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STUDY QUESTION: Is endometriosis associated with abnormally located endometrial basalis-like (SSEA1+/SOX9+) cells in the secretory
phase functionalis and could they contribute to ectopic endometriotic lesion formation?

SUMMARY ANSWER: Women with endometriosis had an abnormally higher number of basalis-like SSEA1+/SOX9+ epithelial cells pre-
sent in the stratum functionalis and, since these cells formed 3D structures in vitro with phenotypic similarities to ectopic endometriotic lesions,
they may generate ectopic lesions following retrograde menstruation.

WHAT IS KNOWN ALREADY: Endometrial basalis cells with progenitor potential are postulated to play a role in the pathogenesis of
endometriosis and SSEA1 and nuclear SOX9 (nSOX9) mark basalis epithelial cells that also have some adenogenic properties in vitro.
Induction of ectopic endometriotic lesions in a baboon model of endometriosis produces characteristic changes in the eutopic endometrium.
Retrograde menstruation of endometrial basalis cells is proposed to play a role in the pathogenesis of endometriosis.

STUDY DESIGN, SIZE, DURATION: This prospective study included endometrial samples from 102 women with and without endo-
metriosis undergoing gynaecological surgery and from six baboons before and after induction of endometriosis, with in vitro assays examining
the differentiation potential of human basalis-like cells.

PARTICIPANTS/MATERIALS, SETTING, METHODS: The study was conducted at a University Research Institute. SSEA1 and SOX9
expression levels were examined in human endometrial samples from women aged 18–55 years (by immunohistochemistry (IHC) and qPCR) and from
baboons (IHC). The differential gene expression and differentiation potential was assessed in freshly isolated SSEA1+ endometrial epithelial cells from
women with and without endometriosis (n= 8/group) in vitro. In silico analysis of selected published microarray datasets identified differential regulation of
genes of interest for the mid-secretory phase endometrium of women with endometriosis relative to that of healthy women without endometriosis.

MAIN RESULTS AND THE ROLE OF CHANCE: Women with endometriosis demonstrated higher number of basalis-like cells
(SSEA1+, nSOX9+) in the functionalis layer of the eutopic endometrium compared with the healthy women without endometriosis in the
secretory phase of the cycle (P < 0.05). Induction of endometriosis resulted in a similar increase in basalis-like epithelial cells in the eutopic
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baboon endometrium. The isolated SSEA1+ epithelial cells from the eutopic endometrium of women with endometriosis had higher expres-
sion of OCT4, NANOG, FUT4 mRNA (P = 0.05, P = 0.007, P = 0.018, respectively) and they differentiated into ectopic endometriotic gland-
like structures in 3D culture, but not into mesodermal lineages (adipose or bone cells).

LARGE SCALE DATA: N/A

LIMITATIONS, REASONS FOR CAUTION: Small sample size. Bioinformatics analysis and results depends on the quality of published
microarray datasets and the stringency of patient selection criteria employed. Differentiation of SSEA-1+ cells was only examined for two
mesodermal lineages (adipogenic and osteogenic).

WIDER IMPLICATIONS OF THE FINDINGS: Since endometrial epithelial cells with SSEA1+/nSOX9+ basalis-like phenotype generate
endometriotic gland-like structures in vitro, they may potentially be a therapeutic target for endometriosis. An in depth analysis of the function
of basalis-like eutopic endometrial epithelial cells might provide insights into their potential deregulation in other disorders of the endomet-
rium including heavy menstrual bleeding and endometrial cancer where their function may be aberrant.
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Introduction
Endometriosis is a common gynaecological disease, defined by the pres-
ence of benign endometrial epithelial and stromal cells outside of the
uterine cavity. The ectopic (extra-uterine) endometriotic lesions retain
features of eutopic (uterine) endometrial cells, such as oestrogen
dependency and thus undergo cyclical growth and regeneration, result-
ing in inflammation and scar/adhesion formation. While the pathogen-
esis of endometriosis is not fully understood (Sourial et al., 2014), the
most commonly accepted theory is retrograde menstruation. This
involves the trans-tubal migration and engraftment of viable endometrial
fragments to the peritoneal mesothelium, establishing ectopic endome-
triotic lesions (Sampson, 1927). The theory is limited in that retrograde
menstruation is a natural phenomenon, and has been demonstrated in
over 90% of women (Blumenkrantz et al., 1981), yet the prevalence of
endometriosis in the general premenopausal female population is esti-
mated only at 5–10% (Halme and Surrey, 1990). Such a discrepancy sug-
gests that the aetiology is more complex. Adult stem/progenitor cells

are believed to be responsible for the remarkable regenerative capacity
of human endometrium, and are thus also implicated in proliferative
endometrial pathologies, such as endometriosis (Gargett et al., 2008;
Valentijn et al., 2013; Sourial et al., 2014; Tempest et al., 2018).
Epithelial cells with progenitor function are postulated to be located

in the basalis layer of the premenopausal endometrium (Prianishnikov,
1978; Schwab et al., 2008; Valentijn et al., 2013; Tempest et al., 2018).
Leyendecker and colleagues further developed the theory of retro-
grade menstruation by proposing that women with endometriosis
shed a higher number of basalis-like cells together with their eutopic
endometrial functionalis, which then initiate ectopic endometriotic
deposits (Leyendecker et al., 2002). The group also hypothesised that
secretory phase functionalis endometrium from women with endomet-
riosis contain more ‘basalis-like cells’ and subsequently tried to charac-
terise such cells on the basis of steroid receptor expression. However,
since steroid receptors are expressed by cells located in both basalis
and functionalis layers of the normal endometrium, the theory remains
un-proven.

.............................................................................................................................................................................................

Table I Demographic data.

Endometriosis (n = 44) Healthy Control (n= 58) P-value (Mann–Whitney test)

Age (y) 38 (21–48) 41.5 (21–50) P < 0.01

BMI (kg/m2) 25.5 (17.1–40.6) 26.8 (18.9–52.2) n/s

Parity (%) P

0 22/44 (50%) 4/58 (7%)

1 9/44 (20%) 6/58 (10%)

2 9/44 (20%) 23/58 (40%)

>2 3/44 (7%) 24/58 (41%)

Unknown 1/44 (2%) 1/58 (2%)

Smokers 12/44 (27%) 15/58 (26%) n/s

Endometriosis stage 2 (1–4) n/a

Data expressed as median and range except smoking status and parity.
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We have previously shown that cells with an SSEA1/nSOX9+ signature
which are abundant in the basalis region of the eutopic endometrium, have
some in vitro progenitor activity and a similar epithelial cell phenotype is
observed in ectopic endometriotic lesions (Valentijn et al., 2013).
Furthermore, epithelial progenitor cell activity has been either demon-
strated or proposed in endometrial epithelial cells expressing N-cadherin
(Nguyen et al., 2017), Musashi-1 (Gotte et al., 2008; Tempest et al., 2018),
LGR5 (Tempest et al., 2018) and in a small proportion of side population
(SP) cells (Masuda et al., 2010; Cervello et al., 2011). Ectopic endometriotic
lesions also express Musashi-1 (Gotte et al., 2008; Tempest et al., 2018).
The baboon model of induced endometriosis simulates retrograde

menstruation by the intra-peritoneal inoculation of menstrual endomet-
rium curetted on menstrual Day 2 of the cycle, in two consecutive cycles.
The model has complete success at inducing endometriosis both macro-
and microscopically at 3 months (Harirchian et al., 2012), and has thus
facilitated understanding of the chronological changes in the disease pro-
cess showing subsequent alterations in both the eutopic and ectopic
endometrium after the establishment of initial ectopic endometriotic
lesions (Braundmeier and Fazleabas, 2009; Hapangama et al., 2010).
In this present study, we aimed to investigate the role that the previ-

ously characterised SSEA1+/nSOX9+ endometrial epithelial cells
(Valentijn et al., 2013) play in the pathogenesis of endometriosis by
addressing the following research questions:

• Do women with endometriosis have an abnormally high number of
SSEA1+/nSOX9+ basalis-like epithelial cells located in the secre-
tory phase functionalis layer of the eutopic endometrium compared
with healthy fertile women without endometriosis?

• Does induction of ectopic endometriotic lesions increase SSEA1+/
nSOX9+ epithelial cells in the eutopic endometrium in a baboon
model, simulating human disease?

• Are there differences in gene expression in SSEA1+ eutopic endo-
metrial epithelial cells from women with and without endometriosis?

• What is the differentiation potential of purified SSEA1+ endometrial
epithelial cells and can they produce gland-like structures similar to
ectopic endometriotic lesions in vitro?

Materials andMethods

Human tissue collection
Collection of human endometrium was approved by Liverpool Adult Ethics
committee (REC references; 09/H1005/55 and 11/H1005/4) and 89 human
endometrial samples from pre-menopausal women (who had not been on
hormonal treatments in the preceding 3 months) undergoing hysterectomy or
laparoscopy were collected. From hysterectomy specimens, a wedge of tissue
from the lumen to the muscular myometrial layer that included superficial and
basal endometrium as well as myometrium was taken. A pipelle endometrial
sampler was used to sample the endometrial functionalis layer of women
undergoing laparoscopy. Further demographic information on patient
groups is included in Table I and Supplementary Table SI.

Induction of endometriosis in the baboons
The previously described technique of intra-pelvic autologous inoculation
of curetted menstrual endometrium was employed to induce endometri-
osis in six female baboons with regular menstrual cycles (Fazleabas et al.,
2002). All tissues (ectopic and eutopic) were collected between Days
9–11 post-ovulation, which corresponds to the window of implantation
(WOI) in the baboon, after determining the day of ovulation by serum E2
levels as previously described (Fazleabas et al., 2002). This phase of the

cycle where most known features of endometriosis associated changes in
the eutopic endometrium is described was chosen for our study. Briefly,
prior to the induction of the disease, eutopic endometrium was obtained
from five of the six baboons. Following a 3 month rest period, laparoscopic
autologous instillation of trans-cervically harvested menstrual endomet-
rium using a Unimar Pipelle (suction curette) (Day 2) into the pouch of
Douglas, the left and right cul-de-sac as well as the broad ligaments near
the fallopian tubes of the same baboon on two consecutive menstrual
cycles. Following the second inoculation, tissue was harvested from the
eutopic endometrium and ectopic lesions after 3 months (n = 6) by per-
forming laparoscopies and laparotomies as previously described (Fazleabas
et al., 2002) and one lesion per animal per time point was analysed.
Control endometrial tissues were also obtained at a single time point from
eight additional normally cycling baboons that had not been inoculated
with menstrual tissue. All animals weighed between 12 and 18 kg, were
aged 7–12 years, and included tissue from previous studies (Fazleabas
et al., 2002) and tissues that were collected prospectively. The induction
of the disease had no effect on their menstrual cyclicity or peripheral ovar-
ian steroid levels (Wang et al., 2009). The Animal Care Committees of the
University of Illinois, Chicago and Michigan State University, approved all
experimental procedures on baboons (Fazleabas et al., 2002)

Immunohistochemistry (IHC)
After collection, both human and baboon tissues were fixed in 10% (v/v)
neutral buffered formalin for 24 h dehydrated through ethanol, embedded
in paraffin and 3 μm sections prepared for IHC. Standard IHC was per-
formed using heat induced antigen-retrieval and DAB chromogen as previ-
ously described (Hapangama et al., 2010; Valentijn et al., 2013).
Immunostaining for all antibodies was analysed with specific reference to
the two different epithelial compartments, the functionalis (typically in a
secretory phase sample, glands in the upper 2/3 of the endometrium
below the luminal epithelium, surrounded by sparse stroma) and the basa-
lis (glands in the lower 1/3 of the endometrium adjacent to the endo-
myometrial junction, surrounded by densely packed stroma) in full thick-
ness hysterectomy endometrial tissue sections. The SSEA1 and SOX9
expressing epithelial cells were quantified using a modified Quickscore
method which incorporates both staining intensity (0 = negative, 1 =
weak, 2 = moderate, 3 = strong) and abundance (1 ≥ 0–25%, 2 ≥
25–50%, 3 ≥ 50–75%, 4 ≥ 75–100%). The intensity and percentage scores
were then multiplied and summed to give scores in the range 0–12 as pre-
viously described (Schiessl et al., 2009; Valentijn et al., 2013; Mathew et al.,
2016). Antibodies used for IHC are detailed in Supplementary Table SII.

Cell sorting and analysis
Magnetic bead sorting (MACS) of single-cell epithelial suspensions from
endometrial samples were labelled with anti-SSEA1 (CD15) MicroBeads
(#130-094-530, Miltenyi Biotec, UK) and separated using MACS separ-
ation columns (MS columns, Miltenyi Biotec, UK) according to the manu-
facturer’s instructions and purity assessed as previously reported (Valentijn
et al., 2013).

RNA extraction and cDNA synthesis
Total RNA from clinical tissue samples was extracted using TRIzol® Plus
RNA Purification System (Life Technologies, Paisley, UK) according to the
manufacturer’s instructions. The quantity of total RNA was determined by
NanoDrop ND-1000 (ThermoFisher Scientific, UK). Total RNA was
reverse transcribed using AMV First Strand cDNA synthesis kit (New
England Bio Labs, Hertfordshire, UK). cDNA was amplified by PCR
using HotStart Taq (New England Bio Labs, Hertfordshire, UK).
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TRIzol® Reagent (Life Technologies) was used to isolate total RNA
which was precipitated from samples according to the manufacturer’s
instructions. Total RNA was extracted from whole tissue, SSEA1 sorted
(MACS) cells and treated/untreated Ishikawa cells (positive control) and
reverse-transcribed into cDNA using the Superscript III First-Strand
Synthesis System (Invitrogen).

Quantitative real time polymerase chain
reaction (q-PCR) and RT-PCR
Semi-quantitative RT-PCR and qPCR were performed as previously described
(Hapangama et al., 2012; Valentijn et al., 2013) using KAPA SYBR FAST qPCR
Mix Master 2x (Kapa BioSystems) and the Rotor-Gene 3000 centrifugal real-
time cycler (Corbett Research). Relative gene expression was calculated and
normalised to the reference gene, YWHAZ due to its stability in the endo-
metrium (Vestergaard et al., 2011). The amplification products were verified
using agarose gel electrophoresis, stained with SYBR Safe (Life Technologies,
Paisley, UK) and visualised by UV transillumination using ChemiDoc-It TS2
Imager (UVP systems, Cambridge, UK). The PCR primers (Sigma-Aldrich)
used are listed in Supplementary Table SIII.

3D epithelial cell cultures in Matrigel
Short-term cultured (16–36 h post-plating) MACS-bead sorted eutopic
endometrial epithelial cells were trypsinised and re-suspended as single cell
suspensions at ~100 000 cells/200 μl in undiluted Matrigel (BD
Biosciences) and diluted with epithelial media serially two-fold to ~3000
cells/100 μl: 50 μl of the resulting mixture was plated in duplicate in 24-
well tissue culture plates. After allowing the Matrigel to set at 37°C for
15–20 min, DMEM/F12 medium supplemented with insulin-transferrin-
selenite (ITS, Invitrogen) and 50 ng/ml EGF (Sigma-Aldrich) was added.
Medium was replaced every 3 days and cultures monitored over 14 days.

For IHC and immunofluorescence (IF), 3-D cultures were fixed in
10% (v/v) neutral-buffered formalin (NBF) for 30 min, harvested into
1% agarose in PBS and placed in NBF overnight at 4°C, then processed
to paraffin wax, 3 μm sections were cut and antigen-retrieval per-
formed (Supplementary Table SII). 3-D morphology and polarity was
assessed with antibodies to MUC-1, laminin, cytokeratin 18 and
β-catenin (Supplementary Table SII) (Valentijn et al., 2013).

Differentiation assay
Multi-lineage differentiation
Freshly harvested human eutopic endometrial epithelial cells were
MACS-bead-sorted into SSEA1+ and SSEA1– fractions before placing in
2D culture in adipogenic and osteogenic media to assess their adipo-
genic or osteogenic differentiation potential as described below.

Adipogenic assay
Confluent cells were stimulated with adipogenic media every 2–3 days
(High glucose DMEM/F12 (Lonza), 0.2% Primocin (Bioscience
LIfesciences), 500 μM IBMX (Sigma-Aldrich), 1 μM Dexamethaxone
(Sigma-Aldrich), 10 μM Insulin (Sigma Aldrich) (Gargett et al., 2009). Non-
stimulated cells were cultured in the same epithelial media as in the 3D cul-
ture and served as a negative control. After 2 weeks, cells were washed
twice with PBS and fixed by incubation with 4% para-formaldehyde (PFA;
Sigma-Aldrich) for 10 min, for analysis. Oil Red O staining was used to con-
firm the presence of lipid droplets. Briefly, PBS was removed from fixed
cells and replaced with 60% isopropanol (Sigma-Aldrich). After 10 min,
60% Oil Red O stain solution was added and left for another 10 min until
washed with water. Cells were counterstained with Gills 2 haematoxylin
(Thermo Scientific). Images were visualised and captured with the use of a
Nikon Biophot Microscope and camera head (Nikon).

Osteogenic assay
Near confluent cells were stimulated every 2–3 days with osteogenic medium
for 2 weeks (High glucose DMEM/F12 (Lonza), 0.01 μM Vitamin D3 (Sigma-
Aldrich), 50μM L-ascorbic acid (Sigma-Aldrich), 10mM β-glycerol phosphate
(Sigma-Aldrich) (Gargett et al., 2009)). Cells stimulated with epithelial medium
for the same period served as a negative control. On Day 15, cells were fixed
by incubation with 4% PFA at room temperature for 10min and subjected to
Alkaline phosphatase (ALP) staining. Accordingly, PBS was aspirated from
fixed cells and replaced with 400 μl of Fast Red/Napthol solution (Sigma-
Aldrich) and left to incubate at room temperature. After 30min, cells were
rinsed with 0.1MTris HCl (pH 9.2) and PBS before counterstaining with 4′,6-
diamidino-2-phenylindole (DAPI).

hMSC cell culture
Human mesenchymal stem cells (hMSCs) were used as the positive con-
trol for in vitro differentiation into adipocytes and osteocytes (Lonza,
Walkersville, Inc., USA). hMSC were cultured in Growth MediumTM
(hMSCGM; Lonza, Walkersville Inc., USA) and maintained at 37°C, at 5%
CO2 in air.

Systems biology
The differential expression of epithelial specific SOX9 and all fucosyl-
transferase (FUT) genes including FUT3 and FUT4, the enzymes which
catalyse the addition of the fucosyl moiety to the Lewis X molecule that
comprises the SSEA-1 epitope, as well as the differential expression of a
total of 595 genes regulated by SOX9 in two gene sets (set 1 = 237
genes, set 2 = 358 genes from Illumina’s BaseSpace Correlation Engine) in
the secretory endometrium was examined in three published whole tran-
scriptomic RNA Expression studies examining the human mid-secretory
endometrium of women with endometriosis (1) moderate-severe (n = 9,
GSE6364 (Burney et al., 2007)), (2) mild (n = 9, GSE51981 (Tamaresis et al.,
2014)), (3) moderate (n = 18, GSE51981 (Tamaresis et al., 2014)) endometri-
osis suffers against healthy women without endometriosis (GSE6364, n = 8;
GSE51981, n = 8) using Illumina’s BaseSpace Correlation Engine (BSCE;
(Kupershmidt et al., 2010) software;https://www.illumina.com/informatics/
research/biological-data-interpretation/nextbio.html, last accessed on
August 8, 2018; Illumina, San Diego, CA, USA).We also interrogated gene lists
(already published) in Supplementary Table SII of Afshar et al., 2013) from
microarray experiments comparing secretory phase baboon eutopic endomet-
rium from animals having either spontaneous or induced endometriosis with
healthy animals.

Statistical analysis
All statistical analyses were performed using GraphPad Prism software.
Summary statistics and paired t-test or non-parametric equivalent (Mann–
Whitney U and Spearman Rank) was employed as appropriate. Data are
presented as median and interquartile range as indicated. Results were
considered statistically significant when P < 0.05.

Results

Women with endometriosis show an
increased number of SSEA1 and nSOX9
expressing basalis-like cells located in the
functionalis layer of secretory phase eutopic
endometrium
We tested the hypothesis that women with endometriosis have an
increased number of basalis-like cells that will be shed in the
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subsequent menses. Significantly increased epithelial quick-scores for
SSEA1 and nSOX9 were observed in the functionalis layer of secretory
phase eutopic endometrium in women with endometriosis compared
with healthy fertile control women; (SSEA1 median = 0.85, IQR =
0.33–2.28, versus median=0.01 IQR = 0–0.28, P = 0.02, (Fig. 1A
and B)) and nSOX9 (median=3.6, IQR = 1–7.4 versus
median=0.60, IQR = 0.19–1.58, P = 0.04) (Fig. 1C).

The women with endometriosis also had higher basalis epithelial
quickscores in the secretory endometrium when compared with the
healthy fertile control women, for SSEA1 (median=5.00, IQR =
2.6–8.6 versus median=2.00, IQR = 1.6–2.6; P = 0.01) (Fig. 1B).
Although a similar trend was observed with nSOX9 it was not statistic-
ally significant (median=22.5, IQR = 4.5–61.8 versus median=7.1,
IQR = 3.6–12; P = 0.3) (Fig. 1C).

Figure 1 Immunohistochemical staining for endometrial SSEA-1 and SOX9 in normal fertile women without endometriosis (n =
14) and women with surgically confirmed symptomatic endometriosis (n = 10). Representative 400× micrographs showing the basalis and
functionalis staining (A). Scale bar is 50 μm. Graphs showing immunohistochemical staining quickscores for SSEA1 (B) and SOX9 (C) protein expres-
sion in endometrial functionalis of healthy control women and endometriosis patients in the secretory phase of the cycle. Charts display median and
quartiles with whiskers showing the range. Graphs depicting the enzymes likely responsible for catalysing the SSEA-1 epitope, FUT3 (D), FUT4 (E), and
SOX9 ( F) mRNA expression in healthy fertile control tissue (n = 3) and endometriosis patient samples (n = 6). Charts display median and quartiles
with whiskers showing the range but just median and range when n = 3.
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To further understand the increased SSEA-1 immunostaining in endo-
metriosis tissues, we assessed several fucosyl transferase enzymes (FUT3,
FUT4) to determine if these differed. The FUTs enzymatically add the
SSEA-1 epitope to Lewis X molecule. The transcript for FUT3 and FUT4
used as a surrogate for SSEA1 epitope did not change in the endometrial
tissue derived from women with endometriosis (n = 6) compared with
the healthy fertile control samples (n = 3) (Fig 1D and E). In contrast,
SOX9 mRNA levels were significantly higher in tissue from women with
endometriosis (median=1.2, IQR = 0.85–1.7, n = 6) compared with the
healthy fertile control samples (median 0.2, IQR = 0.2–1, n = 3, P < 0.05,
Fig. 1F). In silico interrogation of published curated datasets also revealed
that several FUT genes that could be responsible for the SSEA1 epitope
(including FUT3, FUT4 as well as FUT2, FUT5, FUT6, FUT7) and SOX9 gene
were up-regulated (and 402/595 of SOX9 regulated genes were differen-
tially regulated) in mid-secretory phase endometria of women with endo-
metriosis compared with the samples of healthy women without
endometriosis (Supplementary Figure S1).
Both SOX9 and SSEA1 antigen expression were high in human

ectopic lesions (Supplementary Figure S2B, as previously shown in
Valentijn et al., 2013) suggesting a possible functional role for these in
the ectopic lesions.

Eutopic endometrial SSEA1 and SOX9
expression changed with the induction of
endometriosis in a baboon model
We hypothesised that the baboon model would allow examination of
chronological changes in basalis-like cells in ectopic and eutopic endomet-
rium after induction of endometriosis. Most epithelial cells of the baboon
ectopic endometriotic lesions had high nSOX9 immunostaining confirm-
ing similarities with the previously published human data (Valentijn et al.,
2013) (Fig. 2A). However, only two of four baboon ectopic endometrio-
tic lesions examined showed high SSEA1 expression (Fig. 2A, P > 0.05).
Three months after endometriosis induction, eutopic endometrial

functionalis also showed apparently higher but not significant quick-
scores for nSOX9, at or above the median pre-inoculation scores in all
animals (Fig. 2B, P > 0.05). The control baboons showed similar endo-
metrial SOX9 expression pattern to the healthy humans with high
nSOX9 expression observed in the basalis glands (Fig. 2A).
Three months after induction of endometriosis, SSEA1 expression

increased in the eutopic endometrial basalis in 4/6 (67%) of the animals
but unlike normal human basalis glands, only a very few discreet SSEA1
expressing cells were observed in the eutopic endometrial basalis of the
control baboons (Fig. 2A). Specifically, by comparing the previously pub-
lished microarray data from eutopic endometrium from baboons after
induction of endometriosis with the pre-inoculation endometrium of the
same animals, we demonstrated increased expression of SOX9 and many
of the FUT genes (including FUT3, FUT5, FUT8 and FUT11 that could be
responsible for SSEA1 epitope expression) in baboons.

Basalis-like (SSEA1+) epithelial cells of
women with endometriosis showed
differential gene expression compared with
the healthy women
Since endometriosis may result in retrograde flow of the basalis-like
cells at menses, we next attempted to enrich for SSEA1+ basalis

epithelial cells derived from the eutopic endometrium of women with
and without endometriosis to assess their expression of a panel of
selected genes. Comparison of SSEA1+ sorted epithelial cells from
women with endometriosis and healthy fertile control women (n = 8/
group), showed a significant up-regulation of two pluripotency genes
NANOG (P = 0.007) and OCT4 (P = 0.05), (Fig. 3D,E) although the
abundance of OCT4 was extremely low. The third gene required for
pluripotency, SOX2was not expressed in whole healthy human endomet-
rial tissue or in any of the endometrial epithelial fractions (data not shown)
despite high expression in the positive control human embryonic stem
cells. Immunohistochemistry staining for anti-SOX2 in full thickness endo-
metrial samples revealed negative staining (Supplementary Fig. S3), indic-
ating that SSEA1+ cells are unlikely to be pluripotent and neither are
pluripotent stem cells found in human endometrium. mRNA for FUT4,
was upregulated in SSEA1+ cells from women with endometriosis com-
pared with those from normal endometrium (Fig 3D). There were no sig-
nificant differences in the endometrial differentiation genes, PR or ESR1
between endometriosis and normal SSEA1+ sorted cells (Fig. 3A,B).
Neither was there any difference for the other epithelial genes that have
been proposed as progenitor markers in other tissues assessed in our
panel (PROM1, CD9 and PDXL, Fig. 3D, G,H).

SSEA1+ cells derived from the eutopic
endometrium of women with endometriosis
produce ectopic endometriotic lesion-like
structures in 3D culture
We then tested the hypothesis that SSEA1+ cells are able to generate
structures similar to ectopic endometriotic lesions in vitro. All sorted sam-
ples of SSEA1+ cells from eutopic endometrial cell suspensions of women
with endometriosis generated gland-like structures within 14 days of 3D
culture. These 3D structures morphologically mimicked ectopic endo-
metrial epithelium (Fig. 4A and B). Co-localisation of the urogenital epi-
thelial marker cytokeratin-18 with the adherins junction molecule
β-catenin in ectopic lesions established their endometrial origin (Fig. 4A
and B) and epithelial phenotype of the ectopic cells. MUC1 at the apical
surface of the epithelia and basal laminin confirmed the polarisation and
differentiation of the epithelial cells as well as their striking similarities with
ectopic lesions (Fig. 4A and B). Immature gland-like structures (Fig. 4C)
consisted of cells expressing mainly ERβ with occasional cells expressing
ERα and the proliferative marker Ki67. However, the more mature larger
gland-like structures demonstrated nuclear staining in some cells for pro-
gesterone receptor but AR was not expressed by the epithelial cells in
3D culture at any stage (Fig. 4C and D).

SSEA1+ endometrial epithelial cells are
distinct frommesenchymal cells and do not
differentiate intomesodermal lineages in vitro
We then sought to confirm that the SSEA1+ basalis-like cells are not
pluripotent and are likely to be unipotent, therefore if they reach the
peritoneal cavity will probably produce an endometrial epithelial
phenotype without differentiating into other mesenchymal cell types.
To this end, we finally assessed whether MACS sorted-SSEA1+
basalis-like epithelial cells derived from the eutopic endometrium of
women with endometriosis could differentiate into two representative
mesodermal lineages. Human bone marrow-derived mesenchymal
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stem/stromal (hMSCs), which differentiate into adipocytes and osteo-
blasts served as a positive control. After 2 weeks in culture in appro-
priate induction media, hMSCs differentiated into adipocytes and
osteocytes (Fig. 5Ab and Cb). In contrast, SSEA1+ cells showed no

change in morphology and did not develop intracytoplasmic lipid dro-
plets after two weeks of culture in adipogenic medium (Fig. 5Ac), nor
did they show alkaline phosphatase activity after incubation in osteo-
genic medium (Fig. 5Cc). This was confirmed by negative staining with

Figure 2 Representative micrographs showing SSEA1 and SOX9 in the baboon model of endometriosis (A). Scale bar is 50 μm.
Graph shows functionalis glandular SOX9 quickscore and median values (B) for control (pre-inoculation) baboons (n = 5) and 3 months post-
inoculation (both eutopic endometrium (n = 6) and ectopic lesions (n = 5),). Mann–Whitney U test showed no statistically significant difference in
SOX9 quickscore between control and 3 months post-inoculation for eutopic endometrium (P = 0.2) or ectopic lesions (P = 0.07) respectively.
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Oil Red-O and minimal expression, of early adipogenic markers
PPARγ2 and LPL (Fig. 5B). Similarly, mRNA expression of early osteo-
cyte differentiation markers (alkaline phosphatase, osterix) did not
change in SSEA1+ endometrial epithelial cells (Fig. 5D).

Discussion
This study examines the involvement of SSEA1+SOX9+ basalis-like
epithelial cells derived from eutopic endometrium in the pathogenesis
of endometriosis. We have shown that the eutopic endometrial

Figure 3 Quantitative RT-PCR results from SSEA1+ sorted epithelial cells from women with endometriosis (n = 8) and control
women (n = 12) showing relative expression of ERα (ESR1, A), PGR (B), CD9 (C), FUT4 (D, Mann–Whitney U test P = 0.018), OCT4
(E, Mann–Whitney U test P = 0.05), NANOG ( F, Mann–Whitney U test P = 0.007), PROM1 (G) and PODXL (H). All data is shown rela-
tive to the housekeeping gene YWHAZ.
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functionalis epithelium of women with endometriosis, aberrantly con-
tain an increased number of cells with SSEA1+SOX9+ basalis-like epi-
thelial cell phenotype. The chronological changes occurring in the
eutopic endometrium with induction of ectopic endometriotic lesions
were examined in the baboon, where induction of endometriosis
resulted in a trend to increased SOX9+ cells in eutopic endometrium.
As previously described in human lesions, the baboon endometriotic
lesions induced in ectopic sites also contained SSEA1+SOX9+ cells.
SSEA1 enriched cells derived from the eutopic endometrium of
women with endometriosis showed an increased level of expression
of some ‘primitive’ genes compared with healthy women without
endometriosis. These cells also produced 3D structures in vitro with
phenotypic similarities to ectopic endometriosis lesions collected from
women, suggesting that if they were deposited in the peritoneal envir-
onment (ectopic locations) after retrograde menstruation, they may
initiate endometriotic lesions. SSEA-1+ cells derived from eutopic
endometrium were unable to differentiate into the mesodermal
lineages (bone and adipose), in vitro (Fig. 6).

Endometriosis is a disease associated with changes to eutopic endo-
metrium that are most prominent in the progesterone dominant
secretory phase of the cycle (Bulun et al., 2006). The baboon model of
endometriosis induction has demonstrated that establishment of
endometriosis in ectopic sites induces aberrant expression of many
genes and proteins that are characteristic of the eutopic endometrium
in women with endometriosis and may contribute to functional conse-
quences such as subfertility (Hastings and Fazleabas, 2006; Hapangama
et al., 2010; Sourial et al., 2014; Afshar et al., 2013). Interestingly,
SOX9 and some FUTs as well as MSI1 (Musashi-1) were amongst these
differentially expressed genes in baboons and these changes may be
relevant to aberrations in the number and location of basalis-like epi-
thelial cells and/or the increase in the progenitor cell activation/
migration.
These changes in the eutopic endometrium may also promote the

propagation of the disease (Hapangama et al., 2010; Tempest et al.,
2018). Leyendecker et al., proposed that women with endometriosis
shed endometrial tissue with a basalis-like phenotype at menstruation

Figure 4 Formalin-fixed and paraffin-embedded sections of gland-like structures grown in 3D culture and ectopic lesions stained
by immunofluoresence, for cytokeratin18/laminin (A), MUC-1/β-catenin (B). and for steroid receptors with immunohistochemistry show
ERβ was the dominant receptor in both early immature non-polarised (C) and mature, polarised (D) gland-like structures. Whilst both these structures
contained some cells expressing ERα and the proliferative marker Ki67, PR was only seen in the mature polarised structures. AR was not expressed by
any epithelial cells grown in 3D. Scale bar = 50 μm.
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Figure 5 Micrographs of staining and mRNA expression data depicting that SSEA1+ endometrial epithelial cells do not express
markers of mesodermal differentiation when cultured in adipogenic and osteogenic media. (A) Micrographs showing Oil O red staining
for d14/15 hMSC in control medium (a), hMSC in adipogenic medium (b) SSEA1+ epithelial cells in adipogenic medium (c). Relative expression com-
pared to control values were significantly higher in hMSC for PPARg2 and LPL and unchanged in SSEA1+ sorted cells (B). (C) shows micrographs for
alkaline phosphatase staining in d14/15 hMSC in control medium (a), hMSC in osteogenic medium (b) SSEA1+ epithelial cells in osteogenic medium
(c) relative expression compared to control values were significantly higher in hMSC for the osteogenic markers alkaline phosphatase (ALP) and osterix
(OSX), remaining unchanged in SSEA1+ sorted cells (D)
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(Leyendecker et al., 2002), and therefore these cells are more likely to
initiate ectopic lesions after retrograde menstruation. The recent dis-
covery that SOX9 and SSEA1 are preferentially expressed in basalis
epithelial cells (Valentijn et al., 2013) provided us with a means to test
Leyendecker’s theory and we have confirmed that women with endo-
metriosis have an increased number of basalis-like cells in the secretory
functionalis layer that will subsequently be shed at menstruation. The
finding of numerous SSEA1+ cells in the functionalis of eutopic endo-
metrium of women with endometriosis also suggests their delayed dif-
ferentiation into SSEA1- functionalis epithelial cells given the recent
descriptions of a potential hierarchy of epithelial cells from the basalis
through the functionalis (Valentijn et al., 2013; Nguyen et al., 2017;
Tempest et al., 2018; Tempest et al., 2018). This finding also agrees
with the observation that the number of basalis-like cells increased in
the endometrium of the baboons after inducing endometriosis.
Interestingly, in the baboon model, an endometrial sampler was used
to collect the exposed progenitor rich endometrial basalis on the
second day of menstrual bleeding, and the subsequent placement of
this tissue in the pelvic cavity resulted in 100% induction of endometri-
osis (Braundmeier and Fazleabas, 2009). This well-established method
of endometriosis induction in the baboons confirms the involvement
of basalis-like cells in the initial and subsequent ectopic endometriotic
lesion formation and Leyendecker’s theory that basalis-like cells give
rise to ectopic lesions. Furthermore, the previously published micro-
array data demonstrate, aberrant expression of these genes was per-
sistently observed during disease progression after induction of
endometriosis in baboons (already published in Supplementary Table
SII of Afshar et al., 2013).
FUT enzymes catalyse the addition of fucose to precursor polysac-

charides in the last step of Lewis antigen biosynthesis, to generate
fucosylated carbohydrate structures such as SSEA1. SSEA1 is reported
to play a role in cell adhesion and regulation of cell differentiation
(Eggens et al., 1989, Kojima et al., 1994). Interrogation of the micro-
array data provides validation of our data in independent external
datasets, demonstrating differential expression of several FUTs in the
human endometrium. Of particular interest, was the observation that
in women with endometriosis, SSEA1+ epithelial cells had significantly
elevated levels of FUT4 compared with SSEA1+ epithelial cells from

healthy women without endometriosis. Cells expressing the Lewis-x
antigen (such as SSEA-1) when transfected with FUT4 adopted a more
adhesive phenotype in culture (Sudou et al., 1995). Thus, increased
FUT4 expression in SSEA1+ cells in endometrial epithelial cells from
endometriosis patients could similarly enhance their adhesive nature at
ectopic sites. This effect of FUT4 remains to be formally tested in
endometrial epithelial cells, but we anticipate gain-of-function (overex-
pression) and loss-of function (small interfering RNA) studies to
answer this in the future.
The transcription factors NANOG, OCT4, SOX2 work synergistically

at maintaining the pluripotent, embryonic stem cell phenotype
(Kashyap et al., 2009). The forced expression of these factors in som-
atic cells confers induced pluripotent stem cells status, exemplifying
their importance, and therefore they are key markers of an undifferen-
tiated state. The lack of concomitant SOX2 expression with NANOG
and OCT4 in the healthy endometrial samples and isolated cells suggest
that the adult healthy human endometrium may not contain pluripo-
tent cells. We observed a higher NANOG and OCT4 mRNA levels in
the SSEA1+ cell fraction isolated from women with endometriosis,
possibly suggesting that they are at an earlier stage of differentiation
than those from women without endometriosis. It is tempting to pos-
tulate that such differences may further contribute to the ability of
those cells in establishing an active endometriotic lesion after retro-
grade menstruation. This is corroborated by our subsequent experi-
ment where all SSEA1+ sorted cell samples from women with
endometriosis (n = 8) produced gland-like structures in 3D culture
compared to the routine success of <70% in 3D cultures of singly dis-
persed SSEA1+ cells from healthy women without endometriosis (n >
20). However, we did not test this hypothesis formally therefore fur-
ther studies are needed to confirm this observation.
The ectopic lesion-like structures grown in 3D, contained cells

expressing all steroid receptors except AR. ERβ in particular, a recep-
tor that is expressed by epithelial cells throughout the cycle as well as
in hypo-oestrogenic postmenopausal endometrium, was highly
expressed by the cells forming these gland-like structures (Hapangama
et al., 2015; Kamal et al., 2016). ERβ is a major player in ectopic endo-
metriotic lesion growth in many human and animal models (reviewed
in Hapangama et al., 2015; Simmen and Kelley, 2016) in agreement
with our data.
The ability of singly dispersed SSEA1+ cells derived from eutopic

endometrium to develop gland-like structures expressing a similar
panel of markers to endometriotic lesions excised from women sug-
gest a capability to generate these lesions in an ectopic environment
in vivo. SSEA1+ cells were unable to differentiate into the two meso-
dermal lineages tested in vitro while assay success was confirmed in the
control hMSCs. In contrast, endometrial stromal progenitors differen-
tiate into adiopogenic, myogenic and osteogenic lineages (Schwab and
Gargett, 2007). Previous heterotopic tissue reconstitution studies
have also shown that adult endometrial epithelial cells are able to
maintain the endometrial phenotype and morphogenesis, despite the
origin of the mesenchymal stroma supporting the growth (Kurita et al.,
2001) suggesting that ectopic lesions retain the endometrial phenotype
due to the unipotent epithelial progenitor cells that likely initiate them.
Interestingly, a recent study analysing the presence of selection-neutral
passenger mutations also suggested that epithelium in the endometrio-
tic lesions was clonal and epithelial development is independent of the
stroma (Noe et al., 2018). It is however expected that the endometrial

Figure 6 Schematic illustration of the possible involvement of
SSEA1+SOX9+ basalis-like cells (blue) in endometriotic ectopic
lesion formation. In women with endometriosis, functionalis layer con-
taining increased basalis-like SSEA1+nSOX9+ (blue) cells will be shed at
menstruation. Retrograde flow of these into the peritoneal cavity likely give
rise to ectopic lesions and we have demonstrated the ectopic lesions to
contain SSEA1+nSOX9+ epithelial cells.
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perivascular mesenchymal stem cells would facilitate the development
of a vascular stroma also supporting the growth of endometriosis
lesions (Cousins et al., 2018; Tempest et al., 2018).
Our data is of importance for many reasons; they provide further

evidence for the involvement of basalis-like endometrial cells in the
pathogenesis of endometriosis (Fig. 6); and they add to the existing
data on endometriosis-associated eutopic endometrial aberrations.
Our study, for the first time, provides an explanation of why 6–10% of
women develop endometriosis when almost all undergo retrograde
menstruation from a stem/progenitor cell perspective. Our data col-
lectively suggest that shedding and retrograde menstruation of basalis-
like cells is a prerequisite for ectopic lesion formation. In the context
of endometrial epithelial progenitor/stem cells, it will be important in
future studies to determine if the other suggested epithelial progenitor
cells expressing N-cadherin (Nguyen et al., 2017), or LGR5 (Tempest
et al., 2018) play a role in the pathogenesis of endometriosis. Such
studies will increase our current knowledge on the role of endometrial
basalis epithelial stem/progenitor cells in endometrial proliferative dis-
orders with potential to identify abnormalities in these basalis cell types
and exploit them for diagnostic and therapeutic strategies in endomet-
riosis as well as in other persistent endometrial proliferative disorders
with a stem/progenitor cell basis.
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Supplementary data are available at Human Reproduction online.
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