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Abstract

Large-scale genomic studies have recently identified genetic variants causative for major 

neurodevelopmental disorders, such as intellectual disability and autism. However, determining 

how underlying developmental processes are affected by these mutations remains a significant 

challenge in the field. Zebrafish is an established model system in developmental neurogenetics 

that may be useful in uncovering the mechanisms of these mutations. Here we describe the use of 

voxel-intensity, deformation field, and volume-based morphometric techniques for the systematic 

and unbiased analysis of gene knockdown and environmental exposure-induced phenotypes in 

zebrafish. We first present a computational method for brain segmentation based on transgene 

expression patterns to create a comprehensive neuroanatomical map. This map allowed us to 

disclose statistically significant changes in brain microstructure and composition in 

neurodevelopmental models. We demonstrate the effectiveness of morphometric techniques in 

measuring changes in the relative size of neuroanatomical subdivisions in atoh7 morphant larvae 

and in identifying phenotypes in larvae treated with valproic acid, a chemical demonstrated to 

increase the risk of autism in humans. These tools enable rigorous evaluation of the effects of gene 

mutations and environmental exposures on neural development, providing an entry point for 

cellular and molecular analysis of basic developmental processes as well as neurodevelopmental 

and neurodegenerative disorders.
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1. Introduction

Next generation sequencing methods and genome-wide association studies have 

revolutionized psychiatric genetics by identifying risk alleles for common neurological 

disorders. Applied to large patient cohorts, these methods have revealed numerous rare and 

de novo mutations, including copy number variants, small insertions or deletions, and single 

nucleotide polymorphisms, which cumulatively play a significant role in genetic risk for 

common neurodevelopmental disorders including intellectual disability, Tourette’s 

syndrome, attention deficit hyperactivity disorder and autism spectrum disorders (ASD) 

(reviewed in [1–5]). In addition to the strong genetic component associated with 

neurodevelopmental disorders, there is significant epidemiological data supporting 

environmentally-induced risk factors such as prenatal exposure to valproic acid [6].

Although key genetic and environmental risk factors have been identified, empirical 

evidence remains weak for specific risk-associated structural or functional changes within 

the brain. A major challenge now is to understand how these factors perturb neural 

development. The larval zebrafish is a model that enables a systematic search for subtle 

changes in brain architecture and function [7,8]. Live-imaging of the entire larval brain at 

single cell resolution allows visualization of whole brain microstructure and cell-type 

composition, and highly accurate registration of brains to a common reference facilitates 

comparisons between individuals. The zebrafish brain is built using molecular pathways 

conserved across vertebrates, and shares conspicuous neuroanatomical homologies with 

mammalian brains [9,10]. Moreover, zebrafish are an ideal system for analyzing the effects 

of gene mutations on brain development, because most human genes have a readily 

identifiable ortholog in zebrafish and mutants can be efficiently generated using Clustered 

Regularly-Interspaced Short Palindromic Repeats (CRISPR)-based genome editing [11,12]. 

Additionally, zebrafish are a cost-effective vertebrate system in which to perform in vivo 
chemical genetics experiments, allowing high-throughput evaluation of drug effects on the 

brains of wild-type and genetically mutant animals [13,14].

In humans, many genetic mutations strongly disrupt neural development, producing severe 

syndromic disorders present at birth. However, other neurodevelopmental disorders typically 

manifest only after several years of life, and are associated with less severe perturbations 

that are harder to detect [15–18]. Because it is difficult to systematically characterize subtle 

changes throughout the brain, many studies instead focus on candidate regions, potentially 

overlooking important anatomical or functional abnormalities elsewhere in the brain. The 

development of voxel-based morphometry (VBM) and its application to MRI studies in 

human has allowed whole brain analysis without a priori knowledge of regions that may be 

affected. VBM is widely used in human neuroimaging studies, allowing voxel-level 

comparisons of brains following registration to a common template, in order to identify 

statistically significant differences [19,20].

We and others have recently demonstrated that highly accurate brain registration can be 

achieved in larval zebrafish using non-linear registration methods [8,21–23]. Here, we 

capitalized on this ability to accurately register images by implementing brain morphometry 

in zebrafish, similar to that used in humans. Using simulated phenotypes, we estimate the 
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sensitivity of voxel-intensity based methods for locating changes in neuronal composition. 

For identifying abnormalities in brain microstructure, we test the effectiveness of 

deformation-field analysis and atlas-based volume measurements. Statistical thresholds are 

calculated using permutation analysis within brain regions defined by a new computationally 

derived neuroanatomical map. This method discloses widespread neuronal changes in a 

zebrafish valproic acid model. We anticipate that the methods described here will enable 

systematic and stringent analysis of conserved neurodevelopmental processes as well as 

zebrafish models of human neurodevelopmental disorders, and that it will facilitate 

comparative work across model organisms.

2. Methods

2.1 Zebrafish husbandry

Zebrafish were maintained under standard laboratory conditions. Embryos were raised in E3 

medium supplemented with 1.5 mM HEPES (pH 7.3) and 300 μM N-Phenylthiourea (PTU, 

Sigma P7629) starting at 8–22 hours post fertilization (hpf) to inhibit melanogenesis. Larvae 

were raised at 28°C on a 14h:10h light:dark cycle with medium changes every 2 days. 

Experiments were conducted in accordance with the National Institutes of Health guide for 

the care and use of laboratory animals and were approved by the National Institute of Child 

Health and Human Development animal care and use committee.

2.1.1 Zebrafish lines—Lines used in this study were Tüpfel long fin (TL); vglut2a:GFP 
(derived from TgBAC(slc17a6b:lox-DsRed-lox-GFP)nns14 by Cre injection) [24]); 

TgBAC(gad1b:lox-RFP-lox-GFP)nns26 (gad1b:RFP) [24]; Tg(evx2:Gal4)nns52, 
Tg(elavl3:ubci-Cer-sv40)y342 (huC:Cer) [21]; Tg(isl1:GFP)rw0, Tg(elavl3:lyn-
tagRFP)mpn404 (huC:lyn-RFP), TgBAC(foxb1a:Gal4-vp16) [25]; Tg(elavl3:Gal4-
vp16)nns6 (huC:Gal4) [26]; Tg(UAS-E1b:Synaptophysin-TagRFPT)y261 (UAS:syp-RFP) 

[27]; y271Et, Tg(actb2:loxP-eGFP-loxP-ly-TagRFPT)y272 (βactin:Switch) [28]; 
Tg(elavl3:Hsa.HIST2H2BE-RFP)a154 (huC:h2b-RFP) [8]; Tg(atoh7:GFP)rw021 [29]. 

Construction of Tg(−2.6Cau.tuba1:mCar.zf1)y516 (tuba:mCar) and Tg(elavl3:nls-
mCar.zf1)y517 (huC:nls-mCar) will be described in detail elsewhere. Briefly, tuba:mCar 
uses the goldfish α-tubulin promoter, and huC:nls-mCar the zebrafish elavl3 promoter, to 

express the far-red fluorescent protein mCardinal, optimized for zebrafish [28,30,31].

2.1.2 Morpholino knockdown

For morpholino experiments, 4.6 nL of a 200 μM stock of a previously-established antisense 

morpholino (TTCATGCGTCTTCAAAAAAGTCTCC) was injected into huC:mCar 
transgenic larvae at the one cell stage to knock down atoh7 expression [32]. When injected 

into larvae with labeled retinal ganglion cells (RGCs), this dose is sufficient to suppress 

RGC pathfinding out of the retina and into the larval brain. In pilot experiments morpholino 

efficacy was confirmed through injection into Tg(atoh7:GFP)rw021 transgenic fish, which 

label retinal ganglion cells. As expected, injection prevented formation of the optic tract, 

blocked the behavioral response to a dark flash and resulted in hyperpigmentation, a marker 

of blindness in zebrafish larvae (Supplementary Figure 1).
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2.1.3 Valproic acid treatment—Triple transgenic tuba:mCar, vglut2a:GFP, gad1b:RFP 
larvae were treated with 50 μM valproic acid (Sigma P4543) in E3 supplemented with PTU 

from 7 to 56 hpf and then maintained in E3/PTU until imaging at 6 dpf. We only show and 

discuss brain regions that were significant in two independent experiments, and for further 

stringency, focus on clusters of significant voxels that were approximately bilaterally 

symmetrical. Measurement of startle responsiveness to an acoustic stimulus was performed 

as previously described [33].

2.2 Image acquisition

Live 6 dpf larvae were anesthetized with 0.24 mg/mL tricaine methanesulfonate (MS-222), 

mounted in 2.5% low melting point agarose, and imaged using a Leica TCS SP5 II inverted 

laser-scanning confocal microscope [22]. Images were acquired using a 488 nm laser with 

spectral window set to 500–550 nm, a 561 nm laser with a spectral window of 566–624 nm, 

and a 633 nm laser with spectral window set to 638–795 nm. Dye separation was performed 

using Leica Application Suite Advanced Fluorescence software, with image volumes 

stitched and channels split using Fiji software prior to registration [34,35]. Brain scan 

resolution was isotropic 2 μm per voxel.

2.3 Neuroanatomical segmentation

2.3.1 Pre-processing—Input data for neuroanatomical segmentation were the brain-

wide expression patterns for 210 transgenic lines [21,22]. For each line, brains of 3–10 

larvae were live imaged, registered to a common reference and averaged to create a 

representative pattern of transgene expression. The resulting images were 8-bit grayscale 

with a spatial resolution of 1030 × 616 × 420 (nx × ny × nz) voxels (where 1 voxel = 1.0 

μm). Volumes were masked to consider only those voxels within the brain. Thus, each voxel 

inside the brain had a gene expression vector consisting of the 210 transgene expression 

intensities at that point.

To ensure meaningful distance measures between voxels, we first normalized the set of 210 

features assigned to each voxel so that all transgenic line images were scaled to have the 

same mean value of 127, among the voxels within the brain mask, with values outside the 

range [0,255] clipped after scaling. We tested alternate methods for normalization of gene 

expression, including manually determined thresholds, but none outperformed the simple 

scaling scheme above. Next gene expression images were median filtered at the original 

resolution using a spherical footprint within a 5 × 5 × 5 cube (median among total of 57 

closest voxels). Our masked brain included ~ 42.2 M voxels. Because clustering that many 

voxels exceeded our computational capacity and time constraints, we down-sampled images 

by a factor of 2, assigning to each voxel the mean value within the initial corresponding 2 × 

2 × 2 cube. Thus, our neuroanatomical maps (ROIs) were generated at half of the original 

resolution, i.e. 515 × 308 × 210 voxels, with the brain mask now comprising 5.25 M voxels.

2.3.2 Clustering—To derive neuroanatomic regions, we used k-means clustering to 

efficiently group all voxels into K clusters based on their Euclidean distances to K iteratively 

updated centroids. We explored maps with the range of the user-defined parameter K 
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between 100 and 1000. We used the implementation of k-means in the python package 

sklearn, which we ran on NIH Linux cluster Biowulf (https://hpc.nih.gov/systems).

2.3.2.1 Addition of voxel geometric/spatial information: Clustering based on expression 

vectors without regard to spatial information treats voxels as independent samples and 

produced clusters that were frequently not contiguous in 3D space. Therefore, to include 

geometric information about voxel spatial relationships, we added voxel coordinates to the 

Ng=210 genetic features for a total of 213 features. For proper scaling, we multiplied each 

coordinate by a factor fs which weighs the relative importance of the spatial information. 

Values of fs that are too low produce non-contiguous regions, whereas high values tend to 

over divide large or elongated regions purely due to the large underlying spatial distance 

between constituent voxels. Therefore, the integer voxel coordinate values, x, y, and z, 

(starting with 0) were scaled according to:

{xs, ys, zs} = {x, y, z} f S Ng/nmax (1)

where nmax=max(nx , ny , nz) before being added to the gene expression vector.

This means that for fs=10, the maximal distance between the voxel’s spatial features is 

comparable to the maximal distance among Ng gene expression features. In practice, much 

smaller values than that were needed, and we explored the range fs∈[0,2].However, we 

found that no single value was sufficient to directly produce an ideal neuroanatomical 

segmentation. When fs was large enough to prevent over fragmentation, larger and more 

elongated anatomical regions, such as structures within the optic tectum, were too 

subdivided. We therefore used intermediate values and introduced post-processing to resolve 

spatially non-contiguous clusters (2.3.3).

The larval zebrafish brain is largely symmetrical. To allow bilaterally symmetric regions to 

belong to the same cluster, we determined the plane of the bilateral symmetry (BS-plane) 

using our brain mask and assigned all coordinates on one side of the BS-plane to those of 

their bilaterally symmetric pair. In practice, since BS-plane was approximately parallel to 

the x-z plane, we simply adjusted the y coordinates according to yBS = (y - yc) where yc=155 

defined the BS-plane in the image coordinates at half the original resolution.

2.3.2.2 Dimensional Reduction with LDA: Results obtained using the steps described 

above contained significant salt-and-pepper noise in cluster assignments and failed to 

discriminate some important neuroanatomical divisions. We reasoned these failures may in 

part have been due to the large number of features. To reduce the dimensionality of our 

feature space and improve discrimination of anatomical regions, we used linear discriminant 

analysis (LDA). This optimization method finds a set of linear combinations of the original 

features that maximizes the ratio of the between-class to the within-class variability,
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w = argmax
w

wTSBw

wTSWw
(2)

where w is the vector of coefficients for the linear combination of features, and SB and Sw 

are the between-class and within-class covariance matrices, respectively. The solution is 

obtained by solving a generalized eigenvalue problem

SBw = λ Sw w (3)

which allows selection of the subspace with the NLDA that most discriminates features based 

on the magnitude of their eigenvalues. One needs a labeled set of voxels for which there is a 

known classification to obtain such a subspace. We used the Z-Brain regions, focusing on a 

subset of 73 subdivisions that represent neuroanatomical entities [8]. LDA dimensional 

reduction of our original 213 features (i.e. 210 expression patterns plus 3 spatial coordinates) 

derived a set with NLDA=75 features, that was subsequently used as input for k-means 

clustering.

2.3.3 Post-processing—Clustering results still contained small “islands” of 

disconnected ROIs for many clusters, as well as traces of salt-and-pepper noise in cluster 

assignments. To reduce salt-and-pepper noise, we applied median filtering with radius rm=1, 

or rm=2. In addition, we detected isolated islands by studying the network of voxels for each 

cluster and identified connected network components, again accounting for bilateral 

symmetry by treating the bilaterally symmetric voxel pairs as neighbors. For each cluster c, 

the largest contiguous sub-cluster was preserved as belonging to the same cluster c, while 

disconnected components were re-assigned to a neighboring cluster that surrounded them. If 

multiple clusters assignments were found among the immediate neighboring voxels that 

surrounded the “island”, its cluster index was assigned based on majority vote (the mode of 

the cluster index distribution). Ten iterations were sufficient to remove all disconnected 

components in most segmentations, and in the few remaining cases, where a fraction of 

voxels remained unassigned (usually < 10), they were removed and treated as background.

2.3.4 Validation—We explored the clustering algorithm by creating 1206 parameter sets 

containing different values for the presumed number of clusters K in k-means, weighting of 

genetic versus spatial information (fs), dimensional reduction schemes and post-processing 

methods. To select the map that best recapitulated known anatomical regions, we defined a 

benchmark set of 34 ROIs that were conservatively drawn within discrete, easily recognized 

brain regions. We then assessed each cluster-derived map by calculating its F1 score and 

Fowlkes-Mallows index compared to the benchmark regions [36]. We inspected maps that 

scored in the top 10 of either measure and selected a map with K=180 regions, that appeared 

in both top groups, and that also best segmented additional regions (e.g. Mauthner cell and 

torus longitudinalis) not used for validation. To estimate the symmetry of this map, we 

scanned voxels in one hemisphere and for each, explored the neighborhood of its bilaterally 
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symmetric pair (within a 2 μm radius), checking whether any voxels had the same cluster 

assignment.

2.3.5 Segmentation of cellular/neuropil regions—To obtain masks that 

distinguished cellular and neuropil zones, we performed the same clustering procedure as 

described above, but this time using only the following six transgenic lines as features: 

βactin:Switch, huC:h2b-RFP, huC:lynRFP, huC:nls-mCar, huC:Gal4;UAS:syp-RFP, y271-
Gal4. Additionally, in this case we used no geometric information (fs=0) and allowed for the 

existence of non-contiguous regions. Besides performing the clustering using such a 6-

dimensional feature space, we also used LDA with equal or reduced number of dimensions 

(NLDA=2–6). The labeling for LDA was provided in the form of two classes, cell and 

neuropil regions that were obtained using smoothing and thresholding of huC:nls-mCar and 

huc:Gal4;UAS:syp-RFP images, to obtain a good initial guess for the cell region. Clustering 

was performed using K from 2 to 15. The optimal map was selected through manual 

comparison to the expression of huC:nls-mCar and huC:Gal4, UAS:syp-RFP patterns. In this 

map, with K=3, two clusters together covered neuron-rich regions, while the remaining 

cluster primarily contained neuropil but also comprised ventricular regions, glia and 

proliferative zones. This mask tends to assign regions where neuronal somas and neuropil 

are mixed to the cellular zone. Its primary deficiency is assigning too much of the pallial 

neuropil zone to the cellular cluster.

2.4 Brain morphometry

2.4.1 Image Registration—Image registration was performed using Advanced 

Normalization Tools (ANTs, RRID:SCR_004757) version 2.1 running on the National 

Institutes of Health’s Biowulf Linux computing cluster, using the parameter set optimized 

for live-imaging [22,37]. For valproic acid experiments, we performed multi-channel 

registration, equally weighting the tuba:mCar, vglut2a:GFP and gad1:RFP images.

2.4.2 Smoothing and normalization—Following registration and prior to statistical 

analyses, images were smoothed with a 3-dimensional boxcar average using a width of a cell 

radius (diameter ~8 μm) to remove subcellular details and to reduce inter-subject variability. 

Smoothing results in each voxel representing a weighted mean of its own and neighboring 

voxels’ values, reducing the influence of imaging noise. The voxel intensity range was then 

linearly normalized to [0 to 1000] to account for differences between brain scans, saturating 

the top and bottom 0.1% of pixel intensities to minimize scaling distortion due to outlier 

values. Normalization was not performed for deformation field images.

2.4.3 Voxel-intensity comparisons—Voxel-wise comparisons were performed only 

on pixels within a mask encompassing the brain, excluding non-neural tissue and 

background. Rather than evaluate normality of the intensity distribution for each voxel, we 

first rank-transformed values at each voxel before performing t-tests between groups. For 

voxel-wise comparisons across the whole brain (5.3 M voxels), we controlled the family-

wise error rate for α=0.05 using the Holm-Bonferroni procedure.
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2.4.3.1 Permutation-testing for region-wise thresholds: We performed 1000 

permutation tests to establish a non-parametric significance threshold for each 

neuroanatomical region. In each permutation trial, we randomly assigned brain images to 

two groups, while maintaining the original sample size of each group. We then calculated t-
tests as above across all voxels in the brain. For each permutation, we recorded the maximal 

and minimal t-statistic values for each region. After 1000 such trials, we then ranked all the 

maximal t values for each region, and took the 990th ranked score for each region as 

representing the threshold that was attained by only 1% of random trials. Thus, all voxels 

within a region where the t-statistic between actual comparison groups exceeded the 

threshold for that region were considered significant at α=0.01. We also ranked minimum t-
statistic values to identify voxels with significant intensity differences in the opposite 

direction.

2.4.3.2 Analysis of clusters of nominally significant voxels: To find clusters of 

nominally significant pixels, we first built a brain-wide map of t-statistics (2.4.3), then 

formed clusters of contiguous voxels with t-statistics corresponding to unadjusted 

significance values of p < 0.0001. For each cluster, we calculated a metric (Tcluster) which 

was the sum of the absolute values of the t-statistics of all constituent voxels. This measure 

was chosen as it can represent both large clusters of weakly significant pixels and small 

clusters of strongly significant pixels. We used permutation analysis to establish significance 

thresholds for clusters: we randomly assigned images to two groups, calculated t-statistics 

for all voxels, performed cluster analysis, and recorded the most positive and most negative 

Tcluster values. This process was repeated 1000 times to find the Tcluster value exceeded by 

only 5% of randomly assigned groups. This value was then used as the significance 

threshold in comparisons between the original groups.

2.4.4 Deformation field analysis—The non-linear diffeomorphic transformation 

yields a deformation field that describes how each voxel was adjusted to match an individual 

experimental brain to the reference brain. The change in volume of each voxel can be 

derived from the determinant of the Jacobian matrix. Taking the log of the determinant 

results in a map in which negative values indicate decreases in voxel volume of the 

registered image and positive values indicate increases. We used the ANTs 

CreateJacobianDeterminantImage function to generate a map of the log of the Jacobian 

determinant. Voxel- and cluster-wise statistical analyses were applied as described above 

(2.4.3).

2.4.5 Atlas volume measurement—To measure the volume of the whole brain and 

subdivisions, we used the ANTS antsApplyTransforms command (MultiLabel interpolation) 

and the InverseWarp transformation matrix produced during diffeomorphic registration, to 

back transform the neuroanatomical and cell/neuropil maps (described in Methods section 

2.3) to the original unregistered brain images. We then measured the size of each brain (total 

pixel count across all regions), cell-rich and neuropil volumes and the volume of each 

neuroanatomical region, and applied t-tests with Holm’s correction to compare volumes 

between experimental groups.
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2.5 Image processing for simulated brain abnormalities

For simulating misplaced cells within specific brain regions, we scanned brains from 40 

vglut2a:GFP larvae. Images were registered to the vglut2a:DsRed reference brain using 

ANTs. We then used the ANTs antsApplyTransforms command with the InverseWarp 

transformation matrix to back-transform our neuroanatomical region map to each original 

image stack, using MultiLabel interpolation to preserve the categorical region indices. This 

enabled us to locate the ventral thalamus, posterior tuberculum and inferior olive in original 

brain scans. We then randomly placed 7.6 μm diameter ‘cells’ within each selected region, 

altering a total of 26 voxels for each cell. Addition of 300 cells thus changed around 17% of 

voxels in the ventral thalamus (total 46672 voxels in our mask). The intensity at the center of 

the cell was set to the maximal image intensity within the selected region with decreasing 

intensity toward the edges. Finally, we registered the processed image stacks to the reference 

brain. The processed and original images were both present in the dataset that we used when 

randomly sampling to form comparison groups, so in some cases, groups may have included 

processed and unmodified versions of the same brain. For inverting brain scans around the 

AP axis, we used ImageJ [38].

2.6 Statistics and software

Data in figures and text show means and standard errors. In all panels, unless otherwise 

noted: horizontal and sagittal views are displayed with anterior to the left, coronal views 

with dorsal side up. CobraZ software for morphometric analysis was written in IDL, runs 

under the IDL virtual machine (freely available from www.harrisgeospatial.com) and the 

desktop version can be downloaded from our website (https://science.nichd.nih.gov/

confluence/display/burgess/Software). IDL code and bash scripts for running in a linux 

cluster environment are available on request.

3. Results

Many neurodevelopmental disorders include a localized change in the density of specific 

neuronal cell types, arising from changes in neuronal proliferation, migration or 

differentiation, and may also involve subtle changes in the size and/or shape of specific brain 

regions. To perform an unbiased brain-wide analysis that is able to identify such changes, we 

implemented procedures for voxel-based morphometry, similar to methods that are widely 

used to statistically compare brain scans from normal individuals and patient groups. With 

this objective, we developed three methods for brain morphometry in zebrafish. The first 

method utilizes two measures for comparing voxel-intensity between groups: region-wise 

permutation analysis and cluster-analysis (sections 3.1-3.3). The second method identifies 

local changes in brain shape based on deformation field analysis (section 3.4). The third 

method also detects changes in brain shape, but measures volumes of brain subdivisions 

(section 3.5). The sections below describe these procedures.

3.1 Identifying local changes in neuronal density using voxel-intensity morphometry

To test the feasibility of voxel-intensity based morphometry in zebrafish, we acquired 40 

whole-brain confocal images of transgenic vglut2a:GFP zebrafish that express green 

fluorescent protein in glutamatergic neurons. To simulate a neurodevelopmental abnormality 
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affecting local cell density, we added 300 randomly positioned ‘cells’ to the ventral thalamus 

in each image volume (Figure 1A). We then registered unprocessed and modified images to 

a reference brain, so that corresponding voxels in each image were spatially aligned. Next 

we tested for differences in mean intensity between the original and processed image sets at 

every voxel using t-tests. To control the family-wise error rate over the large number of 

comparisons (5.3 M pixels), the Holm-Bonferroni method was used to identify statistically 

significant changes in pixel intensity (see Methods 2.4.3).

To validate this procedure, we randomly selected 15 unprocessed and 15 modified images 

from the whole set, computing (1) the number of statistically significant voxels within the 

ventral thalamus, and (2) the false-positive rate (% of significant voxels outside the ventral 

thalamus). We performed this procedure 6 times, randomly sampling a different set of 15 

brains per group each time, to calculate the mean sensitivity and false-positive rate. This 

method detected almost 100 voxels with greater mean intensity in the ventral thalamus 

(representing 0.2% of its total volume), with no false-positives elsewhere in the brain 

(Figure 1B-D). We then assessed the sensitivity of the procedure to the number of brain 

scans employed by using 5, 10 and 20 images per group (again, performing 6 repeats for 

each sample size). No differences were detected when we used fewer than 15 scans per 

group, whereas we identified almost twice as many significant voxels when using 20 scans 

per group (Figure 1B).

Although the Holm-Bonferroni correction produced a very low false positive rate, it has 

previously been shown that similar methods for controlling the error rate of parametric 

statistical tests for voxel-based brain comparisons are highly conservative [39]. Instead, 

empirically determining a suitable significance threshold for a given data-set using 

permutation tests has been shown to rigorously control false-positives while increasing 

sensitivity. For permutation testing, images are randomly assigned to two groups, t-tests 

performed for every voxel, and the most statistically significant p-value recorded. This 

procedure is repeated 1000 times. The resulting p-values are then ranked and the 50th ranked 

p-value used as a threshold for identifying differences between the original image groups 

that are significant at p < 0.05. However, in our tests, whole-brain permutation analysis did 

not identify more voxels in our simulated data set than when controlling error using the 

Holm-Bonferroni method (not shown). This is likely because substantial differences in 

variability between brain regions reduces the sensitivity of whole-brain permutation to small 

changes in regions with relatively low normal variability. We therefore decided to use 

permutation testing to separately establish significance thresholds for individual brain 

regions. To enable such region-wise comparisons, however, we first needed a detailed 

neuroanatomical map of the brain.

3.2 Identifying local changes in neuronal density using region-based morphometry

3.2.1 Automated segmentation of the larval brain—Neuroanatomical annotation 

typically uses histological stains to guide expert segmentation of anatomical features. The Z-

Brain atlas describes such a set of larval zebrafish brain regions derived through manual 

segmentation [8]. We recently transformed these region masks to the Zebrafish Brain 

Browser reference brain that we use to register live brain scans [22]. However, manual 
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labeling is an inherently subjective process that is prone to persistent biases and errors, often 

driven by prior misconceptions and difficult to perform comprehensively. Annotation is 

particularly difficult in the larval zebrafish brain, where neuroanatomical knowledge is 

limited and few regions have conspicuous nuclear organization so that boundaries between 

many structures are poorly differentiated.

Previous work in several species has demonstrated that gene expression data can be used to 

computationally derive anatomically accurate brain maps [40–42]. Having 3D images of 

transgene expression available from more than 200 zebrafish lines, we reasoned that a 

common pattern of gene expression among neighboring voxels may provide an accurate and 

unbiased indicator of the underlying anatomical structure. Consequently, we developed a 

computational method to create a neuroanatomical map of the 6 dpf larval zebrafish brain 

based on co-registered three dimensional transgene expression data (see Methods 2.3). To 

reduce the feature space, we applied linear discriminant analysis based on 73 manually 

segmented brain regions from Z-Brain. The essential part of our methodology is the 

clustering of image voxels based on their individual pattern of gene expression levels. We 

imposed a constraint that all voxels belonging to the same cluster form a contiguous region 

in three-dimensional space. Additionally, we account for bilateral symmetry of the brain, by 

relaxing this constraint, so that paired voxels on opposing hemispheres are allowed to belong 

to the same cluster.

We evaluated the results of different clustering methods and parameters by comparing 

computationally identified regions to a set of 34 conservatively outlined neuroanatomical 

regions that were identified by a human expert (see Methods 2.3.4). The top ranking map 

derived by this procedure comprised 180 regions (Figure 2A-C, Supplementary File 1). 

Many of these regions are easily recognized, and similar to manually segmented structures 

in Z-Brain (Fig. 2D). In other cases, multiple regions in the computational map additively 

correspond to a single region in Z-Brain, possibly revealing anatomical subdivisions that are 

difficult to manually segment or that were previously unrecognized (Fig. 2E). In the 

hindbrain, which is particularly difficult to annotate, some computational regions align well 

with longitudinal stripes of transcription factors that are thought to be an organizational 

principle in this area (Fig. 2F)[43]. The zebrafish brain is bilaterally symmetric with the 

exception of the dorsal habenula. Importantly, our clustering algorithm allows voxels on 

opposite sides of the axis of symmetry to belong to the same cluster, but does not impose 

bilateral symmetry. This means that pairs of regions on the left and right hemispheres can 

have different shapes. Nevertheless 92% of interhemispherically paired voxels were assigned 

to the same cluster, with most unmatched voxels at cluster boundaries (not shown), 

confirming that the map substantially captured intrinsic symmetry. Thus, the computational 

segmentation method reveals known neuroanatomical regions, and may disclose previously 

unrecognized structure within the larval brain.

3.2.2 Region-based permutation analysis of differences in voxel intensity—
Our comprehensive map of larval brain regions enabled us to use permutation tests to 

separately establish significance thresholds for each of the 180 regions (see Methods 

2.4.3.1). We compared the sensitivity and false-positive rates of these thresholds to those 

established using Holm-Bonferroni correction, using the simulated data set with 300 
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additional ‘cells’ described above. Region-wise thresholds correctly identified around 50% 

more voxels within the ventral thalamus, both for N=15 and N=20 images per group (Figure 

1E, 3A). False positives rates remained low, representing fewer than 0.1% of all voxels.

To more thoroughly compare methods for establishing significance thresholds, we used our 

image processing step to introduce 200 or 400 ‘cells’ into the ventral thalamus, then 

repeated the comparisons. When only 200 misplaced cells were introduced, neither method 

was sufficiently sensitive to correctly locate more than 10 significant voxels. With 400 cells, 

region-wise thresholds continued to correctly identify approximately 50% more significant 

voxels than Holm-Bonferroni thresholds. Indeed, using 20 brain scans per group, region-

wise thresholds located more than 1500 voxels with greater mean intensity in processed 

images. False-positive rates remained low throughout.

Because the ventral thalamus has a low density of glutamatergic neurons, contrast 

introduced by our added neurons is high in this area. To test whether our procedure could 

identify additional glutamatergic neurons in regions of the brain with a greater density of 

glutamatergic neurons, we digitally added cells to the posterior tuberculum, which has a 

medium density of glutamatergic neurons and to the inferior olive which has a high density 

of glutamatergic neurons, and repeated voxel-intensity comparisons. For both brain regions, 

and across sample-sizes and number of added cells added, region-wise thresholds correctly 

identified a greater number of voxels (Figure 3C,E). As anticipated, voxel-intensity 

morphometry was less sensitive overall in these two brain regions than in the ventral 

thalamus. Region-wise thresholds were generally accurate, except where very few voxels 

were detected overall, so that the presence of a small number outside the correct region 

resulted in up to an 8% false positive rate (Figure 3D,F).

3.3 Analysis of clusters of voxels with nominally significant changes in intensity

Some changes may produce only sub-threshold changes at individual voxels within a large 

spatially contiguous area. We therefore searched for clusters of adjacent voxels, each with 

only a nominally significant mean intensity change (see Methods 2.4.3.2 ). [19]. Next, to 

integrate information the spatial extent of each cluster and the significance level of changes 

in its constituent voxels, we summed the t-statistic for all voxels within a cluster (Tcluster). 

Recent work has shown that spatial autocorrelation renders cluster-wise tests especially 

susceptible to false positives, and that the error-rate is best controlled by using permutation 

testing [39]. We therefore used whole-brain permutation testing to derive significance 

thresholds for Tcluster scores.

We tested this procedure using our dataset of brain images with added simulated cells. For 

the ventral thalamus and posterior tuberculum, which have a relatively low normal density of 

glutamatergic neurons, cluster analysis greatly increased sensitivity, accurately detecting up 

to 10-fold more voxels in the correct regions over voxel-intensity morphometry (Figure 1F, 

3A,C). However, at the lowest added cell number used (200 extra neurons) cluster analysis 

failed to detect changes, possibly because there were too few contiguous voxels with mean 

intensity differences to form clusters. Likely for a similar reason, cluster analysis was less 

sensitive than voxel-intensity morphometry in the inferior olive, where simulated cells were 

added to a region with an already high density of glutamatergic neurons (Figure 3E,F).
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3.4 Identifying changes in brain shape using deformation field analysis

Neurodevelopmental phenotypes may affect brain shape or size, for example by changing 

the relative volume of white and grey matter due to disruptions in synaptogenesis or cell 

proliferation [44–46]. However, non-linear registration algorithms may obscure such 

differences by enforcing shape-matching to the reference brain. This difficulty has been 

addressed by applying deformation field analysis to the transformation matrix that is created 

for each image during registration (Figure 4A)[47]. The Jacobian determinant of each point 

within the transformation matrix indicates whether the volume of a voxel in the original 

image was increased or decreased in order to match the corresponding voxel in the reference 

image. We therefore established a procedure to statistically compare the Jacobian 

determinants for two groups of brains (see Methods 2.4.4).

To test this method, we simulated a mutant phenotype, taking advantage of the inherent 

asymmetry of the habenula. The habenula consists of bilateral nuclei located in the dorsal 

diencephalon and is the only morphologically assymetric region of the zebrafish brain, with 

the left habenular nucleus larger than the right [48]. We scanned 40 wild-type brains with 

pan-neuronal expression of the far-red fluorescent reporter mCardinal and then reflected half 

of the scans along the anterior-posterior axis, so that the left and right sides were reversed 

(Figure 4A-B). We reasoned that a robust method for brain morphometry should identify 

changes only in the habenula in normal versus flipped brains.

After registration, we generated the log Jacobian determinant (LJD) image from the 

transformation matrix for each brain. We then compared deformation fields by applying 

voxel-intensity comparisons to the groups of normal and flip-brain LJD images. To test 

sensitivity, we selected subgroups of the images (8–20 per group), and repeated each 

analysis 6 times with different random selections. For comparison, we also performed voxel-

intensity analysis on the registered brain images. Both voxel-intensity and deformation field 

analysis correctly located differences in the habenula. However, deformation field analysis 

tended to identify more changes (Figure 4C-E). For instance, with 20 images per group, 

cluster analysis of deformation fields identified 60% more voxels with significant 

differences in the habenula than voxel-intensity morphometry, with a false-positive rate of 

just 1.3% (Figure 4F-H). Overall, deformation field analysis using thresholds set by region-

wise permutations was the most sensitive, but also showed a relatively high false positive 

rate of around 10%. Using either method we were able to correctly identify differences in 

the habenula using as few as 8 samples per group, establishing that local perturbations in 

brain shape can be reliably detected.

3.5 Identifying brain shape changes using atlas volume measurements

Our brain registration procedure is initialized with an affine alignment, including global 

scaling of each image to best match the reference brain. Therefore, voxel-intensity and 

deformation-field analyses may fail to detect changes that affect brain volume as a whole. 

We reasoned this could be detected by applying the transformation matrix produced during 

registration to the neuroanatomical map, in reverse, to align it to the original brain scan (see 

Methods 2.4.5). This enabled us to compute brain size, simply by measuring the volume of 

the whole back-transformed atlas, and similarly, record the original size of each brain region 
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(Fig. 5A). We also used a similar approach to disclose changes that broadly alter brain 

cellular or neuropil sub-volumes. The set of 210 transgene expression patterns that we used 

for clustering included several that globally mark cell somas or neuropil. Therefore, to 

obtain a map of cell and neuropil regions, we repeated the clustering procedure using only 

those lines. The result was a map of brain regions that are strongly enriched for cell bodies 

or neuropil (Fig. 5B, Supplementary File 1). After registration, we could then transform this 

map back to original images and thereby estimate the total size of cell and neuropil dense 

regions.

To validate these measures, we generated embryos with morpholino knockdown of atoh7, an 

essential gene for optic tract formation, reasoning that loss of the optic nerve would reduce 

the size of the neuropil zone of the optic tectum. In contrast to atoh7 mutants that lack all 

retinal ganglion cells the transient activity of the anti-sense atoh7 morpholino only blocks 

differentiation of early-born retinal ganglion cells necessary for axon pathfinding out of the 

retina [32,49]. Brain volume, and the total volume of cellular and neuropil regions were 

similar in morphants (Fig. 5C). In our neuroanatomical map, tectal neuropil is subdivided 

into five regions, all of which were significantly reduced in size by around 12% in 

morphants; three subdivisions were top-ranked as different by both p-value and the 

magnitude of the change (Fig. 5D; Table 1). Two other retinorecipient nuclei, AF9 and the 

griseum tectale showed a similar reduction in size. Optic tectum cellular layers were also 

reduced in volume, potentially reflecting adaptation to decreased retinal input. Unexpectedly 

we also noted that morphants showed an increased size in adjacent regions in the forebrain, 

including the pallium and anterior commissure (Fig. 5E), in the interpeduncular nucleus and 

in two monoaminergic nuclei, the dorsal raphe and the locus coeruleus (Table 1). Atlas 

volume measurement is therefore a sensitive method for detecting changes that alter the size 

of specific brain regions.

3.6 Neurodevelopmental changes after valproic acid treatment

To test whether our voxel-intensity, deformation field and atlas volume methods could 

provide new insights into neurodevelopmental abnormalities, we used the valproic acid ASD 

model. VPA is a short chain fatty acid that is primarily used in humans as an antiepileptic 

and mood stabilizing drug. However, exposure to VPA during the first trimester of 

pregnancy has been linked to birth defects that include neural tube defects and congenital 

malformations. In addition, there is substantial evidence supporting an association between 

in utero exposure to VPA and an increased risk of developing ASD [6,50,51]. One theory is 

that autism is associated with a defect in the balance of excitatory/inhibitory signaling [52–

55]. Therefore, in addition to assessing whole brain microstructure using pan-neuronal 

mCardinal expression, we examined effects on glutamatergic and GABAergic neuron 

composition using the vglut2a:GFP and gad1b:RFP lines respectively. Triple transgenic 

embryos were exposed to 50 μM valproic acid for 49 h starting at 7 hpf, a dose that we 

confirmed did not produce overt changes in development or behavior [56].

Treatment of larvae with VPA resulted in significant changes in both excitatory and 

inhibitory neuron composition as well as local changes in brain shape. Increased 

vglut2a:GFP signal was found only in the optic tectum neuropil, whereas reductions were 
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observed in multiple brain regions including the subpallium, hypothalamus, thalamus, 

interpeduncular nucleus, and in an area at the anterior-most tip of the statoacoustic ganglion 

(Figure 6A-B). Visual comparison of matched slices from the original confocal images 

confirmed significant findings (Figure 6C). GABAergic neurons were also affected: 

treatment resulted in increased gad1b:RFP signal in the olfactory epithelium, olfactory bulb, 

and anterior commissure (data not shown) and a decrease in the optic tectum neuropil, 

medial tectal band, and rhombomeres 1 and 4 (Figure 6D-E). Deformation-field analysis 

revealed expansions of the preoptic area, thalamus, hypothalamus, cerebellum, the posterior 

lateral line ganglion and parts of rhombomere 7 (Figure 6F). The largest increases were seen 

in the cerebellum and ventral thalamus, where 30891 and 26650 voxels were identified, 

respectively. Decreased volume was observed in the interpeduncular nucleus and anterior 

commissure (data not shown). Thus, VPA-treatment during embryonic development strongly 

disrupted brain structure and composition, reducing the glutamatergic signal in many brain 

regions, and differentially affecting GABA neurons in other areas.

Loss of glutamatergic signal in part of the statoacoustic ganglion lead us to predict that 

VPA-treated larvae may show reduced escape responses to an acoustic stimulus. Indeed, 

when probed with auditory stimuli four days after termination of VPA exposure, larvae 

showed a significant reduction in overall responsiveness (F1,124=11.09, p < 0.001). We 

found differential effects on escape behavior: long-latency C-start responses were selectively 

decreased, with no significant effect on short-latency C-start responses (Fig. 7). Thus, 

anatomical changes were identified with sufficient precision to assess likely effects on 

behavior.

4. Discussion

Zebrafish is a rapidly emerging model for the study of neurodevelopmental disorders. 

Although genetic and imaging methods have long been available in this system, progress in 

elucidating complex, pleiotropic neurodevelopmental phenotypes has been limited by a 

scarcity of methods to perform detailed brain-wide analysis of neuroanatomical changes. 

Voxel-based morphometry is a powerful method for investigating anatomical brain 

abnormalities associated with human neurodevelopmental and psychiatric disorders. 

Although widely used in human neuroimaging studies, the application of VBM to vertebrate 

model organisms such as non-human primates and rodents has been limited by the accuracy 

of brain registration methods [57,58]. Advances in non-linear registration techniques and the 

construction of digital atlases have now allowed us to develop quantitative methods for 

voxel, deformation and volume-based analysis of zebrafish brains. This study validates these 

methods and demonstrates their application to the valproic acid model of ASD. Software for 

morphometric analysis is freely available from our website (https://science.nichd.nih.gov/

confluence/display/burgess/Software). Further, we describe a new neuroanatomical 

segmentation of the larval brain, based on K-means clustering of transgene expression data. 

The atlas is available within the download.

Registration techniques have been recently used in zebrafish to map changes in whole-brain 

activity patterns to a reference atlas, thereby connecting activity with neuroanatomical 

information [8,59,60]. A similar approach has been applied to analyze brain-wide changes in 
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gene expression in mutant embryos by using optical projection tomography to image 

chromogenic whole-mount in situ hybridization (WISH) stained samples for voxel-intensity 

analysis [7]. This method is excellent for analysis of WISH staining, as it utilizes a standard 

chromogenic staining protocol that produces sensitive and robust signals. However, optical 

projection tomography requires a specialized imaging platform and WISH necessitates 

tissue fixation which introduces deformation artifacts [22]. In contrast, the method described 

in this study uses standard confocal microscopy for live-imaging of transgene expression in 

wildtype or experimental samples. In principal, the same computational tools can be applied 

to fixed tissue samples that may be necessary for WISH or immunohistochemistry. 

Additionally, our method enables detection of shape and volume changes by analyzing 

deformation fields and measuring the size of brain subdivisions. The major limitation of our 

method is the time for deriving significance thresholds via permutation testing, typically 

around 90 minutes using 100 nodes on a computing cluster. However, our software (CobraZ, 

for Comparative Brain Analysis for Zebrafish) can also run using networked desktop 

computers, making it feasible to obtain results overnight using PCs available in a typical 

laboratory setting.

Our analyses use a new neuroanatomical map of 180 subdivisions of the larval brain. 

Historically, most neuroanatomy atlases have been constructed manually, by identifying 

regions with salient differences in cell composition or activity in functional studies. 

However, a particular challenge in the larval zebrafish model is that many brain regions lack 

conspicuous nuclear organization, making accurate segmentation of distinct regions difficult 

and subjective. Indeed, the widely used Mueller and Wullimann atlas of the larval brain [61] 

describes 102 regions, only half of the 195 regions annotated in the adult zebrafish brain 

[62], reflecting the absence of nuclear boundaries in many areas. To address this problem, 

we implemented an automated computational procedure that segmented distinct 

neuroanatomical regions by clustering voxels with similar genetic identity. Our algorithm 

was derived from K-means clustering, a method that requires a priori knowledge of the 

number of clusters. Based on the literature, we tested using 100300 clusters, and ultimately 

selected a map that comprised 180 regions. However this was simply the optimal map using 

our evaluation criteria and should not be taken as the true number of regions present in the 

brain. Many of our regions can likely be further subdivided - indeed, alignment of our 

neuroanatomical atlas with the map of cellular/neuropil zones shows that many regions 

could be separated at least into cell-rich and neuropil-rich areas. Moreover, when we applied 

a Bayesian Information Criterion (BIC) to evaluate the optimal number of clusters, we found 

improvement up to K=800 clusters. We did not pursue this further because of the difficulty 

in assessing the biological identity and basis for most of these regions. Nevertheless, the 

procedure accurately delineated known areas and also revealed brain regions that were 

previously not recognized. Thus by using this unbiased segmentation technique, we obtained 

a new neuroanatomical map of the zebrafish brain that enabled us to establish separate 

significance thresholds for different brain regions via permutation analysis, and measure the 

volume of specific nuclei. We anticipate that this new map will also facilitate mapping of 

neuronal circuits and comparative studies with mammals.

The three methods that we present for morphometric analysis have complementary 

strengths. Voxel-intensity comparisons (voxel and cluster analysis) are optimal for 
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identifying changes in the cellular composition of brain scans. Here, we imaged brains with 

fluorescent reporters in glutamatergic and GABAergic neurons, reporters that are widely 

expressed. However, the same method can be applied to any population of neurons marked 

by a transgenic line. Deformation-field and volume-based methods both identify local 

changes in brain microstructure. An advantage of deformation-field analysis is that it does 

not rely on the accuracy of the neuroanatomical map and may locate shape changes within 

brain regions. However, small global changes in scaling may not be detected using this 

method. Volume-analysis provides a reliable estimate of the actual volume of the entire brain 

and its subdivisions and has the further advantage that the magnitude of the changes are 

easily described. We envisage using morphometry to locate changes in brain development 

for subsequent analysis using molecular genetic methods. As such studies are time-

consuming and expensive, a major objective was to provide rigorous control over type I 

errors. False positives can be avoided by focussing on areas with significant changes that 

persist after stringent Holm-Bonferroni correction, and that show similar differences across 

brain hemispheres.

To demonstrate the effectiveness of our methods for detecting neurodevelopmental 

abnormalities, we analyzed the VPA model of ASD. VPA exposure was first associated with 

autism based on a high frequency of autism symptoms in patients with fetal valproate 

syndrome (FVS), a congenital disorder resulting from in utero VPA exposure [63,64]. FVS 

causes variable symptoms that frequently include facial dysmorphism, heart defects, spina 

bifida, and developmental delay. In a previous zebrafish study, the effect of treatment with 

60 μM VPA was assessed by histopathology and resulted in disruption of normal brain 

structure characterized by small regions of reduced cellularity [56]. We used a slightly lower 

dose, and found widespread loss of glutamatergic neuron signal and both gain and loss of 

GABAergic neuron signal in specific regions. Our imaging conditions could not distinguish 

whether this reflected a change in the number of neurons of each type, or a change in the 

level of expression of the fluorescent reporter. However, these changes are consistent with 

the function of VPA as a histone deacetylase inhibitor that affects the proliferative state of 

neural progenitor cells [65,66]. Expression of the glutamatergic neuron marker was reduced 

at the anterior-most region of the statoacoustic ganglion (as defined by a slight gap in 

neurod:GFP and isl2b:GFP transgene expression prior to the caudal-most part of the anterior 

lateral line ganglion). This finding led us to successfully predict that behavioral responses to 

an acoustic stimulus would be diminished. The finding that brain morphometry is 

sufficiently accurate and sensitive to detect changes that predict alterations in behavior is 

exciting, offering a new approach to characterizing effects of gene mutations. Additionally, 

we anticipate that these methods could be used to detect inherent morphological differences 

in diverse populations or strains of zebrafish, as has been demonstrated in surface-dwelling 

and cave-adapted Astynax mexicanus, which display changes in the neurodevelopmental 

program of the forebrain depending on the morph [67].

At a resolution sufficient to resolve individual neurons, morphometry in larval zebrafish uses 

5.3 M voxels, comparable to a human T1 MRI study (8 M voxels). Genetic studies in 

humans are typically limited by the difficulty in recruiting a sufficiently large patient cohort 

for statistical power. In contrast, large numbers of larvae carrying the same genetic mutation 

can be readily obtained from zebrafish crosses, such that the main limitation is in data 
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acquisition. At present a whole-brain three channel confocal scan requires around 20 

minutes, but with increasing access to selective planar illumination microscopy and 

automated microscopy platforms, it will become easier to collect very large sample sizes 

[68,69]. The ability to simultaneously acquire information about whole-brain structure and 

cellular composition is a key advantage of the zebrafish system. We therefore believe that 

our new tools for brain morphometry will broadly facilitate the investigation of 

neurodevelopmental phenotypes by using zebrafish to model the effects of gene mutations 

and environmental exposures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Voxel-intensity morphometry: sensitivity and error-rate.
A.Horizontal confocal slice from vglut2a:GFP transgenic zebrafish. Top panel: unmodified 

image. Bottom panel: similar level slice from a different brain scan, with 300 simulated cells 

added to the thalamus. Boxed regions show magnified views. Arrowheads mark simulated 

cells.

B.Number of statistically significant voxels in the thalamus after Holm-Bonferroni 

correction, using different numbers of brain scans per comparison group.

C.Percent of significant voxels located outside the thalamus for different size comparison 

groups.

D-F. Sagittal brain projection, showing location of pixels for comparisons between 

unprocessed and modified brainimages (15 images per group) that remained significant after 

Holm-Bonferroni correction (D), region-wise permutation testing(E), and cluster analysis 

(F). Insets show magnified views of the ventral thalamus.

H: hypothalamus; oe: olfactory epithelium; Sp:subpallium; MO:medulla oblongata; 

TeO:optic tectum.
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Figure 2. Computationally derived neuroanatomical segmentation.
A.Sagittal brain slice showing computationally derived regions and planes corresponding to 

the sections in B and C. The 3D neuroanatomical atlas is included within the CobraZ 

package, available at https://science.nichd.nih.gov/confluence/display/burgess/Software.

B.Coronal slices showing regions through the forebrain (1), midbrain (2), cerebellum (3) and 

hindbrain (4)

C.Horizontal slices showing regions through the tectum (1), tegmentum (2) and 

hypothalamus (3).

D.Comparison of computational regions (black outlines) to manually segmented anatomical 

regions in Z-brain (colored regions). Horizontal views (top panels, anterior up) and coronal 
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views (bottom panels) are shown. Left to right: habenula, dorsal thalamus, nucleus of the 

median longitudinal fasciculus, hypothalamus, inferior olive.

E.Comparison of computational regions (colored regions) to Z-brain regions (outlines). Left 

to right: horizontal views of optic tectum neuropil, pallium and cerebellum.

F.Top panel: computational regions in the hindbrain. Bottom panel, same regions outlined, 

showing transgenic expression of evx2:Gal4 (magenta), isl1:GFP (blue) and foxb1a:Gal4 
(green).

TeO: optic tectum; H:hypothalamus; MO:medulla oblongata; Ce:cerebellum; Sp:subpallium; 

Pa:pallium; Hb:habenula; Th:thalamus; nMLF:nucleus of the medial longitudinal fasciculus; 

IO:inferior olive
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Figure 3. Region-wise permutation testing and cluster-analysis of voxel-intensity differences.
A.Number of significant voxels detected in the ventral thalamus for N=15 brains per group 

(left graph) and N=20 brains (right graph) for different numbers of simulated cells added to 

the ventral thalamus. Significant pixels were identified using Holm-Bonferroni correction, 

region-wise permutation analysis and cluster analysis as indicated.

B.Percent of significant pixels detected outside the area where simulated cells were added, 

when significance thresholds were established using Holm-Bonferroni correction (H), 

region-wise permutations (R) and cluster analysis (C).
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C-F As for A and B, but where simulated cells were added to the posterior tuberculum (C-D) 

or the inferior olive (E-F).
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Figure 4. Deformation field analysis.
A.Processing of wildtype brain images by reflection around the anterior-posterior axis

B.Horizontal slice through the habenula showing (1) unregistered image, (2) deformation 

field produced during registration, (3) registered image. Left panels (wildtype) started with 

unprocessed images, right panels (flipped) with left/right-flipped images. Arrowhead shows 

voxel-expansion required on left side of image required to match reference brain.

C-E. Number of statistically significant voxels detected in the habenula after comparison of 

unprocessed and flip-brain images using Holm-Bonferroni correction (C), region-wise 

permutation testing (D) and cluster analysis (E). Results derived from analysis using voxel-

intensity comparisons (grey circles) and deformation-field analysis (black squares)

F-G. False positives (percent of all significant voxels that were outside the habenula) for the 

experiment in C-E for N=10 (F) and N=15 (G) per group and using voxel-intensity analysis 

(I) or deformation-field analysis (J).

H. 3D-projection of significant pixels comparing normal and flipped brains, from region-

wise permutations with N=15 per group. Arrowhead: habenula
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Hb:habenula; MO:medulla oblongata; oe:olfactory epithelium; TeO:optic tectum; 

Ce:cerebellum
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Figure 5. Atlas-volume measurements.
A.Schematic of procedure for measuring the volume of the whole brain, anatomical 

subdivisions and the cellular/neuropil zones. (1) Brain scans are registered to a reference. 

Then, the anatomical atlas (2) and map of cellular/neuropil regions (3), both generated on 

the reference brain, are back-transformed to the original images.

B.Cluster-derived map of cell-rich regions (green mask) and other (primarily neuropil, grey) 

brain regions. Dashed lines in top sagittal section indicate planes of section for 

corresponding coronal views below.

C. Volume of the whole brain, cellular regions and synaptic regions in wildtype larvae (w) 

and atoh7 morphants (m). N=11 per group.

D-E. Percent of brain occupied by regions (r) of the optic tectum neuropil (D) and forebrain 

(E) in wildtype (w) and atoh7 morphants (m). * p < 0.05 after Holm correction for 183 

comparisons (ie.180 regions, whole brain, cell volume, neuropil volume). Insets show 

neuroanatomical map in the corresponding areas with the region numbers indicated.

MO:medulla oblongata; TeO:optic tectum; H:hypothalamus; Ce:cerebellum; Pa: pallium
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Figure 6. Neuroanatomical changes following valproic acid treatment.
A-C. Voxel-intensity analysis of glutamatergic expression. (A-A’) Whole brain maximum 

intensity projections showing voxels that were significant in cluster analysis (fire) for 

decreased vglut2a:GFP signal. Dorsal view shown in (A) and sagittal view in (A’). Anterior 

is to the left. (B) Transverse view of bilateral voxel clusters at anterior tip of statoacoustic 

ganglia (fire) overlapping vglut2a:GFP transgene expression (green). (C-C’) Affine 

registered confocal images from individual brains showing vglut2a:GFP expression in 

untreated (C) and VPA-treated (C’) larvae. Anterior is to the left. In all images, grey staining 

shows pan-neuronal expression of HuC:Cer transgene. Color-scale (also applies to D,F) 

indicates relative p-values in voxel-wise comparisons.

D-E. Voxel-intensity analysis of GABAergic expression. (D-D’) Whole brain maximum 

intensity projections showing voxels that were significant in cluster analysis (fire) for 

decreased gad1b:RFP signal. Dorsal view shown in (D) and sagittal view in (D’).

Anterior is to the left. (E) Transverse view of bilateral voxel clusters in rhombomere 4 (fire) 

overlapping gad1b:RFP transgene expression (green). In all images, grey staining shows 

pan-neuronal expression of huC:Cer transgene.
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F. Deformation-field analysis. Dorsal (F) and sagittal (F’) views showing whole brain 

maximum intensity projections of voxels that were significant in region-wise analysis for 

increased volume resulting from VPA-treatment. Anterior is to the left. Grey staining shows 

pan-neuronal expression of huC:Cer transgene. Scale bar 100 μm (all panels).

H:hypothalamus; IPN:interpeduncular nucleus tegmentum; SAg:statoacoustic ganglion;Sp: 

subpallium; Th:thalamus; VT:ventral thalamus; MTe:medial tectum; R1:rhombomere 1; 

R4:rhombomere 4; R7:rhombomere 7; TeO:optic tectum; Ce:cerebellum; Po:preoptic area; 

PLLG:posterior lateral line ganglion; oe:olfactory epithelium; MO:medulla oblongata
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Figure 7. Valproic acid treatment effect on acoustic startle responsiveness.
A-B Responsiveness to acoustic stimuli. Percents show mean proportion of trials on which 

larvae executed a short-latency (%SLC, A) or long-latency (%LLC, B) C-start response for 

two acoustic stimulus intensities. N = 63 larvae per group. # p < 0.001; * p < 0.0001
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Table 1.

Brain regions with significant volume changes in atoh7 morphants

# Region wt atoh7- p-val

137 Anterior commissure 0.853 ± 0.011 0.919 ± 0.007 0.018

116 Griseum tectale 0.688 ± 0.007 0.628 ± 0.006 0.000

033 Interpeduncular nucleus tegmentum 0.333 ± 0.003 0.361 ± 0.004 0.010

071 Locus coeruleus 0.224 ± 0.001 0.235 ± 0.002 0.026

069 Medial tectal band 1.626 ± 0.014 1.492 ± 0.013 0.000

086 Mesencephalon 0.451 ± 0.003 0.483 ± 0.005 0.010

042 Migrated pretectal area M1 0.432 ± 0.004 0.406 ± 0.004 0.036

024 Neuropil adjacent to IPN 0.438 ± 0.003 0.474 ± 0.007 0.017

003 Optic tectum - neuropil 0.717 ± 0.008 0.627 ± 0.005 0.000

040 Optic tectum - neuropil 1.669 ± 0.019 1.481 ± 0.009 0.000

112 Optic tectum - neuropil 1.464 ± 0.02 1.303 ± 0.011 0.000

015 Optic tectum - neuropil 1.006 ± 0.013 0.908 ± 0.007 0.000

083 Optic tectum - neuropil 0.477 ± 0.007 0.439 ± 0.004 0.017

089 Optic tectum - stratum periventriculare 2.518 ± 0.033 2.218 ± 0.028 0.000

155 Optic tectum - stratum periventriculare 2.438 ± 0.027 2.204 ± 0.021 0.000

022 Optic tectum - stratum periventriculare 1.024 ± 0.011 0.939 ± 0.008 0.001

178 Optic tract - AF9 0.335 ± 0.003 0.309 ± 0.003 0.001

037 Pallium 0.805 ± 0.009 0.863 ± 0.006 0.005

061 Preoptic area 0.675 ± 0.008 0.729 ± 0.006 0.006

162 Rhombomere 1,2 - Ventral 0.295 ± 0.003 0.326 ± 0.006 0.016

140 Rhombomere 1,2 - Ventral 0.28 ± 0.002 0.301 ± 0.004 0.035

080 Rhombomere 7 0.42 ± 0.005 0.456 ± 0.006 0.035

060 Rhombomere 7 - Dorsocaudal 0.215 ± 0.002 0.23 ± 0.002 0.018

007 Rhombomere 7 - Ventromedial 0.484 ± 0.006 0.525 ± 0.007 0.043

079 Superior raphe 0.452 ± 0.003 0.482 ± 0.005 0.012

139 Tegmentum 0.857 ± 0.006 0.799 ± 0.01 0.011

147 Tegmentum 0.429 ± 0.003 0.455 ± 0.004 0.024

125 Tegmentum 1.202 ± 0.009 1.139 ± 0.01 0.026
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