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Abstract

Nuclear pore complexes (NPCs) are embedded in the nuclear envelope of eukaryotic cells and 

function to regulate passage of macromolecules in and out of the nucleus. Nup1 is one of 30 

nucleoporins comprising the NPC of the yeast Saccharomyces cerevisiae and is located on the 

nucleoplasmic face of the NPC where it plays a role in mRNA export and protein transport. In 

order to further characterize the function of Nup1 we used a genetic approach to identify 

mutations that are synthetically lethal in combination with a deletion of NUP1 (nup1∆). We have 

identified one such nup1 lethal mutant (nle6) as a temperature sensitive allele of nud1. NUD1 
encodes a component of the yeast spindle pole body (SPB) and acts as scaffolding for the mitotic 

exit network (MEN). We observe that nle6/ nud1 mutant cells have a normal distribution of NPCs 

within the nuclear envelope and exhibit normal rates of nuclear protein import at both the 

permissive and restrictive temperatures. nup1∆ also exhibits synthetic lethality with bub2∆ and 

bfa1∆, both of which encode proteins that colocalize with Nud1 at spindle pole bodies and 

function in the mitotic exit network. However, we do not observe genetic interactions among nle6/
nud1, bub2∆ or bfa1∆ and mutations in the nucleoporin encoding genes NUP60 or NUP170, nor is 

nup1∆ synthetically lethal with the absence of components downstream in the mitotic exit 

network, including Lte1, Swi5, and Dbf2. Our results suggest a novel functional connection 

between Nup1 and proteins comprising both the spindle pole body and early mitotic exit network.
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Introduction

In eukaryotic cells, the nuclear envelope provides the double-membraned barrier separating 

the cytoplasm from the nucleus. In order to allow the passage of molecules between the 

cytoplasmic and nucleoplasmic compartments, the nuclear envelope is perforated with large, 

hetero-oligomeric protein structures termed nuclear pore complexes (NPCs). The NPCs are 

the sole mediators of nucleocytoplasmic transport across the nuclear envelope. While small 

molecules are able to passively diffuse through the channel formed within each NPC, the 

movement of molecules of more than about 50 kDa is regulated (reviewed in Pemberton and 

Paschal 2005). Each NPC is defined by a filamentous cytoplasmic region, a central 

transporter region, and a nuclear basket structure and is comprised of approximately 30 

different NPC proteins (nucleoporins or Nups), which both generate the structure of the NPC 

and participate in the transport of substrates through the pore (Rout et al. 2000; Cronshaw et 

al. 2002; reviewed in Lim and Fahrenkrog 2006). Nup1 is a nucleoporin in Saccharomyces 
cerevisiae that is localized asymmetrically to the nucleoplasmic side of the NPC at the 

nuclear basket (Rout et al. 2000). Although NUP1 is non-essential in most strain 

backgrounds, cells lacking NUP1 (nup1∆) exhibit temperature sensitive growth, as well as 

defects in mRNA export, nuclear protein import, and nuclear envelope structure (Bogerd et 

al. 1994; Schlaich and Hurt 1995).

Recently, there has been emerging evidence that the NPC is important in other processes in 

the cell beyond its function in nucleocytoplasmic transport. Various roles have been 

characterized for nucleoporins in gene regulation, apoptosis, the secretory pathway and cell 

cycle control (reviewed in Fahrenkrog et al. 2004). Since the NPC is the only conduit for 

transport of the many cargos that move between the nucleoplasm and cytoplasm, it is 

particularly well suited to act as a point of cell cycle control. Alteration of cargo protein 

localization by phosphorylation adjacent to nuclear localization signals has been a well 

characterized form of cell cycle regulation (Jans and Hubner 1996; Kaffman and O’Shea 

1999). Cargo has also been shown to be compartmentalized by regulated transport. For 

example, the phosphatase Cdc14 is sequestered to the nucleolus to prevent export and 

mitotic exit (Visintin et al. 1999). Changes in the NPC have been shown to affect 

karyopherin binding to nucleoporins and alter transport of substrates temporally during the 

cell cycle (Makhnevych et al. 2003). Beyond their role in transport, NPCs also physically 

interact with two spindle assembly checkpoint proteins, Mad1 and Mad2 during the cell 

cycle (Iouk et al. 2002). Additionally, several connections have been made between the NPC 

and the spindle pole body (SPB), which is also embedded in the nuclear envelope. The SPB 

functions as the microtubule-organizing center in yeast and controls assembly and 

localization of microtubule-based cellular scaffolding as well as chromosome segregation 

via the mitotic spindle. The NPC and SPB share two components, Cdc31 and Ndc1 (Fischer 

et al. 2004; Chial et al. 1998). Ndc1 has been shown to play a role in the assembly and 
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insertion of both NPCs and the SPB into the nuclear envelope (Lau et al. 2004; Madrid et al. 

2006).

Here we describe a novel connection between the nucleoporin Nup1 and components of the 

SPB and mitotic exit network (MEN), a cell cycle checkpoint whose protein components 

localize to the SPB. Previously, we performed a genetic screen to identify mutants in S. 
cerevisiae that exhibit synthetic lethality with nup1∆ and thus require NUP1 for viability 

(Belanger et al. 1994). This screen led to the isolation of 17 nup1∆ lethal (nle) mutants, 

including alleles of genes encoding the nuclear transport protein Kap60 and the nucleoporins 

Nup170 and Nup82 (Belanger et al. 1994, 2004; Kenna et al. 1996). In this study, we 

identify nle6 as an allele of NUD1, encoding a SPB protein and anchor for proteins in the 

MEN (Gruneberg et al. 2000). We also observe that deletions of SPB/MEN components 

Bfa1 and Bub2 are synthetically lethal with nup1∆. The conditional nle6/nud1 mutant does 

not significantly alter NPC localization or protein import kinetics, nor does it affect Bfa1 or 

Bub2 localization to the NPC. Our results implicate Nup1 and the NPC in a novel role for 

regulation of cell cycle progression.

Materials and methods

Yeast strains, media, and reagents

Yeast genetic manipulation, cell culture, and media preparation were performed as described 

(Guthrie and Fink 1991), as were all yeast transformations (Woods and Gietz 2001). 

Enzymes for molecular biology were purchased from New England Biolabs (Beverly, MA) 

and Sigma-Aldrich (St. Louis, MO) and were used as per manufacturer’s instructions. 

Haploid yeast strains containing genomic deletions of BFA1, BUB2, LTE1, SWI5, DBF2, 

NUP60 and NUP170 were purchased from Open Biosystems (Huntsville, AL) and mated to 

produce the strains used in this study (Table 1). Haploid nup1∆ yeast strain KBY1447 was 

generated by transforming the nup1∆/NUP1 diploid strain from Open Biosystems with CEN 
URA3 NUP1 (pLDB59), sporulating and dissecting the resulting diploids, and isolating 

KBY1158 (nup1∆ + pLDB59). Selection against pLDB59 was performed on plates 

containing 1 µg/ml 5-Xuoro-orotic acid (5FOA; Zymo Research, Orange CA) to generate 

KBY1447. Osmotic stress was assayed on solid YPD media containing 1 M sorbitol.

Cloning and rescue of NUD1

Yeast strain KBY10 containing nle6 was isolated as described previously (Belanger et al. 

1994). Strain LDY796 used for cloning nle6 was generated by crossing KBY10 with L2612, 

sporulating, and isolating temperature sensitive spores lacking nup1::LEU2. Cloning by 

complementation of nle6 temperature sensitivity was performed by transforming LDY796 

with a yeast genomic library in pRS202 (Connelly and Hieter unpublished). Transformants 

were incubated 5 days at 24°C on SD-Ura media, then were replica plated to fresh SD-Ura 

and incubated at 37°C. Viable colonies were restreaked to 37°C. Plasmids were isolated 

from three transformants viable at 37°C using glass bead lysis and retransformed into 

LDY796 and KBY10 to confirm complementation of nle6 temperature sensitivity and of 

nup1∆ nle6 synthetic lethality. DNA sequencing of complementing plasmids confirmed the 
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presence of NUD1 on all complementing plasmids. Complementation of nle6ts by NUD1 
was confirmed using pSM783.

Genetic analysis of nup and MEN mutants

Tetrad analysis was performed by mating haploid strains (Table 1) containing a deletion of 

NUP1, NUP60 or NUP170 with various SPB or MEN-encoding gene deletion strains, all in 

the BY4741/4742 strain background (Open Biosystems, Huntsville, AL). These gene 

deletions were grown on media containing G418 (Gibco BRL, Gaithersburg, MD) and 

ClonNat (Werner Bioagents, Jena, Germany) to select for the associated drug resistance 

markers. Diploid colonies were suspended in 3 ml 0.3% KAc supplemented with required 

amino acids at 24°C to induce sporulation. The asci of the resultant tetrads were incubated in 

2 mg/ml zymolyase and then 24 tetrads were dissected onto YPD plates and grown at 24°C. 

Haploid cells from each tetrad were examined for segregation of selective markers by using 

a 48-prong inoculator to transfer serially diluted cell suspensions onto selective plates. 

Resultant haploid strains were transferred to SD-Ura, -His, -Met, -Lys, YP-G418 and YP-

ClonNat plates. In the case of nup1∆, crosses were made using a parental strain containing a 

CEN NUP1 URA3 plasmid (KBY1158) and the haploid progeny were transferred to 5FOA 

to select against the plasmid. All the plates were then incubated at 24°C, with the exception 

of YPD and 5FOA, one of each of which was also incubated at 30°C and 37°C.

Fluorescence microscopy

LDY1033 (wild-type) and KBY1294 (nud1-G585E) strains were transformed with plasmids 

according to Woods and Geitz (2001). pSW950 (Nic96-GFP) was cut with AflII and 

integrated at HIS3. pSW956 (Nsp1-GFP) was cut with SpeI and integrated at HIS3. pRL282 

(Bfa1-GFP) and pRL288 (Bub2-GFP) were cut with XcmI and integrated at URA3. Cells 

were grown at 24°C and observed using direct fluorescence microscopy of cells in log phase 

and after 2–4 h shifts to 37°C. Images were captured using SPOT camera software 

(Diagnostic Instruments, Inc., Sterling Heights, MI) and final images were produced in 

Adobe Photoshop CS (Adobe Systems Inc., San Jose CA).

In order to examine protein import kinetics, strains W303 (wild type) and LDY796 (nle6), 

were transformed with plasmid pSV40-NLS-GFP (Shulga et al. 1996), grown in SD–Ura to 

A600 0.05–0.2, treated with metabolic inhibitor and observed by direct fluorescence 

microscopy (Shulga et al. 1996) using a Nikon E600 epifluorescence microscope. Samples 

at 37°C were shifted to the non-permissive temperature for 2 h and treated as described 

(Belanger et al. 2004).

Results

In order to identify genes encoding proteins that functionally interact with Nup1, we carried 

out a large-scale screen for mutant alleles that are synthetically lethal with nup1∆. In this 

screen, 17 nup1∆ lethal (nle) mutants were obtained, nle1 through nle17 (Belanger et al. 

1994). Of these, five have been cloned and all have been alleles of genes encoding proteins 

known to be involved in nuclear transport: nle1 = srp1/kap60, the NLS-binding subunit of 

the karyopherin a/þ heterodimer (Belanger et al. 1994); nle2 = gle1, an essential activator of 
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mRNA export (Murphy and Wente 1996; Alcazar-Roman et al. 2006; Kenna, Belanger, 

Davis unpublished); nle3/nle17 = nup170, a nucleoporin important for NPC structure and 

assembly (Kenna et al. 1996); nle4 = nup82, an essential nucleoporin at the cytoplasmic face 

of the NPC (Grandi et al. 1995; Hurwitz et al. 1998; Belanger et al. 2004); and nle7 = yrb1, 

a yeast Ran-binding protein necessary for activating the Ran-GAP (Schlenstedt et al. 1995; 

Belanger and Davis unpublished).

In order to determine the gene mutated in the temperature sensitive nle6 mutant, we 

transformed a yeast genomic library into a strain containing the nle6 allele and identified a 

genomic region that complemented the temperature sensitivity of nle6. This region of 

genomic DNA contained three open reading frames, including one encoding the SPB protein 

Nud1. We obtained a centromeric plasmid containing NUD1 and observed that the plasmid 

complemented both the nle6 temperature sensitivity (Fig. 1) and the nle6 nup1∆ synthetic 

lethality (data not shown). DNA sequence analysis of the nle6 allele revealed a single base 

substitution in NUD1 in which adenine was replaced by guanine at nucleotide 1754. This 

substitution resulted in a missense mutation in which a glycine was replaced with a glutamic 

acid at amino acid 585, so we now refer to the nle6 mutant allele as nud1-G585E. 

Interestingly, this exact nud1 allele was also isolated in an independent mutagenic screen 

designed to identify yeast lysis mutants (Alexandar et al. 2004).

Since the nud1-G585E conditional allele was also isolated in a screen to identify cell lysis 

mutants (Alexandar et al. 2004), we sought to determine if disruptions of specific 

nucleoporins or MEN components also confer a cell lysis phenotype. Both the cell lysis 

phenotype and the temperature sensitivity of the nud1-G585E allele are suppressed by 

incubation on media providing osmotic support (Alexandar et al. 2004). In order to 

determine if the growth phenotype associated with a NUP1 deletion could also be 

suppressed by osmotic support, we streaked wild type, nud1-G585E, and nup1∆ cells on 

plates containing 1 M sorbitol in YPD (Fig. 2) and incubated the plates at 24°, 30°, 32°, and 

37° for 2–5 days. As expected, the nud1-G585E cells grew on 1 M sorbitol at all 

temperatures. However, the nup1∆ cells exhibited a lack of growth at elevated temperatures 

in either the presence or absence of sorbitol, and actually grew more slowly at 30°C on 

media containing sorbitol than on YPD (Fig. 2, upper right). An identical experiment was 

carried out using the conditional nud1 alleles nud1–2 and nud1–44, the nup mutants nup60∆ 
and nup133∆, and MEN mutants bfa1∆, bub2∆, and dbf2∆. Again, the conditionality of the 

nud1 mutants was suppressed by 1 M sorbitol, while the nup mutants exhibited slightly 

slower growth on YPD containing sorbitol (data not shown). Thus, unlike nud1 mutants, 

growth phenotypes caused by the absence of the Nups tested cannot be suppressed by 

osmotic support. No difference in growth was observed in the presence or absence of 

sorbitol for the MEN mutants bfa1∆, bub2∆, or dbf2∆ (data not shown).

Since we isolated nud1-G585E through a synthetic lethal interaction with a component of 

the nuclear pore complex, we investigated whether nud1-G585E mutant cells exhibit 

alterations in NPC function. In order to test for changes in NPC distribution in nud1-G585E, 

we transformed plasmids expressing chimeric fusions of GFP with the nucleoporins Nic96 

and Nsp1 into wild type and nud1-G585E cells. Cells expressing Nic96-GFP (Fig. 3a) and 

Nsp1-GFP (data not shown) were observed by fluorescence microscopy. Nic96-GFP and 
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Nsp1-GFP exhibited the same punctate nuclear envelope staining in nud1-G585E as in wild-

type backgrounds grown at both 24°C and 37°C, indicating that NPC distribution throughout 

the nuclear envelope is not detectably altered in nud1-G585E mutant cells.

In order to determine if a loss of Nud1 function affects nuclear protein import through the 

NPC, we observed the subcellular localization of several nuclear proteins in nud1-G585E 
mutant cells at permissive and restrictive temperatures. In an effort to identify whether a loss 

of Nud1 function affected the transport of specific karyopherins/ importins, we performed 

steady-state fluorescence microscopy on nud1-G585E mutant cells expressing a classical 

NLS (cNLS) imported by the Kap95/Kap60 karyopherin heterodimer (Enenkel et al. 1995), 

the NLS of Nab2 imported by the karyopherin Kap104 (Siomi et al. 1998; Lee and 

Aitchison 1999), and the Pho4-NLS imported by Kap121 (Kaffman et al. 1998). The 

intracellular localization of Nab2-GFP, Pho4-GFP, and cNLS-GFP fusions was 

predominantly nuclear in wild type and nud1-G585E cells at both 24°C and 37°C (Fig. 3b 

and data not shown), indicating that Kap60/95, Kap104, and Kap121-mediated protein 

import is retained in the absence of Nud1 function.

While steady-state localization of these reporters indicated that each could be imported into 

the nucleus in cells containing the nud1 mutation, this experiment did not address whether 

the kinetics of import are altered in the absence of Nud1 activity. We next examined whether 

the rate of import of a nuclear protein containing a classical nuclear localization signal 

(cNLS) is altered in a nud1-G585E mutant. To this end, we performed a kinetic assay of 

nuclear transport (Shulga et al. 1996) by transforming wild-type and nud1-G585E cells with 

a plasmid expressing a cNLS–GFP fusion, equilibrating the cNLS–GFP reporter protein 

across the nuclear envelope using metabolic inhibitors, then rinsing away the inhibitors to 

allow nuclear import to occur and cNLS–GFP to re-accumulate in the nucleus. The relative 

rate of nuclear protein import was determined by calculating the percentage of cells 

exhibiting a predominantly nuclear accumulation of GFP at 2 min time intervals. Under all 

conditions tested, approximately 50% of the cells had nuclear fluorescence within 5 min 

after release from metabolic inhibition (Fig. 3c), indicating that cells containing nud1-
G585E import the cNLS–GFP into the nucleus with kinetics similar to wild-type cells at 25° 

and after a 2 h shift to 37°C. These data suggest that the nud1-G585E mutation of NUD1 
does not detectably alter the rate of cNLS-mediated protein import through the NPC.

Nud1 is an important structural component of the outer plaque of the SPB, located on the 

cytoplasmic face of the nuclear envelope (Elliott et al. 1999). Since Nud1 also acts as 

scaffolding to anchor components of the MEN at the SPB, specifically the Bub2/Bfa1 

complex (Gruneberg et al. 2000), we tested whether bub2∆ and bfa1∆ also exhibit synthetic 

lethality with nup1∆. Haploid cells containing bub2 or bfa1 deletion alleles were mated with 

nup1∆ cells and the resulting diploid strains sporulated to generate tetrads containing 

haploid meiotic progeny. Synthetic lethality was assessed based on the growth of double 

mutant haploid strains identified by tetrad analysis. Cells containing single bfa1∆, bub2∆, or 

nup1∆ mutations are viable, while those deleted for both nup1 and bfa1 or nup1 and bub2 
are inviable (Fig. 4). This synthetic growth defect provides further evidence for a functional 

interaction between Nup1 and components of the SPB and/or MEN.
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In order to further investigate the relationship between Nup1 and MEN function, we crossed 

nup1A cells with mutants containing deletions of genes encoding the non-essential MEN 

proteins Lte1, Swi5, and Dbf2. Each of these proteins functions downstream of Bfa1 and 

Bub2 in the mitotic exit network (Cid et al. 2002). Tetrad analysis revealed that nup1A does 

not exhibit synthetic lethality with lte1∆, swi5∆, or dbf2∆ alleles (Table 2), suggesting that 

the functional interaction between Nup1 and the MEN may be specific to those components 

of the MEN that function early in the signaling cascade, especially those factors that 

negatively regulate the progression to exit from mitosis.

In order to determine if the genetic interactions we observed between NPC and SPB/MEN 

components were specific to nup1∆ or were a general phenotype of altered NPC structure or 

function, we repeated the genetic analyses described above using the nucleoporin mutants 

nup60∆ and nup170∆. Nup60 is another FG nucleoporin that, like Nup1, is associated 

asymmetrically with the nuclear face of the NPC (Rout et al. 2000). Additionally, nup60∆ is 

synthetically lethal with nup1∆ (Fischer et al. 2002). Nup170 is localized symmetrically in 

the NPC, but nup170 deletions exhibit chromosome segregation defects and synthetic 

lethality with nup1∆ (Kerscher et al. 2001; Kenna et al. 1996). We generated haploid spores 

containing both a deletion of nup60 or nup170 and a mutation in nud1, bub2, bfa1, or other 

MEN components. Examination of these spores revealed that all combinations of nup/MEN 

mutations tested remain viable (Table 2). Thus, we observed that, unlike nup1∆, the nup60∆ 
and nup170∆ alleles do not exhibit synthetic lethality with nud1-G585E, bub2∆ or bfa1∆. 

We conclude that the genetic interactions we observe between nup1∆ and nud1, bub2, and 

bfa1 are specific and not a general characteristic of NPC mutants.

Nup1 is a member of the FG-repeat containing family of proteins that physically associates 

with karyopherins in mediating cargo transport through the NPC. Nup1 contains a large 

central domain comprised almost entirely of ‘FXFG’ repeats, as well as a shorter C-terminal 

domain that includes several more degenerate ‘FG’ repeats (Davis and Fink 1990). The 

FXFG repeats of Nup1 associate with several karyopherins, including Kap95 (Rexach and 

Blobel 1995), and deletion of these repeats results in synthetic genetic interactions with 

other nucleoporin mutants (Strawn et al. 2004), but the FXFG domain is not essential for 

efficient cargo transport through the NPC (Pyhtila and Rexach 2003; Zeitler and Weis 2004). 

In order to investigate whether the synthetic lethality we observed between nup1∆ and early 

MEN mutants was the result of the absence of Nup1 FXFG repeats, we generated double 

mutant cells containing a deletion of the Nup1 FXFG domain (nup1∆FXFG) in combination 

with nud1-G585E, bub2∆, and bfa1∆ mutations and examined the resulting cells for growth 

phenotypes. All of the cells containing deletions of nud1, bfa1, or bub2 in combination with 

nup1∆FXFG are viable (Table 2), suggesting that MEN/ nup1∆ synthetic lethality is 

independent of the karyopherin-binding Nup1 FXFG repeats.

Since the Bub2/Bfa1 complex binds at Nud1 to act in the MEN (Gruneberg et al. 2000) and 

bub2∆ and bfa1∆ also exhibit synthetic lethality with nup1∆, we investigated whether the 

loss of Nud1 function in nud1-G585E cells was interfering with binding of Bub2/Bfa1 at the 

SPB. In order to test this, we observed the subcellular localization of Bub2 and Bfa1 in cells 

containing the nud1-G585E mutation. Plasmids expressing Bub2-GFP and Bfa1-GFP were 

transformed into wild type and nud1-G585E cells and localization of the GFP fusions was 
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observed by direct fluorescence microscopy. Both Bub2-GFP and Bfa1-GFP exhibited 

discreet SPB localization in wild type and nud1-G585E cells cultured at 24°C and at 37°C, 

suggesting that the temperature sensitive phenotype of the mutant is not a result of altered 

Bub2/Bfa1 localization (Fig. 5a).

Given the genetic connections we observed between Nup1, Bfa1, and Bub2, we also 

examined whether mutations altering Nup1 function resulted in changes in Bfa1 or Bub2 

localization. Interestingly, we were unable to successfully introduce either a Bfa1-GFP or 

Bub2-GFP containing plasmid into nup1∆ cells (data not shown). We were able to obtain 

expression of Bfa1-GFP and Bub2-GFP in nup1∆FXFG cells and the intracellular 

distribution of both fusion proteins appeared identical to the localization observed in wild 

type cells (Fig. 5b).

Discussion

Cells lacking the nucleoporin Nup1 exhibit defects in cell structure and function, including 

nuclear transport of proteins and RNAs, nuclear envelope morphology, nuclear inheritance, 

and microtubule organization (Bogerd et al. 1994; Schlaich and Hurt 1995; Fischer et al. 

2002). We have previously described a large-scale genetic screen used to identify mutations 

that are synthetically lethal with a deletion of NUP1 (Belanger et al. 1994). Seventeen 

nup1∆ lethal (nle) mutants were isolated in this screen, representing 16 complementation 

groups. Six of the nles are alleles of genes encoding proteins involved in nuclear transport 

and/or NPC function. In this work, we report the cloning of nle6 and its identification as a 

temperature-sensitive allele of NUD1, an important component of the yeast spindle pole 

body and regulator of activation of the mitotic exit network. We also identify deletions of the 

SPB and MEN components Bfa1 and Bub2 as synthetically lethal with nup1∆. Thus, nle6/
nud1-G585E, bfa1∆, and bub2∆ represent the first nles without a previously identified role 

in nuclear transport or NPC function and provide a potential link between Nup1 and the 

activity of the SPB and/or MEN.

Recently, a number of significant connections have been made between the NPC and cellular 

processes other than nucleocytoplasmic transport (see Fahrenkrog et al. 2004 for review), 

including links to SPB and MEN function in yeast. Ndc1 is a transmembrane protein that 

localizes to both NPCs and SPBs and is important for assembly of both of these massive 

complexes spanning the nuclear envelope (Chial et al. 1998; Lau et al. 2004; Madrid et al. 

2006). The yeast centrin Cdc31 is a SPB-associated protein that is important for SPB 

duplication (Baum et al. 1986; Spang et al. 1993) and has recently been shown to be an 

important component of the Sac3-Thp1 mRNA export complex that binds Nup1 and Nup60 

at the nucleoplasmic face of NPCs and plays an important role in mRNA export (Fischer et 

al. 2002, 2004). Additionally, the Mlp2 protein is associated with the nucleoplasmic face of 

the NPC, but also binds the SPB components Spc29, Spc42, and Spc110 and is important for 

SPB structure and function (Niepel et al. 2005). Our data describing a synthetic interaction 

between nup1∆ and mutations in NUD1, BFA1, and BUB2 provide additional genetic 

evidence for a link between Nup1 and SPB function. Interestingly, Nup1 is located 

exclusively on the nucleoplasmic face of the NPC, while Nud1, Bfa1, and Bub2 all associate 
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with the cytoplasmic plaque of the SPB, making a direct physical interaction between Nup1 

and these SPB components unlikely.

NPC components are also important in cell cycle regulation. The NPC participates in cell 

cycle progression in part by functioning as a passageway for the nucleocytoplasmic 

relocalization of specific proteins important for cell cycle control, such as the Swi6 

transcription factor and the Cdc14 phosphatase (Queralt and Igual 2003; Harreman et al. 

2004; Carmo-Fonseca et al. 2000). The yeast NPC itself undergoes a structural 

reorganization during mitosis that allows for altered nucleocytoplasmic transport of some 

proteins involved in mitotic progression (Makhnevych et al. 2003). Thus, the NPC functions 

to regulate the cell cycle in part via regulation of the nucleocytoplasmic localization of 

specific proteins important for cell cycle progression. Several genetic interactions have been 

identified that link specific nucleoporins and nuclear transport factors to MEN function in 

the cell cycle. Alleles of NUP170 and CDC14 were both isolated in a screen designed to 

identify mutations that have increased sensitivity to Cln2 overexpression (Yuste-Rojas and 

Cross 2000), alleles encoding the karyopherins Kap60, Mtr10, and Kap104 were isolated as 

suppressors of cdc15 mutants (Shou and Deshaies 2002; Asakawa and Toh-e 2002), and 

Kap104 appears to function to stimulate Cdc14 activity and thus exit from mitosis (Asakawa 

and Toh-e 2002). Thus, the synthetic interaction between nup1∆ and MEN components 

described here may be the result of changes in nucleocytoplasmic transport. The lack of a 

nucleoporin such as Nup1 may alter the import or export of a factor or factors necessary for 

cell cycle progression in the absence of early MEN components, resulting in an inability to 

progress through the cell cycle.

Nud1 is a structural protein located on the outer plaque of the SPB on the cytoplasmic side 

of the nuclear envelope and also acts as scaffolding for the MEN (Wigge et al. 1998; Adams 

and Kilmartin 1999). Bub2 and Bfa1 are bound to the SPB as a complex by Nud1, where 

they act as a GTPase activating protein (GAP) to inhibit Tem1 (Gruneberg et al. 2000; 

Geymonat et al. 2002). The daughter-cell-specific Lte1 acts as a guanine nucleotide 

exchange factor (GEF) to activate Tem1 and facilitate its sequestering of Cdc15 to the 

daughter SPB (Wang et al. 2000; Gruneberg et al. 2000; Pereira et al. 2002). Here, Cdc15 

stimulates the kinase activity of the Dbf2–Mob1 complex, which is also found in high 

concentrations at the daughter SPB (Cid et al. 2002). Activation of the Dbf2– Mob1 

complex allows for total release of the Cdc14 phosphatase from the nucleolus into the 

cytoplasm, where it functions to reverse Cdk-dependent phosphorylation, inhibit mitotic 

Cdks and allow mitotic exit (Pereira et al. 2002; Visintin et al. 1998).

The synthetic interactions observed for nup1∆ with nud1-G585E, bfa1∆, and bub2∆ suggest 

a functional interaction between Nup1 and components of the SPB and early MEN. The 

genetic interactions between this particular nucleoporin and SPB/early MEN components 

appear to be quite specific, as other nucleoporins and SPB/MEN components tested do not 

exhibit synthetic lethality (Table 2). Since proteins of the MEN are mostly localized to the 

cytoplasm, there is a physical separation between these and the Nup1 localized at the nuclear 

basket. While a direct physical link between Nup1 and the MEN components is unlikely, the 

shuttling between the cytoplasm and nucleoplasm of specific factors required for mitotic exit 

could implicate these proteins in the same functional pathway. Cdc14, a critical component 

Harper et al. Page 9

Curr Genet. Author manuscript; available in PMC 2018 December 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of the MEN, is sequestered in the nucleolus during much of the cell cycle, but must be 

exported into the cytoplasm to function in mitotic exit and thus nup1∆ mutants could alter 

Cdc14-mediated cell cycle progression (Carmo-Fonseca et al. 2000; Trautmann and 

McCollum 2005). However, although Nup1 could potentially facilitate nuclear export of 

Cdc14, it appears Cdc14 is exported by Crm1, an exportin that has not been shown to 

interact with Nup1 (Bembenek et al. 2005).

The specificity of the synthetic interaction between nup1∆ and components that function 

early in the MEN pathway, but not late MEN components, might provide some insight into 

the functional basis for this genetic interaction. Nud1, Bfa1, and Bub2 all function as 

negative regulators of cell cycle progression, acting to retain Tem1 in its inactive, GDP-

bound state. The loss of this negative regulation may lead to an increased likelihood of cells 

exiting mitosis prematurely under some conditions (Bosl and Li 2005). Mutations in nup1 
not only affect nucleocytoplasmic transport, but also result in altered microtubule 

organization and aberrant nuclear inheritance, leading to an increase in multinucleate and 

anucleate daughter cells (Bogerd et al. 1994). Failure to regulate exit from mitosis under 

such conditions may lead to an increase in inviable daughter progeny. In contrast, the late 

MEN mutants tested (lte1∆, dbf2∆, swi5∆) all encode proteins that stimulate mitotic 

progression (Bosl and Li 2005). Reduced amounts of these factors due to gene deletion 

could potentially result in a delay in progression that would allow appropriate chromosome 

segregation in a fraction of nup1∆ mutant cells, resulting in apparent viability of the nup1A/

late MEN double mutants.

The genetic interactions presented here suggest that Nup1 may play a novel role in 

connection with the SPB and MEN. General defects in nucleocytoplasmic transport in 

nup1∆ do not seem to account for the connection. It is possible that specific Nup1-mediated 

transport of MEN proteins results in the genetic interactions between nup1∆ and mutants of 

the SPB/MEN. Careful localization of Cdc14 throughout the cell cycle in nup1∆ and other 

nucleoporin mutants may be necessary to elucidate whether nuclear transport is important 

for Cdc14 and MEN function and whether specific Nups are essential for this transport. 

Alternatively, Nup1 may function in mitotic progression via the MEN independently of its 

role in nucleocytoplasmic transport.
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Fig. 1. 
NUD1 complements the temperature sensitivity of nud1-G585E. Wild-type (LDY1033) and 

nud1-G585E (KBY1294) yeast were transformed with CEN URA3 (pRS316) and CEN 
NUD1 URA3 (pSM783) and streaked to four quadrants of –Ura plates (left). Cells were 

incubated at 24°C (middle) and 37°C (right) to visualize viability of the strains at these 

temperatures. CEN NUD1 URA3 allows growth of nud1-G585E at 37°C
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Fig. 2. 
Osmotic support suppresses the temperature-sensitivity of nud1-G585E but not nup1∆. Wild 

type haploid yeast (BY4742) and yeast containing nup1∆ (KBY1447), expressing nup1∆ 
covered by plasmid-borne NUP1 (KBY1158), and containing nud1-G585E (KBY1294) 

were streaked to either YPD or YPD containing 1 M sorbitol (YPD + sorb) and incubated at 

30 and 37°C. Cells were photographed 48–72 h after streaking
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Fig. 3. 
NPC distribution and nuclear protein import are not altered by the nud1-G585E allele. (a) 

Nic96-GFP localization was observed in log phase cultures that had been grown at 24°C 

(left) and then shifted to 37°C (right) for 4 h. Top panels show wild-type cells (W303) and 

bottom panels show nud1-G585E cells (KBY1294). Nic96-GFP localizes to the nuclear rim 

in a punctate manner in both wild-type background and nud1-G585E. (b) Wild type 

(BY4742) and nud1-G585E (KBY1294) cells were examined for subcellular localization of 

a GFP reporter fused to the Nab2 NLS (pNS167) and the Pho4 NLS (pEB0866) at 24°C and 
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after incubation at 37°C for 3 h. (c) Wild type (W303) and nud1-G585E (KBY1294) cells 

were assayed for import of a cNLS-GFP reporter after release from metabolic arrest (Shulga 

et al. 1996). The percentage of cells exhibiting nuclear fluorescence is plotted against the 

time elapsed after release from arrest
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Fig. 4. 
nup1∆ exhibits synthetic lethality with bfa1∆ and bub2∆. Haploid nup1∆::KANR 

(KBY1158) was mated with bub2∆::NATR (KBY1225) and bfa1∆::NATR (KBY1222) and 

the resulting diploid strains sporulated. Tetrad analysis was performed on 24 tetrads from 

both of these crosses. The four meiotic progeny of single representative tetratype tetrad 

containing spores of each of the four possible genotypes (wild-type, both single mutants and 

the double mutant) are shown for the nup1∆ × bfa1∆ cross (left) and the nup1∆ × bub2∆ 
cross (right). These genotypes were determined by plating spores to G418 and ClonNat as 

described in “Materials and Methods”. Spores were plated to 5FOA to induce loss of CEN 
NUP1 URA3 so that the viability of the double mutant could be scored. Both nup1∆/bfa1∆ 
and nup1∆/bub2∆ double mutants fail to grow on 5FOA indicating a synthetic lethal 

interaction between these genes
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Fig. 5. 
Bfa1 and Bub2 are localized to the SPB in nud1 and nup1 mutant cells. (a) Plasmids 

expressing Bfa1-GFP (pRL282) and Bub2-GFP (pRL288) were transformed into wild type 

(BY4742) and nud1-G585E (KBY1294) yeast and incubated on selective media. Bfa1-GFP 

(top) and Bub2-GFP (bottom) localization was observed in log phase cultures at 24°C (left) 

and after shift to 36°C for 4 h (right). (b) Bfa1-GFP and Bub2-GFP plasmids were 

transformed into wild type (BY4742) and nup1AFXFG (SWY2801) yeast and observed as 

described above. All cells retain Bfa1-GFP and Bub2-GFP localization to SPBs

Harper et al. Page 19

Curr Genet. Author manuscript; available in PMC 2018 December 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Harper et al. Page 20

Ta
b

le
 1

Y
ea

st
 s

tr
ai

ns
 a

nd
 p

la
sm

id
s 

us
ed

 in
 th

is
 s

tu
dy

Y
ea

st
 S

tr
ai

n
R

el
ev

an
t 

ge
no

ty
pe

So
ur

ce

W
30

3
M

A
Ta

 a
de

2 
tr

p1
 le

u2
 h

is
3 

ur
a3

R
. R

ot
hs

te
in

K
B

Y
52

M
A

T
α 

nu
p1

::L
E

U
2 

ad
e2

 a
de

3 
tr

p1
 ly

s2
 u

ra
3 

(C
E

N
 U

R
A

3 
A

D
E

3 
N

U
P1

)
St

ra
in

 b
ac

kg
ro

un
d:

 W
30

3
B

el
an

ge
r 

et
 a

l. 
(1

99
4)

K
B

Y
12

4
M

A
T
α 

nu
p1

::L
E

U
2 

nu
d1

-G
58

5E
ts
 h

is
3 

ad
e2

 a
de

3 
tr

p1
 u

ra
3 

(C
E

N
 U

R
A

3 
A

D
E

3 
N

U
P1

) 
St

ra
in

 b
ac

kg
ro

un
d:

 W
30

3
B

el
an

ge
r 

et
 a

l. 
(1

99
4)

K
B

Y
64

3
M

A
T
α 

nu
p6

0:
:K

A
N

R
 h

is
3 

le
u2

 ly
s2

 u
ra

3
O

pe
n 

B
io

sy
st

em
s

K
B

Y
64

4
M

A
T
α 

nu
p1

33
::K

A
N

R
 h

is
3 

le
u2

 ly
s2

 u
ra

3
O

pe
n 

B
io

sy
st

em
s

K
B

Y
79

5
M

A
T
α 

nu
p1

70
::K

A
N

R
 h

is
3 

le
u2

 ly
s2

 u
ra

3
O

pe
n 

B
io

sy
st

em
s

K
B

Y
11

13
M

A
T
α 

bf
a1

::K
A

N
R
 h

is
3 

le
u2

 ly
s2

 u
ra

3
O

pe
n 

B
io

sy
st

em
s

K
B

Y
11

15
M

A
T
α 

bu
b2

::K
A

N
R
 h

is
3 

le
u2

 ly
s2

 u
ra

3
O

pe
n 

B
io

sy
st

em
s

K
B

Y
11

58
M

A
Ta

 n
up

1:
:K

A
N

R
 h

is
3 

le
u2

 u
ra

3 
m

et
15

 (
C

E
N

 U
R

A
3 

N
U

P1
)

T
hi

s 
st

ud
y

K
B

Y
12

22
M

A
T
α 

bf
a1

::N
A

T
R
 h

is
3 

le
u2

 ly
s2

 u
ra

3
T

hi
s 

st
ud

y

K
B

Y
12

25
M

A
T
α 

bu
b2

::N
A

T
R
 h

is
3 

le
u2

 ly
s2

 u
ra

3
T

hi
s 

st
ud

y

K
B

Y
12

94
M

A
T
α 

nu
d1

-G
58

5E
ts
 h

is
3 

le
u2

 u
ra

3 
m

et
15

T
hi

s 
st

ud
y

K
B

Y
13

45
M

A
Ta

 lt
e1

::K
A

N
R
 h

is
3 

le
u2

 m
et

15
 u

ra
3

O
pe

n 
B

io
sy

st
em

s

K
B

Y
13

46
M

A
Ta

 d
bf

2:
:K

A
N

R
 h

is
3 

le
u2

 m
et

15
 u

ra
3

O
pe

n 
B

io
sy

st
em

s

K
B

Y
13

48
M

A
Ta

 n
up

60
::K

A
N

R
 h

is
3 

le
u2

 m
et

15
 u

ra
3

O
pe

n 
B

io
sy

st
em

s

K
B

Y
13

49
M

A
Ta

 n
up

17
0:

:K
A

N
R
 h

is
3 

le
u2

 m
et

15
 u

ra
3

O
pe

n 
B

io
sy

st
em

s

K
B

Y
14

47
M

A
Ta

 n
up

1:
:K

A
N

R
 h

is
3 

le
u2

 u
ra

3 
m

et
15

T
hi

s 
st

ud
y

B
Y

47
42

M
A

Ta
 le

u2
 ly

s2
 u

ra
3 

hi
s3

O
pe

n 
B

io
sy

st
em

s

SW
Y

28
01

M
A

T
α 

T
7-

lo
xP

-n
up

1A
FX

FG
 tr

p1
 u

ra
3 

le
u2

 h
is

3
St

ra
w

n 
et

 a
l. 

(2
00

4)

K
C

Y
2-

1
M

A
Ta

 n
ud

1–
2:

:L
E

U
2 

nu
d1

::K
A

N
R
 u

ra
3 

ly
s2

 a
de

2 
tr

p1
 h

is
3

G
ru

ne
be

rg
 e

t a
l. 

(2
00

0)

IA
Y

52
0

M
A

T
α 

nu
d1

–4
4:

:T
R

P1
 n

ud
1:

:H
IS

5 
ur

a3
 a

de
3 

le
u2

A
da

m
s 

an
d 

K
ilm

ar
tin

 (
19

99
)

Pl
as

m
id

pR
L

28
2

B
FA

1-
G

FP
 U

R
A

3
L

i (
19

99
)

pR
L

28
8

B
U

B
2-

G
FP

 U
R

A
3

L
i (

19
99

)

pR
S3

14
C

E
N

 T
R

P1
Si

ko
rs

ki
 a

nd
 H

ie
te

r 
(1

98
9)

pR
S3

16
C

E
N

 U
R

A
3

Si
ko

rs
ki

 a
nd

 H
ie

te
r 

(1
98

9)

pS
M

78
3

C
E

N
 N

U
D

1 
U

R
A

3
G

ru
ne

be
rg

 e
t a

l. 
(2

00
0)

Curr Genet. Author manuscript; available in PMC 2018 December 17.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Harper et al. Page 21

Y
ea

st
 S

tr
ai

n
R

el
ev

an
t 

ge
no

ty
pe

So
ur

ce

pS
W

95
0

N
IC

96
-G

FP
 H

IS
3

B
uc

ci
 a

nd
 W

en
te

 (
19

98
)

pU
G

11
5

C
E

N
 N

U
D

1 
T

R
P1

G
ru

ne
be

rg
 e

t a
l. 

(2
00

0)

pL
D

B
59

C
E

N
 N

U
P1

 U
R

A
3

B
og

er
d 

et
 a

l. 
(1

99
4)

pE
B

08
66

C
E

N
 U

R
A

3 
PH

O
4-

N
L

S-
G

FP
K

af
fm

an
 e

t a
l. 

(1
99

8)

pN
S1

67
C

E
N

 U
R

A
3 

G
FP

-N
ab

2(
N

A
B

35
)

L
ee

 a
nd

 A
itc

hi
so

n 
(1

99
9)

pG
A

D
-G

FP
C

E
N

 U
R

A
3 

cN
L

S-
G

FP
Sh

ul
ga

 e
t a

l. 
(1

99
6)

A
ll 

ye
as

t s
tr

ai
ns

 S
28

8C
 u

nl
es

s 
ot

he
rw

is
e 

no
te

d

Curr Genet. Author manuscript; available in PMC 2018 December 17.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Harper et al. Page 22

Table 2

Synthetic interactions between genes encoding nucleoporins and genes encoding MEN proteins

wt nup1∆ nup1∆FXFG nup60∆ nup170∆

wt + + + + +

nle6 (nud1-G585E) + SL + + +

bfa1∆ + SL + + +

bub2∆ + SL + + +

lte1∆ + + ND + +

swi5∆ + + ND ND +

dbf2∆ + + ND ND ND

SL: synthetic lethal interaction. +: no synthetic interaction was observed. ND: cross not performed
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