of 3 to 10 antibiotics, including 8 randomly chosen sets from each 

combination size of N = 3, 5 and 7 drugs, all 10 sets of 9 drugs, and the whole 10-drug set 

(Fig. 3a,b; Supplementary Figs. 3a, 12c and 13b and Supplementary Tables 9 and 10). 

Following the procedure used for the drug pairs, we measured the combined effect of each 

multidrug set as a function of total dosage along co-potent lines and identified their 

combination potencies D50. Contrasting these measured potencies with the predicted 

potencies of Bliss and Loewe based on the single-drug measurements, we find that the Bliss 

model maintains good accuracy regardless of the number of drugs, while the accuracy of the 

Loewe model declines as the number of drugs increases (Fig. 3c, dots, and Supplementary 

Figs. 4 and 5). This rejection of Loewe in favour of Bliss is independent of the co-potency of 

the drug mixture (Supplementary Fig. 6) and also appears when using the multiplicative 

form of the Bliss model (more suitable for yield measurements, Supplementary Note 1; 

Supplementary Fig. 7), as well as when considering alternative derivation of growth rates 
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from OD curves (Supplementary Fig. 1c)44. Our E. coli growth data therefore show that the 

effect of combinations of many diverse drugs is well predicted by Bliss, and not by Loewe.

To test the generality of these findings, we applied our methodology to the Gram-positive 

pathogens E. faecalis and S. aureus as well as to the eukaryotic model of S. cerevisiae. For 

each of these organisms, we chose a repertoire of diverse drugs and measured their 

combined effect in random sets of increased number of drugs (up to eight in S. aureus, six in 

E. faecalis and five in S. cerevisiae; Supplementary Tables 1, 9 and 10 and Supplementary 

Figs. 3b–e, 12d–g and 13c–f). As in E. coli, both the Bliss and Loewe models provided 

comparable predictions for combinations of small number of drugs and when the number of 

drugs increases the fitness was well predicted by Bliss while Loewe’s prediction diverged 

(Fig. 3c and Supplementary Figs. 4 and 5). Furthermore, the power of Bliss over Loewe is 

also seen for combinations involving strongly synergistic drug pairs, treating the pair 

mixture as a single agent (TMP–SLF in S. aureus; Supplementary Fig. 8). We conclude that 

across species the Loewe model, predicting that the total dosage required for inhibition is 

fixed regardless of the number of drugs, can be rejected as a general predictor for the 

potency of diverse multidrug combinations.

Next, we tested how the potency of drug combinations, namely the total dosage required for 

inhibition, varies with the number of drugs. To account for any slight experimental 

deviations from the ideal co-potent line, we use a natural entropy-like definition of an 

effective number of drugs Neff that is based on the uniformity of the individual drug effects 

(Neff equals N if all drugs have the same effect; is slightly smaller than N when these effects 

are uneven; and converges to 1 at the extreme case when a single drug dominates; see 

definition of Neff in Fig. 4 caption). Contrary to the Loewe prediction, we find that the total 

dosage required for inhibition increases with the effective number of drugs (Fig. 4a and 

Supplementary Fig. 8a). Moreover, this inhibitory total dosage seems to obey a simple 

scaling law: it increases as the square root of the effective number of drugs (D50 = (Neff)α, 

least-square fit yields: α = 0.47 ± 0.03).

The square-root scaling of the inhibitory dosage with number of drugs can be explained by 

an approximation to Bliss, inspired by the classical optimization principle of Fisher’s 

geometric model of adaptation12. Fisher’s model describes the fitness f in a space of N 
independent orthogonal phenotypes and assumes that it declines as a function of the 

Euclidean distance from an optimal point ( f = e−r2
, where r2 = ∑i = 1..N xi

2 and xi are 

phenotypic distances from the optimal point). For a given fitness value, the phenotypic 

distances xi therefore decline as 1/ N and their sum, D = ∑i = 1..N xi
2, increases as N. The 

analogy of drug dosages with Fisher’s phenotypes, and more generally the analogy of drug 

and mutations, explains the square-root scaling of total inhibitory dosage with number of 

drugs and underscores that drug concentrations should be summed not linearly by simple 

addition as in Loewe, but rather as the geometric sum of orthogonal vectors (Fig. 4b; of 

course, orthogonality is an idealization from which drug combinations can deviate due to 

synergy or antagonism, or when similar drugs act along the same axis). This Fisher-inspired 

‘dose-orthogonality’ model can also be derived as a second-order approximation of Bliss 

additivity at the limit of small dosages, emphasizing the dependency of this approximation 
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on optimality of the growth rate at the origin (Supplementary Note 2; for Hill coefficients 

close to 1, as common in the drug combinations applied to E. faecalis, Bliss prediction can 

be closer to Loewe than to Fisher). Indeed, we find that even strongly interacting drug pairs 

assume more circular isoboles for small fitness effects (Fig. 2b,c and Supplementary Fig. 10) 

and that the square-root scaling becomes more accurate at a lower level of inhibition 

(Supplementary Fig. 9b). Similarly to Bliss and in contrast to Loewe, combination potency 

predictions of this dosage-orthogonality model (derived by intersecting the co-potent lines 

with spherical IC50 isoboles ∑i (di/di
50)2 = 1, Methods) are consistent with the drug 

combination measurements (Fig. 4c). Yet, unlike Bliss these predictions do not require fine 

measurements of the minute individual drug effects Ei(di), but rather depend on the more 

robust measurements of their individual IC50 dosages, di
50. While it allows the use of dose 

language like Loewe, the dose-orthogonality model provides an intuitive and robust 

approximation of Bliss’s response additivity (Supplementary Table 2), which well predicts 

the potency of drug combinations and explains the square-root scaling law of potency with 

number of drugs.

Across diverse taxons, our measurements reject the Loewe model of dosage additivity for 

predicting the effect of combination of multiple diverse drugs, favouring the Bliss effect 

additivity and motivating a simple model of dosage-orthogonality. In contrast to Loewe 

additivity, which predicts that the total dosage required for inhibition is fixed, we find that 

the total inhibitory dosage increases with the number of drugs, following a square-root 

scaling law. This general reduction in potency with increased number of drugs could be 

important for understanding ecological environments where bacteria are exposed to a 

multitude of drugs and stresses and any one toxin does not typically work on its own but 

rather combined within a complex soup of natural inhibitors. While the results could also be 

important in the clinical settings where multiple drugs are combined, any such implications 

will require extending the conceptual approach and methodology and to consider the killing 

regime, the impact on multispecies communities and the complexity that stems from 

transient effects introduced by the pharmacokinetics and pharmacodynamics of each of the 

individual drugs. The square-root scaling supports a model for drug additivity where dosages 

of independent drugs add up orthogonally rather than linearly. This dosage-orthogonality 

model provides an approximation to Bliss, yet it uses dosage arithmetic that allows a more 

robust implementation and simple intuition. It will be interesting to explore the generality of 

these results and the limit on the number of orthogonal pharmacological axes as more 

antibiotics and stresses are added, as well as beyond the minimal inhibitory concentration 

and in more complex systems such as in cancer therapy. Throughout such clinical systems 

and natural ecologies, our findings provide a uniform framework for understanding the null 

arithmetic of many-drug combinations.

Methods

Strains and media.

Experiments were performed with: E. coli strain MC4100 in M9 media (Na2HPO4 6 g/l−1, 

Na2HPO4 3 g l−1, NaCl 0.5 g l−1, NH4Cl 1 g l−1, glucose 2 g l−1, Casamino acids 1 g l−1, 
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thiamine 0.34 g l−1, MgSO4 1 mM, CaCl2 0.1 mM); S aureus sp. Rosenbach (ATCC 29213 - 

Wichita) in Mueller–Hinton broth; E. faecalis ATCC 49757 in brain heart infusion broth; 

and S. cerevisiae BY4741 Euroscarf in YPD broth (yeast extract 1%, peptone 2%, glucose 

2%). Antibiotics were added as indicated (Sigma Aldrich).

Growth rate assay.

The data represent seven different experimental set-ups: three for E. coli: two-dimensional 

gradient of ERY–TET and CIP–TET (Fig. 2b–e and Supplementary Figs. 9 and 12a), all 45 

pairwise combinations (Fig. 2f,g and Supplementary Figs. 12b and 13a), and 35 

combinations of order higher than two (Figs. 3 and 4, dots, and Supplementary Figs. 12c and 

13b); two for S. aureus: 22 combinations not involving beta-lactam antibiotics, and 21 

combinations involving beta-lactam antibiotics (Figs. 3c and 4, triangles, and Supplementary 

Figs. 12d,e and 13c,d); one for E. faecalis, composed of 23 combinations (Figs. 3c and 4, 

squares, and Supplementary Figs. 12f and 13e); and one for S. cerevisiae, composed of 26 

combinations (Figs. 3c and 4, stars; Supplementary Figs. 12g and 13e). In each of these 

experiments, an inoculum of 104 cells was inoculated into 150 μl of media in a Nunc 96-well 

flat-bottom microplate. Antibiotics were added into the wells as indicated using a D300e 

digital dispenser (Tecan), which dispenses a nanolitre-scale volume of each antibiotic. Each 

concentration combination was performed in duplicate wells. Multiple untreated control 

wells (no antibiotics) were designated on each plate (2–6% of the wells in each experiment). 

To avoid systematic positional effects across the plates, the wells chosen for each drug 

combination on the plates were randomized. The plates were incubated at 30 °C with 

shaking (Liconic orbital shaker STX44), and OD600 nm was measured at least every 25 min 

using a Tecan robotic system and the Infinite M200 Pro reader. To enhance uniformity, the 

plate orientations in the shaker were rotated 180° following every measurement.

Growth rate analysis.

Data analysis was performed using MATLAB. The OD600 nm measurements were averaged 

using a running window of two data points. The log phase of each of these curves was 

determined using an algorithm based on the sensitivity analysis method (‘tornado diagram’, 

Supplementary Fig. 1), and OD data in this constant exponential growth region were fitted to 

OD = OD0·2gt + ODBG (in some of the wells, the log-phase period was mis-determined, and 

were cured manually; all fits are indicated in Supplementary Fig. 12). From these fitted 

parameters, we obtained for each well the background ODBG and the growth rate g. Fitness 

for each drug mixture was then calculated as normalized growth rates g/g0, where g is the 

average growth rate in duplicate wells and g0 is the median growth rate of all untreated wells 

in the experiment. All calculated normalized growth rates are available in Supplementary 

Table 10. While OD is commonly used as a measure of microbial density, the relation 

between OD and cell number depends on cell size and morphology, which can be affected 

by the antibiotics. As the growth rate is defined as the logarithmic derivative of the OD, it is 

independent of this effect of antibiotic on cell size, as long as these effects are constant 

throughout the fitted region. Therefore, we measure the growth rate in the regime of steady 

exponential growth long after the addition of the antibiotic.
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Determining drug concentrations for co-potent combinations.

To achieve co-potent concentrations for the different drugs, we first measured growth rates 

on gradients of each of the individual drugs and identified the IC20 and IC80 for each of the 

drugs, di
20 and di

80. Then, we designed the drug gradients such that the individual drugs have 

matching effects: di(k) = di(1)/wi
k, where di(k) is the dosage of drug i at dilution number k, 

wi = di
80/di

203  is the dilution factor (chosen to have three dilutions between the IC20 and 

IC80), di(1) = di
80 × w3 is the highest concentration (strong enough to inhibit growth) and k 

varies from 1 to 15 such that the last concentration di(15) = di
80 × w−11 is low enough to have 

negligible effect (all drug concentrations are provided in Supplementary Tables 3–8). For 

example: 7.3 ng ml−1 and 53.1 ng ml−1 of TET inhibit the growth of S. aureus by 20% and 

80%, respectively; hence, wTET = (53/7.3)1/3 = 1.93. At the same time, 35 ng ml−1 and 152 

ng ml−1 ERY inhibit the growth by 20% and 80%, respectively; hence, wERY = (152/35)1/3 = 

1.64. On the co-potent line, we mix ERY and TET (Supplementary Fig. 3b) with the 

following concentrations dTET
80 ⋅ wTET

3 = 53 × 1.933 = 386ngml−1 TET with 

dERY
80 ⋅ wERY

3 = 152 × 1.643 = 664ngml−1 Ery (‘O’ in Supplementary Table 5), 199 ng ml−1 

TET with 405 ng ml−1 ERY (‘N’), …, 0.52 ng ml−1 TET with 2.93 ng ml−1 ERY (‘E’).

Calculating model predictions for Bliss, Loewe and Fisher.

The models predict fitness across drug concentration space f(d1,d2,…,dN) based on the 

single-drug dose response curves (fi(di), Hill fitted, Supplementary Fig. 12). For any given 

level of inhibition E, we define in each of the models the N − 1-dimensional isobolic surface 

of all points (d1d2,…,dN) in concentration space predicted to have fitness f = 1−E. For Bliss, 

this isobolic surface is the collection of points satisfying Σi (1 − fi (di)) = 1 – E. For Loewe, 

the isobolic surface is predicted to be linear, satisfying ∑i (di/di
E) = 1, where di

E is the 

concentration of drug i that inhibits growth by E, as defined by f i di
E = 1 − E. For Fisher, 

this isobolic surface is an N - 1-dimensional sphere defined by ∑i (di/di
E)2 = 1. Substituting 

E = 50%, these calculations define the IC50 isoboles (Fig. 2b,c). The intersections of the co-

potent lines with the predicted isobolic surfaces for ranges of values of E define the 

predicted fitness along the co-potent line (Figs. 2 and 3, Supplementary Fig. 3 and 

Supplementary Table 11). In particular, the intersections of the co-potent lines with the E = 

50% isobolic surfaces define the predicted potencies DBliss
50 , DLoewe

50  and DFisher
50  (Figs. 2–4, 

Supplementary Fig. 3 and Supplementary Table 11).

Reporting Summary.

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.
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Code availability.

MATLAB codes to calculate growth rate and model predictions are available on the 

laboratory website at https://kishony.net.technion.ac.il/resources/; any additional codes are 

available from the corresponding author.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Schematic depiction of effect additivity (Bliss) and dosage additivity (Loewe).
Given fitness as a function of dosage of each of the individual drugs (fi = 1 − Ei, dose 

response curve, black solid line), Bliss and Loewe models predict the fitness f1 + 2 = 1 − 

E1+2 at any given point P = [d1,d2] in the drug concentration space. The Bliss prediction 

assumes additivity of normalized drug effects, E1 + 2
Bliss = E1 + E2, where E1 and E2 are the 

individual drug effects at their cognate concentrations (cyan and red piles, respectively). The 

Loewe model, on the other hand, assumes additivity of normalized drug dosage, such that 

the combined drug effect is fixed along linear lines of constant total normalized dosage 

(yellow, E1 + 2
Loewe equals 50% in the example point P, and more generally is given by solving 

for E :d1/d1
E + d2/d2

E = 1, where di
E is the concentration of drug i that leads to inhibition level 

E).
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Fig. 2 |. Pairwise measurements do not resolve the Bliss and Loewe models of additivity.
a, Representative single-drug dose response curve showing the normalized growth rate g/g0 

along a concentration gradient of TET (black dots, replicates), the Hill equation fit 

(g/g0 = 1/[1 + (dTET /dTET
50 )

hTET], black line) and the IC50 (dTET
50 , green dashed line). Inset: 

growth rates g were calculated by fitting OD600 nm measurements over time (black) to 

exponential function, OD = OD0·2g·t + ODBG (cyan and red). b,c, Response surface showing 

growth rates (greyscale indicated in a) over a two-dimensional grid gradient (dots) of the 

antagonistic antibiotic pair TET–CIP (b) and the synergistic pair TET–ERY (c). The 

measured IC50 isoboles (green) are contrasted with Bliss (purple) and Loewe (orange) 

predictions. Indicated are the co-potent lines (circles), the corresponding co-potent single 
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drugs (black crosses for TET, black diamonds for CIP and ERY) and the IC50 values (green 

symbols). d,e, Dose response along the co-potent line of the two drug mixtures (TET–CIP, 

d; TET–ERY, e) as a function of total dosage D = d1/d1
50 + d2/d2

50. Measured normalized 

growth rates of the combined drugs are contrasted with Bliss and Loewe predictions based 

on the single-drug data (shown below). All symbols correspond to those in b and c. f,g, 

Data-model deviations (ε = log (DData
50 /DModel

50 ), indicates the difference between measured 

(DData
50 ) and predicted (DBliss/Loewe

50 ) combination potencies) for each of the two models are 

presented as an interaction matrix (f) and a box plot (g, box at first and third quartiles, 

whiskers at mean ± two standard deviations, black dashed line represents perfectly accurate 

prediction). There is no significant difference between the models in their predictions of 

measured pairwise potencies (45 different combinations, two-sided t-test, P = 0.42).
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Fig. 3 |. The Loewe model of additivity loses its predictive power with increased number of 
combined drugs.
a, An example of dose response along the co-potent line of a mixture of seven drugs. The 

measured normalized growth rate calculated on the basis of duplicate measurements (dots) 

and the combined potency DData
50  of the drug mixture are contrasted with Bliss and Loewe 

predictions calculated on the basis of the single-drug measurements (below, greyscale). b, 

The combination potency (DData
50 , green) is contrasted with predictions of Bliss (DBliss

50 , 

purple) and Loewe (DLoewe
50 , yellow) for 35 different combinations of 3 to 10 drugs (black 

squares). The blue asterisk matches the combination shown in a. c, The deviation of each of 

the models from the data ε = log [DData
50 /DModel

50 ] is plotted for 172 different combinations as a 

function of the number of drugs (error bars represent one standard deviation of each 

combination size), showing that the Loewe predictions deviate from the data with increased 

number of drugs, while Bliss predictions remain accurate (the dashed line represents 

perfectly accurate prediction).
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Fig. 4 |. A square-root scaling law of inhibitory total dosage with effective number of drugs is 
explained by a simple dosage-orthogonality model.

a, The combination potency, DData
50  of all 172 different drug combinations is plotted as a 

function of effective number of drugs (Neff=exp[− Σipi log(pi)], where pi = Ei/ΣjEj, and Ei(di) 

are the single-drug individual effects at their cognate concentrations; colours represent the 

actual number of drugs, N). In contrast to Loewe, which assumes that the total dosage 

required for inhibition is fixed (yellow line), the total dosage increases as the square root of 

the effective number of drugs (black line, fit of D50 = (Neff)α yields α = 0.47 ± 0.03, 0.95 

confidence interval). b, The square-root scaling is explained by a Fisher-inspired dose-

orthogonality model, which assumes that for small perturbations the dosages of independent 

drugs should be added as orthogonal vectors rather than linearly as in Loewe. Hence, 

isoboles of X% inhibition are spherical surfaces defined by Σi (di/di
X)2 = 1 (Fisher, bottom, 

circles in two-drug space, blue line) instead of linear surfaces (Loewe, top, straight lines in 

two-drug space, yellow line). c, Data-model deviation ε = log(DData
50 /DModel

50 ) of all the 

combinations of more than two drugs for each of the three models (box at median and first 

and third quartiles, whiskers at mean ± two standard deviations, black dashed line represents 

perfectly accurate prediction). The data strongly reject Loewe and are instead consistent 

with both Fisher and Bliss (96 data points, two sided t-test: Loewe, P < 10−40; Bliss, P = 

0.61; Fisher, P = 0.8).
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