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Abstract

Background: Although birth defects are the leading cause of infant mortality in the United 

States, methods for observing human pregnancies with birth defect outcomes are limited.

Objective: The primary objectives of this study were (i) to assess whether rare health-related 

events—in this case, birth defects—are reported on social media, (ii) to design and deploy a 

natural language processing (NLP) approach for collecting such sparse data from social media, 

and (iii) to utilize the collected data to discover a cohort of women whose pregnancies with birth 

defect outcomes could be observed on social media for epidemiological analysis.

Methods: To assess whether birth defects are mentioned on social media, we mined 432 million 

tweets posted by 112,647 users who were automatically detected via their public announcements 

of pregnancies on Twitter. To retrieve tweets that mention birth defects, we developed a rule-based, 

bootstrapping approach, which relies on a lexicon, lexical variants generated from the lexicon 

entries, regular expressions, post-processing, and manual analysis guided by distributional 

properties. To identify users whose pregnancies with birth defect outcomes could be observed for 

epidemiological analysis, inclusion criteria were (i) tweets indicating that the user’s child has a 

birth defect, and (ii) accessibility to the user’s tweets during pregnancy. We conducted a semi-

automatic evaluation to estimate the recall of the tweet-collection approach, and performed a 

preliminary assessment of the prevalence of selected birth defects among the pregnancy cohort 

derived from Twitter.

Results: We manually annotated 16,822 retrieved tweets, distinguishing tweets indicating that 

the user’s child has a birth defect (true positives) from tweets that merely mention birth defects 
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(false positives). Inter-annotator agreement was substantial: κ = 0.79 (Cohen’s kappa). Analyzing 

the timelines of the 646 users whose tweets were true positives resulted in the discovery of 195 

users that met the inclusion criteria. Congenital heart defects are the most common type of birth 

defect reported on Twitter, consistent with findings in the general population. Based on an 

evaluation of 4,169 tweets retrieved using alternative text mining methods, the recall of the tweet-

collection approach was 0.95.

Conclusions: Our contributions include (i) evidence that rare health-related events are indeed 

reported on Twitter, (ii) a generalizable, systematic NLP approach for collecting sparse tweets, (iii) 

a semi-automatic method to identify undetected tweets (false negatives), and (iv) a collection of 

publicly available tweets by pregnant users with birth defect outcomes, which could be used for 

future epidemiological analysis. In future work, the annotated tweets could be used to train 

machine learning algorithms to automatically identify users reporting birth defect outcomes, 

enabling the large-scale use of social media mining as a complementary method for such 

epidemiological research.
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1. Introduction

According to the United States Centers for Disease Control and Prevention (CDC), birth 

defects are the leading cause of infant mortality in the United States [1], likely because the 

etiology of the majority of birth defects remains unknown [2]. Closing this knowledge gap 

has been challenging because methods for studying birth defects are limited; for example, 

pregnant women are largely excluded from clinical trials [3,4], animal reproductive studies 

may not translate to human risk factors [5,6], and pregnancy exposure registries [7] have 

suffered from selection bias (e.g., enrolling women who have had prenatal testing with 

normal results) [8], lack of internal comparator groups [8], and short follow-up periods, 

which can lead to an under-assessment of birth defects because not all are recognized at 

birth [9]. Given these methodological limitations, additional methods for observing 

pregnancies with birth defect outcomes should be explored to complement existing methods 

for studying birth defects.
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In recent work [10], we took the first step towards exploring whether social media mining 

could be used to complement pregnancy exposure registries as a novel method for observing 

pregnancies. Considering that 21% of American adults and, more specifically, 36% of 

Americans between ages 18–29 use Twitter [11], the promise of valuable information 

directly from the population of interest motivated us to develop and deploy a natural 

language processing (NLP) and machine learning pipeline that automatically collects and 

stores the Twitter user timelines—all publicly available posts over time by that user—of 

women who have reported a pregnancy on Twitter. Because pregnancy is a common event, 

the use of only 14 query patterns was sufficient to retrieve a large set of tweets containing at 

least 60% true positives. Indeed, most public health applications of social media mining [12] 

have focused on health-related events that, like pregnancy, impact a relatively large 

proportion of the population, including influenza epidemics [13], alcohol, tobacco, and drug 

use [14], and adverse drug reactions [15]. In contrast, because the prevalence of birth defects 

is only 3% [16], collecting social media data for such rare health-related events, as we 

propose here, introduces significant challenges to the methods commonly used.

Supervised machine learning algorithms require annotated training data, but, as we will 

demonstrate in Section 2.1.1, collecting social media data for manual annotation of rare 

health-related events involves grappling with a high degree of data sparsity and an extremely 

low signal-to-noise ratio. Our objectives for this study were (i) to assess whether rare health-

related events—in this case, birth defects—are reported on social media, (ii) to design and 

deploy an NLP approach to collecting such sparse data for manual annotation, and (iii) to 

utilize the annotated data to discover a cohort of women whose pregnancies with birth defect 

outcomes could be observed on social media for future epidemiological analysis. We mined 

more than 432 million tweets by 112,647 users who have publicly announced a pregnancy 

on Twitter. Through an application to birth defects, this paper presents a generalizable NLP-

based approach to iteratively preparing an annotated data set of rare health-related events 

reported on social media, which would enable the use of social media mining as a 

complementary method for studying such events on a large scale.

2. Methods

2.1. Data Collection

To retrieve the small number of tweets that mention possible birth defects from the more 

than 432 million tweets in our database, we developed a rule-based, bootstrapping approach. 

The approach relies on a lexicon, lexical variants generated from the lexicon entries, regular 

expressions, post-processing, and manual analysis guided by distributional properties. The 

primary goal was to collect a set of tweets that could be categorized—manually 

distinguishing tweets (possibly) indicating that the user’s child has a birth defect (true 

positives) from tweets that merely mention birth defects (false positives)—for analysis and 

future use as training data for automatic processing methods. Considering the excessive 

noise associated with the sparsity of tweets that mention birth defects, we presumed that a 

rule-based, bootstrapping approach would be more effective than a learning-based approach 

for collecting an extensive and usable set of tweets for annotation. For this paper, the 

annotated tweets will direct us to the timelines of the users who posted them, for an 
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inclusion/exclusion analysis to discover a cohort of women whose pregnancies with birth 

defect outcomes could be observed on Twitter for future epidemiological analysis.

2.1.1. Preliminary Query Approach—A priori, we did not know how users on social 

media would linguistically express birth defects, so, initially, we designed a query aimed at 

maximizing the recall of the retrieved tweets—that is, returning the highest possible number 

of true positives in the database. To identify keywords for the query, we drew upon 

published reports and guidelines by the National Birth Defects Prevention Network [17], the 

CDC’s Metropolitan Atlanta Congenital Defects Program [18], the Illinois Department of 

Public Health’s Division of Epidemiologic Studies [19], and EUROCAT [20]. When 

provided, we used the International Classification of Diseases (ICD) codes to look up the 

birth defects in the Unified Medical Language System (UMLS) [21]. We manually compiled 

a lexicon of more than 500 keywords. As a heuristic, we attempted to account for birth 

defects that may be expressed in a variety of clinical, colloquial (e.g., body organs and 

systems), abstract (e.g., malformation, anomaly, defect, abnormality, disorder), or, 

considering Twitter’s constraints on message length, abbreviated ways.

Approximately seven million (1.61%) tweets in the database matched our initial set of 

keywords—far too many for manual processing, and effectively detecting, users’ birth defect 

outcomes. In order to further constrain the semantic space of the retrieved tweets, we 

required that tweets must also match (variants of) query patterns that indicate a personal 

experience, such as “my baby” or “I have a child.” This additional filtering significantly 

reduced the number of retrieved tweets, returning approximately 140,000 from the set of 

keyword-constrained tweets; however, upon manually studying a random sample of 1,500 of 

them, we identified only five true positives. Thus, at this point, the precision of the query 

was 0.003, where Precision = True Positives/(True Positives + False Positives). Because this 

level of precision would yield too few true positives even if it were possible to manually 

annotate all 140,000, we decided to shift our focus to obtaining a more substantial 

proportion of true positives, perhaps at the expense of recall. The results from the 

preliminary query underscore the methodological limitations of using basic keywords and 

query patterns—a common data collection approach for mining social media for more 

prevalent events—for detecting rare events on social media.

2.1.2. Final Query Approach—In an effort to make the query more precise, we 

modified the initial lexicon entries to be based primarily on clinical expressions of birth 

defects, and subsequently added other entries through the bootstrapping approach we present 

in this section. Our final lexicon (Penn Social Media Lexicon of Birth Defects), available in 

Appendix A, contains approximately 650 entries (single-word or multi-word terms). The 

words in the entries are expressed as root forms, and we semi-automatically generated 

lexical variants of the root words, including misspellings, alternative spellings, and 

inflections (e.g., plurals, possessives, parts of speech). Considering the morphological 

complexity of clinical terms and their low frequency of use in a non-clinical context, health-

related events are likely to be misspelled on social media, so accounting for lexical variants 

is especially important for detecting rare health-related events. Figure 1 provides an 

overview of our workflow for mining social media to discover a cohort of women whose 
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pregnancies with birth defect outcomes could be observed on Twitter for epidemiological 

analysis. We will describe this workflow in the remainder of Section 2.

We took a data-centric approach to automatically generate some of the lexical variants for 

words in the Penn Social Media Lexicon of Birth Defects [22]. This approach can be used to 

generate lexical variants for entries in any lexicon. First, for each word in an entry, we used a 

large dense vector model, learned from a set of unlabeled tweets collected for prior work 

[23], to identify the top 1,000 most semantically similar words. Since variants appear in 

contexts similar to those of the original words, they tend to appear close in the semantic 

space represented by the vector model. Then, we filtered out lexically dissimilar words by 

using their Levenshtein distance—a measure of the similarity between two strings computed 

as the number of deletions, insertions, or substitutions required to transform one string into 

the other. To filter out words, we used only those above a similarity threshold of 0.80, also 

called the Levenshtein ratio (LR). LR is calculated as LR = (lensum – lendist)/lensum, 

where lensum is the sum of the lengths of the two strings, and lendist is the Levenshtein 

distance between the two strings. Table 1 provides samples of lexicon entries and their 

lexical variants, including those that were automatically generated. The complete set of 

variants is available in Appendix B.

In the interest of exploration and illustration, we included entries in the Penn Social Media 

Lexicon of Birth Defects that capture a broad range of birth defects [17–21], which might 

not be included in all study designs. While the majority of included birth defects would be 

considered “major” malformations, some of them might be considered “minor” structural 

defects, such as those that are thought to be positional (e.g., plagiocephaly), maturational 

(e.g., umbilical hernia), or transient (e.g., a small ventricular septal defect that spontaneously 

closes). We also included entries for chromosomal anomalies (e.g., trisomy disorders) that 

might be excluded in studies of teratology. We decided to make the Penn Social Media 

Lexicon of Birth Defects inclusive, allowing epidemiological research that utilizes the 

lexicon, beyond the scope of this paper, to exclude entries for birth defects deemed not of 

interest.

We implemented the query as a set of hand-crafted, complex regular expressions—search 

patterns used to match combinations of text strings. Table 2 illustrates the final regular 

expression form that we applied to most of the lexicon entries. The regular expression begins 

by specifying that the first character of “cleft” (or any of the variants of “cleft,” as indicated 

by the “|” separator) can be adjoined only with a space or non-alphanumeric character (e.g., 

punctuation), as indicated by the leading word boundary, “\b”. The regular expression goes 

on to allow particular stopwords—common words that would not modify the meaning of the 

entries—to occur between the words of multi-word entries. The “\b” on both sides of the 

stopwords—the leading and trailing boundaries—indicates that the stopwords can be 

adjoined on either side only with a space or non-alphanumeric character. The “|\W” 

following the trailing boundary of the stopword cluster indicates that stopwords or (“|”) a 

space or non-alphanumeric character (“\W”) can occur between the words of multi-word 

entries. Finally, the asterisk (“*”) indicates that a stopword, space, or non-alphanumeric 

character can occur zero or more times between the words of multi-word entries. 

Implemented with this regular expression, none of the entries in the Penn Social Media 
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Lexicon of Birth Defects have inclusive relations. Table 2 provides sample combinations of 

“cleft palate” that would be matched by the regular expression.

As Figure 1 illustrates, we iteratively refined the lexicon, variants, regular expressions, and 

data processing in a bootstrapping manner. After each time the query was tested, we 

generated frequency distributions of the matching lexicon entries (and their variants) and 

used them to guide us through a manual analysis of the results. We discarded frequently 

matching entries that, when included, introduced a significant amount of noise—hundreds 

and sometimes thousands of instances where the entry did not refer to its associated birth 

defect. We also noticed that some of the entries that are abbreviations of specific birth 

defects were matching arbitrary strings in URLs—for example, “CHD” (congenital heart 

defect) in https://chd.abc/xyz—even with word boundaries (which allow for adjacent non-

alphanumeric characters) on both sides of the entries. Thus, in addition to ignoring retweets 

(indicated by “RT” at the beginning of the tweet), we ended up ignoring URLs in post-

processing the retrieved tweets. To address a similar issue, we also ignored usernames (i.e., 

strings that begin with “@”).

In manually studying the data, we also discovered co-occurring patterns that our query was 

not formulated to match. For example, we found that, by using word boundaries on both 

sides of the entries, in an effort to reduce noise, we were not capturing birth defects in 

hashtags in which the end of the entry was adjoined with other words (e.g., 

#downsyndromeawareness)—nontraditional textual representations that social media 

affords. However, removing trailing boundaries caused some of the entries to become 

significantly noisier; for example, “club foot” returned tweets containing “club football.” For 

such entries, we re-added trailing word boundaries, as ad hoc rules in post-processing. As 

this example illustrates, modifying the matching rules, or adding entries to the lexicon, 

oftentimes required negotiating concomitant noise. With our final query formulation, we 

reached an estimated precision of 0.07—a more than 23-fold increase over our preliminary 

precision of 0.003—which appeared to be tolerable for proceeding to retrieval and manual 

annotation for distinguishing true positives. Using this query formulation against the 432 

million tweets included in 112,647 user timelines in our database, we collected 16,822 

tweets, which were manually annotated in whole. We will describe the annotation process 

next.

2.2. Annotation

We collected data for manual annotation three times over a period of four months, with 

minor variations to the query between the first and second collection times. In total, we 

collected 16,822 tweets, which were annotated by two professionally trained annotators, 

with overlapping annotations for 15,547 tweets. We analyzed linguistic patterns in a sample 

of the retrieved tweets and used this analysis to inform the development of annotation 

guidelines, which were used to help the annotators distinguish three classes of tweets: 

“defect,” “possible defect,” and “non-defect.” The complete annotation guidelines are 

available in Appendix C. Table 3 (in Section 3.1) provides examples of annotated tweets. We 

can summarize the three annotated classes as follows:
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• Defect: The tweet refers to a person who has a birth defect and identifies that 

person as the Twitter user’s child.

• Possible Defect: The tweet is ambiguous about whether a person referred to has a 

birth defect and/or is the Twitter user’s child.

• Non-defect: The tweet does not indicate that a person referred to has or may have 

a birth defect and is or may be the user’s child.

2.3. Inclusion/Exclusion Analysis

The annotations directed us to the timelines of the users who posted them, for an inclusion/

exclusion analysis to discover a cohort of women whose pregnancies with birth defect 

outcomes could be observed on Twitter for future epidemiological analysis. First, we 

analyzed the timelines of users who posted a “possible defect” tweet (without also posting a 

“defect” tweet) to determine whether they are the parent of a child with a birth defect. Then, 

we analyzed the timelines of (i) these included users and (ii) users who posted a “defect” 

tweet, to determine, for each, whether their timeline encompasses at least part of the 

timeframe of the pregnancy with a birth defect outcome. Users were excluded from the 

cohort if we could not determine that they were the parent of a child with a birth defect, or if 

there were no tweets available during the pregnancy with a birth defect outcome.

2.3.1. “Possible Defect” Tweets—We excluded users who posted “possible defect” 

tweets for whom we could not determine, based on analyzing the contextual posts in their 

timeline, that they are the parent of a child with a birth defect. Many “possible defect” 

tweets mention the name of someone who has a birth defect, and, thus, are ambiguous as to 

whether the tweet is referring to the user’s child. For such tweets, we began by simply 

searching the user’s timeline for that proper name and examining matching tweets to see if 

they provide evidence that the referent of the name is the user’s child. For many of the other 

“possible defect” tweets, we began by inspecting a window of tweets surrounding the 

“possible defect” tweet, assuming, for example, that a tweet such as he has pyloric stenosis 
might be preceded by a tweet such as my son is having surgery tomorrow. In some cases, a 

broader analysis of the timeline was necessary. Based on the number of “possible defect” 

tweets that we decided to include for further analysis, we assessed the value of retaining this 

“placeholder” class for future classification.

2.3.2. Pregnancy Timeframe—To discover a cohort of women whose pregnancies with 

birth defect outcomes could be observed on Twitter for epidemiological analysis, we further 

excluded users whose timeline does not include at least part of the timeframe of the 

pregnancy with a birth defect outcome. A pregnancy report (e.g., During my pregnancy…) 
does not mean necessarily that a user was pregnant within the span of her collected timeline, 

since Twitter’s public application programming interface (API) places a limit on how many 

past tweets can be collected for a user, or a user simply may not have been active on Twitter 

during her pregnancy. In other cases, the user may be posting tweets during pregnancy, but 

the pregnancy may not be the one with a birth defect outcome. In cases where we had 

identified the name of the user’s child that had a birth defect, we found that searching for 
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that name towards the beginning of the timeline—usually an indicator that the child had 

already been born—was an efficient way of excluding data.

2.4. Evaluation

We conducted a preliminary assessment of the prevalence of selected birth defects among 

the pregnancy cohort derived from Twitter. The purpose of this assessment was not to 

evaluate Twitter as an alternative source for determining prevalence, but rather to gain 

insight into how social media could complement the limited methods currently available for 

studying specific birth defects. In comparing the prevalence of selected birth defects 

reported on Twitter to national surveillance data, we also sought to contextualize the extent 

to which there may be birth defect cases in our collection that (i) our approach has not 

detected or (ii) users have not reported. For the denominator, we statistically derived an 

estimate of users in the database who have given birth. For the numerator, we used the 

number of each detected birth defect case that satisfied our inclusion criteria. Based on an 

effort to identify potential birth defect cases in our collection that our approach has not 

detected, we measured the recall of the query.

2.4.1. Calculating the Prevalence of Selected Birth Defects—For selected birth 

defects, we calculated their prevalence per 10,000 pregnancy outcomes (live births, 

stillbirths, miscarriages, and elective terminations) represented in our database, where a 

“pregnancy outcome” is defined as a user who was posting tweets during a pregnancy that 

should have ended by the time of this study. Although the prevalence of birth defects in the 

general population is typically calculated using live birth as the denominator, we have not 

addressed the challenge of distinguishing pregnancy outcomes on social media—a limitation 

of some surveillance programs as well [24]. In the numerator, we included cases of the 

selected birth defect for all outcomes, excluding prenatal diagnoses for pregnancies that 

were ongoing at the time of this analysis. For each selected birth defect, we divided the 

number of cases by the estimated number of total pregnancy outcomes, and then multiplied 

by 10,000. In the remainder of this section, we will describe how we estimated the 

denominator—the number of total pregnancy outcomes represented in our database.

In related work [25], we developed a deterministic system that automatically estimates the 

prenatal period, and we used a version of it in this study to help estimate the proportion of 

users in the database who have given birth. The rule-based system is built on handcrafted 

regular expression patterns that capture pregnancy-related temporal information—in 

particular, the baby’s gestational age, due date, and birth date. The system draws on 

SUTIME [26] to normalize the temporal expressions in matching patterns and define rules 

for estimating the beginning and end of pregnancy. In this study, we applied the system to 

identify users who were pregnant within the span of their timeline, and we used the 

automatically derived due dates to help determine if a user’s pregnancy should have ended 

by the time of this analysis. We calculated the recall of the timeframe detection system to 

estimate the number of total pregnancy outcomes represented in the database.

First, we ran the system over the 112,647 timelines in the database. Next, we statistically 

derived a stratified random sample (n) from the population of matching timelines (N), using 
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the following formula for estimating a proportion for a small, finite population: n = m/(1 + 

(m – 1)/N), where m = (Z2α/2p(1 − p))/ε2. We chose a 95% confidence interval (z0.025 = 
1.96), a maximum error (ε) of 0.05, and a sample proportion (p) of 0.5. Assuming that the 

timelines of completed pregnancies were collected earlier and, thus, contain more tweets in 

the database than the timelines of ongoing pregnancies, the sample was stratified so that 

timelines of varying tweet lengths were proportionally distributed. Then, to estimate the 

number of total pregnancy outcomes in N, we evaluated the true proportion of pregnancy 

outcomes (p) in the n samples and multiplied the N population of users by p. Finally, to 

estimate the number of total pregnancy outcomes represented in the database, we calculated 

the recall of the system—by running it on a set of users manually determined to have been 

pregnant in their timeline and given birth—and divided the estimated number of pregnancy 

outcomes in N by the system’s recall.

2.4.2. Discovering Missed Tweets and Calculating Query Recall—We 

experimented with approaches for identifying “defect” and “possible defect” tweets that the 

query missed (i.e., false negatives), and annotated the set of tweets retrieved by these 

approaches to calculate the query’s recall, where Recall = True Positives/(True Positives + 
False Negatives). False negatives were unlikely to be represented in a relatively small 

random sample of the database, given its size and the sparse nature of birth defects, so we 

attempted to increase our chances of discovering them by using text mining methods 

deliberately designed to cast a wider net. As our first approach, we simply modified the 

query’s matching rules by removing the leading word boundary (“\b”) restriction from the 

regular expressions, which allowed the beginning of lexicon entries to be adjoined with a 

space or non-alphanumeric character. To refine this set of retrieved tweets for manual 

annotation, we filtered it by generating frequency distributions of the matching entries and 

manually identifying entries that introduced a significant number of true negatives (i.e., 

tweets that the initial query correctly did not retrieve) into the results; for example, without 

the restricting boundary, the entry hole heart retrieved whole heart. We re-added the leading 

word boundary to the noisy entries (e.g., “\bhole heart”), and re-ran the query over the initial 

results. This filtering technique yielded a set of 552 potential false negative tweets, which 

were then manually annotated.

We also used a “fuzzy matching” algorithm to detect tweets in our database containing text 

strings that are lexically similar to the entries in the Penn Social Media Lexicon of Birth 

Defects (e.g., hole heart) or the linguistic patterns that were matched by the regular 

expressions in our set of 16,822 annotated tweets (e.g., hole in her heart). Prior to 

performing the similarity measurements, we pre-processed the tweets in our database and 

annotated data set by lowercasing them and removing stopwords. For each lexicon entry/

linguistic pattern, we ran a sliding window of size wn through all the tweets in the database, 

and computed the lexical similarity between the words in the sliding window and the lexicon 

entry/linguistic pattern using the LR measure we discussed in Section 2.1.2. wn was set as 

the number of words in a given lexicon entry/linguistic pattern. Tweets with a maximum 

similarity above the threshold of (t – (k x wn))/100 were kept for further analysis, where was 

chosen for lexicon entries, and was chosen for linguistic patterns, which were typically 
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longer than the lexicon entries. These parameters were chosen based on preliminary analysis 

and were targeted towards maximizing recall while limiting the number of true negatives.

This approach returned more than 20,000 potentially relevant tweets that the initial query did 

not retrieve. To refine this set for manual annotation, we generated frequency distributions of 

the word bigrams and trigrams (i.e., contiguous sequences of n words, where n = 2 and n = 
3, respectively) that were “fuzzily” matched, and removed tweets containing (i) frequent n-

grams that we manually identified as marking true negatives (e.g., whole heart, which 

“fuzzily” matches hole heart as in I love him with my whole heart), or (ii) co-occurring 

phrases that are strongly indicative of true negatives (e.g., swear words, names of politicians 

and celebrities). This filtering technique reduced the set of potential “defect” and “possible 

defect” tweets to 3,617. These 3,617 tweets and the 552 tweets from the query modification 

approach described above amount to 4,169 potential false negatives that were manually 

annotated. Table 5 (in Section 4.2.) provides examples of tweets that were missed by the 

initial query, and indicates the text strings that were matched by the methods described in 

this section.

3. Results

3.1. Annotation

Two annotators annotated 16,822 tweets, posted by 5,923 unique users, with overlapping 

annotations for 15,547 (92.42%) tweets. Their inter-annotator agreement was κ = 0.79 

(Cohen’s kappa), considered “substantial agreement” [27]. The first author of this paper 

resolved the disagreements through independent annotation. In total, 765 (4.55%) tweets 

were annotated as “defect,” 877 (5.21%) tweets were annotated as “possible defect,” and 

15,180 (90.24%) tweets were annotated as “non-defect.” That is, our data collection 

approach yielded 9.76% true positives (i.e., an approximate precision of 0.10), and, thus, 

enabled manual annotation. As we discussed in Section 2.1.1, basic unsupervised retrieval 

methods yielded only 0.33% true positives, so would have required annotating more than 

500,000 tweets to detect these “defect” and “possible defect” tweets. In total, 287 (4.85%) 

users posted at least one “defect” tweet, 359 (6.06%) users posted at least one “possible 

defect” tweet (without also posting a “defect” tweet), and 5,277 (89.09%) users posted at 

least one “non-defect” tweet (without also posting a “defect” or “possible defect” tweet). 

Table 3 provides examples of tweets that were annotated as “defect” (+), “possible defect” 

(?), and “non-defect” (−).

Many of the tweets that were annotated as “defect,” such as tweet 1, explicitly refer to the 

user’s child (e.g., my son) and indicate that the child has a birth defect; however, some 

“defect” tweets do not as explicitly state that the user is the parent of a child or that the child 

has a birth defect. For example, 2 and 3 mention a child (2 more explicitly than 3), but the 

main text does not indicate that the user is the parent of the child; rather, we can infer from 

mother or mom in the hashtags that the user is the parent. Conversely, 4 more explicitly 

indicates a parent-child relationship (through a metaphor, my little miracle), but it requires 

piecing together the elements of the tweet to infer that the child has a birth defect. Tweet 5 

does not even explicitly mention a child, but it does indicate that the user is a mother, and 
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modifying mummy with heart (together with the hashtags) suggests that the child has a birth 

defect.

Tweets such as 6 were annotated as “possible defect” because they indicate a parent-child 

relationship (implied through a genetic concern about hip dysplasia), but are ambiguous 

about whether the child has a birth defect. The user indicates that her child might have a 

birth defect (we’re finding out), but the child has not yet received a diagnosis; nonetheless, 6 

is more suggestive of a birth defect than tweets that merely mention routine tests. In 

addition, 7 is ambiguous about whether the referent of the child referred to by name is the 

user’s child. Similarly, while 8 indicates that he has a birth defect, it is unclear if the 

antecedent of he is the user’s child. In 9, we took the name of the birth defect to be a 

metonym for a child who has the birth defect, but we did not know if the user is the parent. 

Finally, 10 explicitly states that a child has a birth defect, but it is unclear if your is being 

used here to imply a self-reference—that is, to indicate that the user’s child has a cleft lip.

Tweets such as 11–15 were annotated as “non-defect” because they not do indicate that a 

person referred to has or may have a birth defect and is or may be the user’s child. Tweet 11 

does not refer to a specific individual, and while 12 refers to individuals with a birth defect, 

it does not imply that the user has had a personal experience with them, hence lacking 

sufficient reason to believe that there is a parent-child relationship. Tweet 13 seems to 

resemble a “defect” tweet because it explicitly indicates a parent-child relationship (my son) 

and states that the child has Down syndrome (suffering from); however, the source 

attribution (South African mom) indicates that the tweet is not about the user’s child. 

Similarly, the context surrounding our #clubfoot kids in 14 suggests that the antecedent of 

our is not a parent, but rather a sort of charity organization. Finally, 15 indicates that, in this 

case, the user has an umbilical hernia, not the child.

3.2. Inclusion/Exclusion

In the timelines of the 359 users who posted “possible defect” tweets (without also posting a 

“defect” tweet), we determined that 142 (39.6%) of the users indeed have a child with a birth 

defect. Of these 142 timelines and the timelines of the 287 users who posted at least one 

“defect” tweet (429 total timelines), we verified that 195 (45.5%) encompass at least part of 

the timeframe of the pregnancy with a birth defect outcome. In 10 (5.1%) of these 195 cases, 

the pregnancy outcome was fetal or neonatal loss. In 9 (4.6%) of these 195 cases, the birth 

defect was a prenatal diagnosis and the pregnancy was ongoing, meaning that 186 (95.4%) 

of the 195 users had pregnancy outcomes. Figure 2 summarizes the results of the annotation 

and analysis processes, and Appendix D provides the frequencies of the specific birth 

defects that are reported by the 195 users.

For the majority of the 234 users that were excluded because their timelines did not contain 

tweets within the timeframe of the pregnancy with a birth defect outcome, we determined 

that, in most of these cases, the users were reporting a birth defect for a pregnancy that 

occurred prior to the earliest tweets available through Twitter’s public API. In other cases, 

we found that the users were “bots”—Twitter accounts re-posting other users’ public tweets. 

At the tweet level, posts by bots resemble true positives, so they are particularly difficult to 

distinguish for our automatic tweet-level classification system [7]. For a minority of the 234 
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timelines, we determined that the users indeed were pregnant within the span of their 

timeline, but that the pregnancy during which we had access to the user’s tweets was not the 

one with a birth defect outcome.

3.3. Evaluation

As explained in Section 2.4.1, we used an automatic system [25] in order to help estimate 

the proportion of users in the database who had given birth by the time of this study, and 

used this number as the denominator when calculating the prevalence of selected birth 

defects reported by the 186 Twitter users with pregnancy outcomes (within our final cohort 

of 195). The system detected a pregnancy timeframe for 23,743 (21.08%) of the 112,647 

timelines in our database. To estimate the proportion of these 23,743 users who have given 

birth, we evaluated the true proportion of pregnancy outcomes in a stratified random sample 

of 379 timelines, and found 287 (75.7%) pregnancy outcomes; thus, we estimate that 75.7% 

(17,973) of the 23,743 users have given birth. To estimate the total number of pregnancy 

outcomes represented in the database, though, we must account for the timelines not 
detected by the automatic timeframe detection system—that is, the recall of the system. We 

ran the system on the timelines of the 186 users (within our final cohort of 195) who had 

been posting tweets during a pregnancy that should have ended by the time of this analysis, 

and detected a pregnancy timeframe for 86 (46.2%) of the 186 timelines; thus, the 17,973 

pregnancy outcomes represent 46.2% of the total outcomes. To estimate the total number of 

pregnancy outcomes represented in the database, we divided the 17,973 pregnancy outcomes 

by the system’s recall, resulting in 38,903 total pregnancy outcomes as the denominator. 

Table 4 compares the estimated prevalence of selected birth defects reported on Twitter, per 

10,000 births, with their prevalence in the United States population [28,29].

To reiterate, the purpose of this prevalence assessment was not to evaluate Twitter as an 

alternative source for determining prevalence; rather, it was used in part to help shed light on 

the extent to which there may be birth defect cases in our collection that (i) our approach has 

not detected or (ii) users have not reported. We annotated a total of 4,169 tweets in the 

database that were not retrieved by our approach but were identified as potentially missed 

true positives by the methods described in Section 2.4.2. We identified 91 of them as false 

negatives—66 (11.96%) from the query modification approach (out of 552 tweets retrieved), 

and 25 (0.69%) from the “fuzzy matching” approach (out of 3,617 tweets retrieved). Table 5 

(in Section 4.2) provides examples of these false negatives. Thus, based on this evaluation, 

we calculated the recall of the query as 0.95 for the birth defects in this study.

4. Discussion

4.1. Principal Results

Our study demonstrates that rare health-related events are indeed reported on Twitter, but 

also that utilizing social media for studying such events on a large scale requires, first, 

addressing the methodological challenges of collecting sparse data. Our rule-based, 

bootstrapping approach allowed us to collect an extensive set of tweets, while filtering out 

the excessive noise that would have prevented us from creating an annotated data set to be 

used for training machine learning algorithms. In this study, we used the annotated tweets to 
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discover a cohort of women whose pregnancies with birth defect outcomes could be 

observed on Twitter for epidemiological analysis. Although mining the users’ timelines to 

study the etiology of birth defects is beyond the scope of this paper, Table 5 provides 

examples of risk factors [32] reported in the timelines of the 195 users who met our 

inclusion criteria, highlighting the research opportunities ultimately enabled by our data 

collection approach. Tweets 1–5, which indicate Twitter users’ tobacco and illicit drug use, 

illness, and medication intake [33], were posted in the prenatal period.

Among the 195 women identified as posting tweets during a pregnancy with a birth defect 

outcome, the majority were found to be active on Twitter even before they could have been 

aware of their pregnancy. Thus, our social media mining approach can enable a unique 

opportunity of observing risk factors in the early period of the first trimester, during which 

the users posted tweets 1 and 2 in Table 5. By allowing us to observe pregnancies from 

conception, social media mining may help shed light on how the selection bias associated 

with pregnancy exposure registries [8] has impacted the assessment of birth defect risks.

Because Twitter users also tend to post information after their pregnancy, as in tweet 7, 

social media mining can provide a cost-effective means of long-term follow-up after birth, 

which is usually cost prohibitive. Some of the birth defects that were detected in the present 

study were reported on Twitter more than a year following the postpartum period. By 

offering a longer-term follow-up period, social media mining may help provide insight on 

whether short-term follow-up periods have led pregnancy exposure registries to under-assess 

the risks of birth defects, considering that not all birth defects are present at birth [9].

Our data collection pipeline collects all public tweets of users who report a pregnancy on 

Twitter, so our database can provide a “ready-made” population from which to select 

internal comparator groups. By allowing us to compare pregnancies with and without 

reported birth defect outcomes, social media mining may help determine if the lack of 

internal comparator groups [8] has led pregnancy exposure registries to over-assess the risks 

of birth defects.

Our results suggest that congenital heart defects (CHDs) are the most common type of birth 

defect reported on Twitter, consistent with findings in the general population [28], in which 

nearly 1% of infants are born with CHDs [29]. CHDs are the leading cause of infant 

mortality due to birth defects [33], and the causes of CHDs remain largely unknown [34]. 

Our social media mining approach, by directing us to all the publicly available tweets by 

users with birth defect outcomes, can provide a unique opportunity of exploring unknown 

causes of CHDs. In sum, there are a variety of ways in which social media mining could 

complement existing methods for studying birth defects.

This study verifies that a combination of automatic NLP and manual analysis methods can 

be used to collect data for events that are too sparse and noisy on social media for more 

basic data retrieval methods. Because our bootstrapping approach relies on generalizable 

techniques—a lexicon, lexical variants, regular expressions, post-processing, and manual 

analysis guided by distributional properties—it can be applied to studying other rare health-

related events on social media. Our approach to harnessing social media data may be 
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particularly valuable for studying health-related events that, like birth defects, have limited 

methods currently available.

4.2. Error Analysis

To determine why some “defect” and “possible defect” tweets were not retrieved by the 

initial query, we conducted a brief error analysis of the false negative tweets discovered in 

our evaluation. Table 6 provides examples of true positives that were missed by the initial 

query. This error analysis provides methodological insight for expanding the query in the 

future development of automatic retrieval methods. The majority of the errors in the query 

can be attributed to the leading word boundary in the regular expression, which, while 

filtering out a significant amount of noise, caused the query to miss birth defects in hashtags 

in which the beginning of the lexicon entry was adjoined with words that the query was not 

formulated to match—for example, non-clinical words, such as I support in tweet 1 

(#ISupportPottersSyndrome), clinical words, such as sagittal in 2 (#sagittalcraniosynostosis), 

or prefixes, such as hydra in 3 (#hydranencephaly). Removing the leading word boundary 

from the regular expressions (and re-adding it to the noisy lexicon entries) yielded a level of 

precision (0.12) that warrants its removal as an approach for expanding the query in future 

implementations.

Other sources of error include birth defects that were expressed colloquially or abstractly in 

ways that were not learned in the process of manually studying the data. Colloquial 

expressions tend to describe the birth defect, such as hole in her spine in tweet 4 and born 
without the left ventricle in her heart in 5. Abstract expressions indicate a type of birth 

defect without specifying the concrete problem, such as congenital kidney disorder in 6 and 

heart problem in 7. Interestingly, 4, 5, and 6, discovered by “fuzzy matching,” refer to birth 

defects that differ semantically from the lexicon entry/linguistic pattern on which the 

matching tweets were based. Finally, some of the errors were caused by misspellings that 

were not accounted for in our semi-automatic process of generating lexical variants, such as 

spin bifida in 8, tristomy 18 in 9, and whole in his heart in 10. Although we did discover 

tweets 4–10 through “fuzzy matching,” this approach’s low level of precision (0.01) makes 

it unsuitable for automatically expanding the query, as it would result in too much noise. For 

now, we will manually add such matches to our dictionary of variants.

4.3. Limitations

The results of this study, while promising, do point to some methodological limitations. 

While the high recall of our query (0.95) in part reflects our extensive retrieval approach, it 

may also reflect the challenge of detecting non-clinical expressions of birth defects, or 

health-related events in general, in social media. Our comparison of prevalence for selected 

birth defects between social media and the general population suggests that, despite the high 

recall, we may be falling methodologically short in our retrieval of tweets that mention 

particular birth defects. Our efforts to identify false negatives were limited to discovering 

lexically similar tweets, so we may be mostly “finding what we are looking for,” and there 

may remain latent indications of birth defects on social media that would require more 

advanced text mining methods to detect. This is a common limitation of rule-based, lexical-

matching approaches to data collection. Alternatively, if we are to assume that the recall 
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score is accurate, then social media users may be under-reporting such rare health-related 

events on Twitter [35]—an issue in pregnancy exposure registries as well [8]. Despite 

possible under-reporting and the relatively small cohort discovered in this initial study, 

additional users are being constantly added to the database over time. Thus, automating the 

identification of birth defect cases on social media is deemed essential for large-scale 

epidemiological research, which will address in future work.

5. Conclusions

In this paper, we presented (i) evidence that rare health-related events—in this case, birth 

defects—are reported on Twitter, (ii) a generalizable, systematic NLP approach to collecting 

sparse tweets for manual annotation, (iii) a semi-automatic method to identify undetected 

tweets (false negatives), and (iv) a collection of publicly available Twitter timelines of 

pregnant users with birth defect outcomes, which could be used for future epidemiological 

analysis. In future work, we will seek to address the methodological challenges of expanding 

the query and utilizing the annotated data to train machine learning algorithms to 

automatically identify users reporting birth defect outcomes on social media. In deploying 

machine learning algorithms on unlabeled tweets, our rule-based data collection approach 

would serve as a fully-automated pre-filtering module in an end-to-end social media 

pipeline. In general, the ability to prepare such an annotated data set, in the face of sparsity 

and noise, enables the training and deployment of machine learning algorithms for the large-

scale use of social media mining as a complementary method for studying rare health-related 

events, which may have limited methods currently available.
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Highlights

• Rare health-related events—in this case, birth defects—are reported on 

Twitter.

• An NLP-based approach was deployed to collect sparse tweets for manual 

annotation.

• Pregnancies with birth defect outcomes can be observed on Twitter.

• Congenital heart defects are the most common birth defect reported on 

Twitter.

• Social media mining can provide unique opportunities for epidemiological 

insights.
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Figure 1. 
The workflow for mining social media for birth defect cases. We compiled a lexicon of 

possible birth defects, generated lexical variants of the lexicon entries, and handcrafted 

regular expressions to retrieve tweets that mention these birth defects from users who 

publicly announced a pregnancy on Twitter. We post-processed the tweets and generated 

frequency distributions of the matching lexicon entries to guide us through a manual analysis 

of the tweets, which informed an iterative refinement of the query until it yielded a usable 

set of tweets for annotating “defect” (+), “possible defect” (?), and “non-defect” (−) tweets. 

To identify users whose pregnancies with birth defect outcomes could be observed on 

Twitter for epidemiological analysis, inclusion criteria were (i) tweets indicating that the 

user’s child has a birth defect, and (ii) accessibility to the user’s tweets within the timeframe 

of the pregnancy with a birth defect outcome.
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Figure 2. 
The results of mining and annotating social media for data on birth defects. Of the 16,822 

tweets retrieved from our refined query, 765 tweets (posted by 287 users) were annotated as 

“defect” (+), 877 tweets (posted by 359 users) were annotated as “possible defect” (?), and 

15,180 tweets (posted by 5,277 users) were annotated as “non-defect” (−). Of the 359 users 

who posted a “possible defect” tweet, 142 were determined to indeed have a child with a 

birth defect, which, added to the 287 users who posted a “defect” tweet, amounts to 429 

users reporting a birth defect outcome. Of these 429 users, we found 195 for whom at least 

some tweets were available within the timeframe of the pregnancy with a birth defect 

outcome. Of these 195 users, 186 were determined to have a pregnancy outcome at the time 

of this study.
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Table 1.

Samples of lexicon entries and their semi-automatically generated lexical variants used to retrieve tweets that 

mention birth defects.

Lexicon Entries Lexical Variants

down syndrome downs syndrom, down’s syndorme, dwn symdrome

bladder exstrophy bladdar extrophies, baldder estrophy

diaphragm hernia diaphragmatic hernea, diaphram henia, diapragm hernai

cyst kidney cystic kidneys, cysts kidny, cycst kideny

microcephaly microcephalus, microcephalic, microcephali

tracheoesophageal fistula tracheo-oesophageal fistulae
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Table 2.

Tweets are retrieved for the lexicon entry “cleft palate” if they match the combinations of text strings 

described by the regular expression.

Regular Expression Sample Matches

r’\b(?:clefts|cleff|clefty|clefted|cleftee|cleft|clef)(?:\b(?:the|this|that|these|those
|a|an|his|her|of|and|(?:w/|with|w)|their|between|in|on|under|both)\b|\W)*(?:
palate|pallettes|palats|pallate|palat|pallet|pallats|pallatt|palet|palates
|pallete|palets|pallat|paletes|pallett|pallates|pallets|palete|pallattes|pallatts|palletes
|pallette|palletts|pallatte)’

Cleft Palate, cleft on her palate cleft-palate #cleftpalate 
#CleftPalateAwareness
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Table 3.

Sample tweets retrieved and annotated as “defect” (+), “possible defect” (?), and “non-defect” (−). The bold 

text indicates the string that was matched by the regular expression. For ethical considerations, names are 

redacted and, in most cases, the tweet text is slightly modified.

Tweet Class

1 My son was born 5 weeks early and we found out about te fistula after. +

2 yes he was born with a cleft lip but he is still perfect #motherslove #[name] ❣☺ +

3 Girl says, as I push stroller w/1 arm & carry full basket in other: ‘you’re so strong!’ Me, to myself: ‘you don’t know the half of 
it!’ #downsyndromemom

+

4 My little miracle, we are so blessed to have you #hypoplasticleftheartsyndrome #hlhs +

5 I’m a heart mummy - #CHD #CHDawarenessweek +

6 [name] has hip clicks so we’re finding out if he has hip dysplasia. I am nervous bc I had it ?

7 Waiting to hear from pediatric neurosurgery to make an appointment for [name] to confirm craniosynostosis. ?

8 He was born with hypospadias that fixed itself so he’s going to get circumsized in 2 weeks. ☺☺☺ ?

9 Thought I’d never encounter Prune Belly syndrome. Today showed me otherwise ?

10 What it’s like to learn that your baby has a cleft lip ?

11 Gastroschisis looks really scary. Probably shouldn’t look at pics online, but I can’t help it. −

12 Kids with Down Syndrome. −

13 South African mom: abortion would’ve spared my son suffering from Down syndrome −

14 Its fun with feet in #Kenya, as our #clubfoot kids run and play clubfoot free today! #runfree2030 #WorldClubfootDay −

15 I hate that I have an umbilical hernia while I’m pregnant. It really scares me.☺ −
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Table 4.

A comparison of prevalence, per 10,000 births, for selected birth defects, illustrating the extent to which there 

may be specific birth defect outcomes among our Twitter cohort that (i) our data collection approach is not 

adequately detecting or (ii) users are not reporting.

Birth Defect United States
a

Social Media
b

Social Media (Adj.)
c

Central Nervous System Defects

   Anencephaly 1.7 0.3 0.4

   Encephalocele 0.8 0.3 0.4

   Holoprosencephaly 2.1 0.5 0.8

   Spina Bifida 3.5 0.5 0.8

Eye and Ear Defects

   Congenital Cataracts 1.5 0.3 0.4

   Anotia/Microtia 1.5 0.3 0.4

Cardiovascular Defects

   Congenital Heart Defect
d 81.4 11.3 17.5

Orofacial Defects

   Cleft Lip with Cleft Palate 5.9 0.8 1.2

   Cleft Lip without Cleft Palate 3.2 1.5 2.4

   Cleft Palate without Cleft Lip 6.1 1.3 2.0

Gastrointestinal Defects

   Biliary Atresia 0.6 0.3 0.4

Genitourinary Defects

   Bladder Exstrophy 0.3 0.3 0.4

   Hypospadias 64.7
e

0.5
f

0.8
g

Musculoskeletal Defects

   Diaphragmatic Hernia 2.8 0.8 1.2

   Gastroschisis 4.5 1.8 2.8

   Limb Reduction Deformities 4.2 0.3 0.4

   Clubfoot 13.4 2.3 3.6

   Craniosynostosis 5.0 1.8 2.8

Chromosomal Defects

   Trisomy 13 1.0 0.3 0.4

   Trisomy 18 2.4 1.0 1.6

   Turner Syndrome 2.1
h

0.5
i

0.8
j

   Trisomy 21 (Down Syndrome) 13.0 4.1 6.4

a
The denominator used to calculate the prevalence of birth defects in the U.S. is live births.

b
The denominator used to calculate the prevalence of birth defects reported on social media is the estimated total number of pregnancy outcomes 

(38,903), including live births, stillbirths (fetal deaths), miscarriages (spontaneous abortions), and elective terminations (induced abortions).
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c
Based on the estimated rate of live-birth outcomes in the U.S. (64.58%) [30], the original total of 38,903 is adjusted for this column to 25,124—

the estimated number of live births.

d
The majority of congenital heart defects reported on social media were not specified (e.g., hole in heart, CHD), so we aggregated all of the 

cardiovascular defects into a single class.

e
The denominator used to calculate the prevalence of hypospadias in the U.S. is male live births.

f
As an estimate of male births, the denominator used to calculate the prevalence of hypospadias reported on social media is half of the estimated 

number of total pregnancy outcomes.

g
As an estimate of male births, the denominator used to calculate the prevalence of hypospadias reported on social media is half of the estimated 

number of live births.

h
The denominator used to calculate the prevalence of Turner syndrome in the U.S. is female live births.

i
As an estimate of female births, the denominator used to calculate the prevalence of Turner syndrome reported on social media is half of the 

estimated number of total pregnancy outcomes.

j
As an estimate of female births, the denominator used to calculate the prevalence of Turner syndrome reported on social media is half of the 

estimated number of live births.
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Table 5.

Sample tweets containing information about birth defect risk factors, reported in the timelines of the 195 users 

who met our inclusion criteria. For ethical considerations, names are redacted and, in sensitive cases, the tweet 

text is modified in an effort to prevent the specific user from being identified.

Tweet Risk Factor Birth Defect Outcome

1 I needed a cigarette but it’s so cold so I’m currently sitting
in the truck chain smoking

tobacco use gastroschisis

2 haven’t smoked like this in a long time I’m too high rn illicit drug use Down syndrome;
congenital heart defect

3 My first High Risk appt. today to get an in depth ultrasound of [name], and get 
some info on what to do about my high blood pressure.

hypertension pyloric stenosis

4 Type 1 diabetes keeps things in check with frequent monitoring! Full day! Fetal 
monitoring for a non stress test than a growth ultrasound.

diabetes mellitus hip dysplasia

5 I can’t decide whether my migraine is from all my stress or from my [medication]. medication intake hydrocephalus

6 I was doing an online survey this morning and I had to enter into a new age 
demographic. #35

maternal age Hirschsprung’s disease

7 @[username] just watched you announce ur pregnant congratulations! This is my 
little man he has achondroplasia like me

family history of birth 
defect

achondroplasia
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Table 6.

Sample false negative tweets discovered by “fuzzy matching” and modifying the regular expressions. The bold 

text indicates the string that was (“fuzzily”) matched by the corresponding lexicon entry/linguistic pattern 

listed. For “fuzzy matching,” some false negative tweets (e.g., 4–6) contain birth defects that differ 

semantically from the lexicon entry/linguistic pattern on which the matching tweet was based. For ethical 

considerations, names are redacted and the tweet text is slightly modified.

Tweet Entry/Pattern

1 #ISupportPottersSyndrome #RestMyLittleAngel #[name] potter syndrome

2 Our boy’s having surgery for #sagittalcraniosynostosis craniosynostosis

3 Excited to raise awareness for [name]!! #hydranencephalyawarness anencephaly

4 my baby has a hole in her spine so it’s medically recommended hole in heart

5 [name] was born without the left ventricle in her heart. born without toe

6 made appointment for my 22-month-old with congenital kidney disorder congenital skin disorder

7 he had a twin but he didn’t survive he had a heart problem:( hole and a heart

8 the hospital ped told me my baby had spin bifida and needed testing spina bifida

9 Pray for my friend who is in labor with her son that has tristomy 18 trisomy 18

10 my baby could possibly have a whole in his heart hole in his heart
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