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Abstract

Transplantable kidneys are in very limited supply. Accurate viability assessment prior to 

transplantation could minimize organ discard. Rapid and accurate evaluation of intraoperative 

donor kidney biopsies is essential for determining which kidneys are eligible for transplantation. 

The criteria for accepting or rejecting donor kidneys relies heavily on pathologist determination of 

the percent of glomeruli (determined from a frozen section) that are normal and sclerotic. This 

percentage is a critical measurement that correlates with transplant outcome. Inter- and intra-

observer variability in donor biopsy evaluation is, however, significant. An automated method for 

determination of percent global glomerulosclerosis could prove useful in decreasing evaluation 

variability, increasing throughput, and easing the burden on pathologists. Here, we describe the 
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development of a deep learning model that identifies and classifies non-sclerosed and sclerosed 

glomeruli in whole-slide images of donor kidney frozen section biopsies. This model extends a 

convolutional neural network (CNN) pre-trained on a large database of digital images. The 

extended model, when trained on just 48 whole slide images, exhibits slide-level evaluation 

performance on par with expert renal pathologists. Encouragingly, the model’s performance is 

robust to slide preparation artifacts associated with frozen section preparation. The model 

substantially outperforms a model trained on image patches of isolated glomeruli, in terms of both 

accuracy and speed. The methodology overcomes the technical challenge of applying a pretrained 

CNN bottleneck model to whole-slide image classification. The traditional patch-based approach, 

while exhibiting deceptively good performance classifying isolated patches, does not translate 

successfully to whole-slide image segmentation in this setting. As the first model reported that 

identifies and classifies normal and sclerotic glomeruli in frozen kidney sections, and thus the first 

model reported in the literature relevant to kidney transplantation, it may become an essential part 

of donor kidney biopsy evaluation in the clinical setting.
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I. Introduction

There is a global shortage of donor kidneys suitable for transplantation exacerbated by an 

unacceptably high discard rate of recovered organs. Intra-operative examination of donor 

kidney biopsy frozen sections is essential to assess organ viability prior to transplantation. 

Many evaluation metrics are utilized, including percent global glomerulosclerosis, interstitial 

fibrosis, arteriosclerosis, and arteriolar hyalinosis [1]. The increased use of “expanded 

criteria donors” who are older and/or have comorbidities renders accurate evaluation of these 

pathologic findings increasingly important [1]–[4]. However, variability in biopsy evaluation 

between observers and institutions is distressingly large [1], [5]–[7], which may explain why 

these histologic features do not consistently correlate with outcome [1], [7]. Such variability 

may be heightened in the time-sensitive context of daily practice, where biopsies (which 

may require evaluation in a matter of minutes) are often read by non-specialist pathologists 

at odd hours using frozen sections. Poor reproducibility amongst pathologists minimizes the 

utility of intraoperative organ assessment and may contribute to unnecessary organ discard. 

There is thus a need for new objective techniques to assist pathologists with rapid 

intraoperative donor kidney biopsy interpretation.

Identification of non-sclerotic and sclerotic glomeruli is an essential task that is required to 

compute percent global glomerulosclerosis, a critical feature correlated with graft outcome 

[3], [7]–[10]. While the degree of correlation between glomerulosclerosis and transplant 

outcome has at times been debated [11]–[13], it remains a standard metric: the United 

Network for Organ Sharing (UNOS) guidelines emphasize percent global 

glomerulosclerosis as a key factor in determining organ acceptance. Although a variety of 

approaches have been described for automatic identification of glomeruli, none to our 

knowledge have addressed the challenges associated with intraoperative biopsy assessment 
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for organ transplant. Logistical and time constraints in this setting often necessitate the use 

of frozen sections and their concomitant artifacts (e.g. cracking, holes), and H&E stains that 

are not optimized for visual differentiation of glomeruli from interstitial tissue (e.g. Figure 1 

and Figure 2). Previous work has shown that interobserver reproducibility in assessing 

glomerulosclerosis is substantially decreased when using frozen H&E sections [7] compared 

to fixed sections with periodic acid-Schiff and Masson’s trichrome stains in addition to H&E 

[6]. These difficulties are compounded by the sheer volume of data present in gigapixel 

whole-slide images, which necessitate highly optimized algorithms to yield results in a 

timely fashion.

The remarkable success of deep learning methodologies—and convolutional neural nets 

(CNNs) in particular—in medical image segmentation and analysis suggests pathways to 

solving this seemingly intractable problem [14]–[18]. CNNs’ primary advantage is that the 

models automatically learn salient features from the data alone, rather than requiring a set of 

handcrafted parameters and extensive input normalization. The increasingly widespread use 

of CNNs has been facilitated by the concept of transfer learning, in which deep learning 

models, previously trained to categorize or identify objects in images from one domain, are 

repurposed for application in another. This is typically accomplished by freezing most, if not 

all, of an image-recognition network’s learned weights (which presumably encode a large 

number of generalized image features) below the classification layer, and then training the 

remaining layers to recognize features specific to the new domain. This leverages the vast 

amount of computational resources needed to train the model from scratch using randomly 

initialized weights on millions of input images; furthermore, fewer training examples are 

typically required for the repurposed model to converge on an optimized set of model 

weights, and training time can be significantly shortened. Often, investigators have adapted 

one of several CNNs trained on the ImageNet database [19] as the basis for medical image 

recognition algorithms. In the realm of histopathology, CNNs have been most commonly 

applied to cancer detection and classification [20]–[26]. More recently, several studies have 

employed CNNs for glomerulus identification in renal biopsies [27]–[30].

However, none of these studies describes the use of frozen sections as input to detection 

algorithms, nor are they capable of differentiating normal from sclerotic glomeruli after 

detection without the use of special stains. These studies, consequently, fall short of 

addressing the combination of issues associated with transplant evaluation.

In this study, we sought to evaluate the performance of CNN variants derived from a pre-

trained image recognition network applied to the problem of glomerular identification and 

classification in renal preimplantation frozen section wedge biopsies. We compared a 

conventional patch-based CNN model with a fully convolutional CNN model. We show that 

the performance of the fully convolutional CNN model in terms of speed and accuracy is 

superior and can be quickly trained on a relatively small dataset to yield results on par with 

expert renal pathologist interpretation.
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II. Related Work

Detection of glomeruli in digitized histological images has been approached using a variety 

of methods. A summary of relevant details of recent work is shown in Table I.

The majority of studies incorporate domain-specific morphometric or texture-based 

techniques to search for and define glomerular boundaries. Many of these have demonstrated 

boundary detection for small image patches containing isolated glomeruli [36]–[38], [41]–

[43]. Translating detection techniques to whole-slide images (WSI) containing numerous 

glomeruli is a necessary but more difficult undertaking. The task of detection over large 

image regions can be facilitated using immunohistochemical stains such as nestin [33] and 

desmin [31], [32] to highlight glomerular podocytes and enhance the utility of segmentation 

algorithms. However, the immunohistological approach is less applicable for evaluation of 

preimplantation biopsies. Other groups have used a variety of techniques for glomerulus 

identification on routine stains [14], [27], [34], [35], [39], [40], typically through the use of 

some combination of colorspace transformation, thresholding, and/or morphological 

descriptors alone or as input to support vector machines or CNNs.

Most recently CNNs have been explored as primary tools for glomeruli detection. Proof-of-

concept classifiers adapted from both the AlexNet [44] and GoogleNet [14] models were 

shown to be able to differentiate image patches containing isolated normal glomeruli from 

non-glomerular structures [29]. CNNs were also demonstrated to outperform HOG 

classifiers in glomerulus detection accuracy when applied to random image patches from 

kidney WSI [30]. Additional promising results were demonstrated by cascading the output 

of one CNN (optimized for glomerulus detection in downsampled WSI) to another (adapted 

for precise segmentation at a higher resolution) [28]. This combination outperformed single 

CNNs in segmenting glomeruli; notably, the CNNs used a fully convolutional model based 

on the U-Net architecture [45] to yield pixel-mapped outputs, enabling “end-to-end” training 

on image patches randomly sampled over WSI.

It should be noted that none of these studies describes the use of frozen sections as input to 

detection algorithms. Likewise, in studies that characterized pathologic kidney samples [27], 

[31]–[34], [37], [38], only one method differentiated normal from pathologic glomeruli after 

detection, and this required the use of specialized immunostaining that highlighted damaged 

glomeruli [31]. The remainder describe differences in descriptors of glomeruli from normal 

and pathologic populations, rather than isolating and labeling different glomeruli within the 

same wide image field. The current study demonstrates the novel use of CNNs applied to 

frozen H&E sections to detect non-sclerotic and sclerotic glomeruli to assist pathologists in 

intra-operative interpretation of percent global glomerulosclerosis.

III. Methods

A. Data

WSIs were acquired from H&E-stained frozen wedge donor biopsies retrieved between 

April 2015 and July 2017 using the Washington University Digital Pathology Exchange 

(WUPAX) laboratory information system. WUPAX is a telepathology system used in 
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routine clinical practice to assess donor biopsies that is compliant with the College of 

American Pathologists Laboratory Accreditation Program and which meets CLIA (Clinical 

Laboratory Improvement Amendments) U.S. regulatory requirements. Sections were 

scanned at 20x using an Aperio Scanscope CS scanner and stored in SVS format, then 

converted to TIFF format at full resolution (0.495 μm/pixel). 48 sample WSIs (ranging in 

size from 187 megapixels to 482 megapixels) were acquired from the database and selected 

so as to exhibit a wide range of values of percentage globally sclerosed glomeruli (1% to 

72%). The WSIs were obtained from a total of 20 kidneys recovered from 17 donors. The 

average total number of glomeruli was 81±31 per WSI. Annotations used for training and 

testing the CNNs were initially created by a senior resident (SK) and subsequently amended 

by a board-certified renal pathologist (JPG). Annotation was performed manually by 

outlining and labeling all glomeruli (using elliptically shaped masks) in each WSI using an 

in-house plugin written for Fiji [46], in order to generate pixel-wise label masks of 

glomerulus regions at the same resolution as the parent WSI. All glomeruli were categorized 

into globally sclerotic (defined as sclerosis involving the entire glomerular tuft) or non-

sclerotic (defined as any glomeruli that did not show global sclerosis). The globally sclerotic 

category included all types of global sclerosis: obsolescent, solidified and disappearing [47]. 

All non-glomerular areas (including tubules, vessels, inflammatory cells, interstitium, and 

background) were grouped together and labeled as tubulointerstitium. A total of 870 

sclerosed and 2997 non-sclerosed glomeruli were labeled. Model training and testing was 

performed by grouping slides and their associated data into training and validation sets in a 

6-fold cross-validation scheme. No image preprocessing was performed prior to training or 

testing, other than that prescribed in the VGG16 schema, i.e., subtraction by a precomputed 

fixed RGB value.

B. Models

Two models and training methodologies were used for glomeruli detection in WSI (see 

Figure 3):

1) Patch-Based Model: A patch-based CNN training approach was employed as a 

proof-of-concept to first demonstrate glomerulus differentiation in frozen H&E sections, but 

also to illustrate the pitfalls of applying this type of model to detect glomeruli in WSI. Image 

patches (448×448 pixels) centered on each labeled sclerotic and non-sclerotic glomerulus 

were cropped out of WSI for training. This input window provided an appropriately sized 

“patch” to isolate glomeruli for training. An additional 1932 randomly selected regions 

containing no glomeruli but at least a small fraction of non-whitespace were extracted for 

training on tubulointerstitial areas. Interstitial areas included tubules, vessels, inflammatory 

cells, and tubulointerstitium. The training set was augmented with random image flipping, 

90° rotations, and small translations (0%—5% of image size). The pre-trained VGG16 CNN 

model [15] was adapted by removing the final fully-connected layers and replacing them 

with two 32-node fully-connected layers (with ReLU activation) and a 3-node classification 

layer with softmax activation; all weights in the lower convolutional layers were frozen and 

unmodified during training. The model was trained by minimizing the categorical cross-

entropy loss using the Adam optimizer [48] with a batch size of 16 and a learning rate of 1e
−4. The CNN was constructed using the Keras framework in Python and trained and tested 
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using 6-fold cross-validation. Prior exploration using a test set indicated that stopping 

training at 5 epochs prevented overfitting while yielding satisfactory categorical accuracy, so 

this value was used in all cross-validation folds. The trained model from each fold was next 

applied to each of the associated WSIs withheld from training by sampling image patches 

from a window moved across the image in a raster pattern (448×448-pixels, 64-pixel stride), 

yielding a set of categorical probability values associated with each respective image patch. 

These values were assembled to yield a categorical probability map of the parent image 

downsampled by a factor of 64. Although it would have been preferable to use a 32-pixel 

stride in order to exactly match the output resolution of the fully convolutional model 

described below, the time required to generate the probability maps was prohibitive.

2) Fully Convolutional Model: In addition to the patch-based model, we also trained a 

fully convolutional model based on VGG16 to label WSIs at a higher resolution. Starting 

with the pre-trained VGG16 CNN with weights frozen below the bottleneck, we replaced the 

final fully-connected layers with two 1×1 convolutional layers (256 and 128 nodes, 

respectively), followed by a 64-node 3×3 dilated convolution layer [49], [50] (dilation 

rate=4) and another 64-node 5×5 convolutional layer. All convolutional layers used ReLU 

activation. Output was fed to a 3-node layer with softmax activation for classification into 

tubulointerstitium, non-sclerosed glomerulus, and sclerosed glomerulus categories. Storing 

the activations of a fully convolutional network over an entire WSI is not feasible due to 

excessive memory requirements, therefore we adopted a sampling approach to training the 

model. For each training image, 1024×1024-pixel partially-overlapping image patches 

(stride=448) were extracted and presented to the model by weighted sampling. This window 

size afforded a good compromise between training efficiency, batch size, and prediction 

speed. Classes were weighted in a ratio of 10:5:1 for sclerosed:non-

sclerosed:tubulointerstitial categories to approximately account for the relative incidence of 

pixel area represented by each class. The task of the CNN was to assign labels to individual 

pixels in the WSI to match the provided annotations. Because the model’s output was 

downsampled by a factor of 32 relative to the original image, the CNN was trained against a 

similarly downsampled annotation map (accomplished by nearest-neighbor sampling). The 

fully convolutional CNN was trained by minimizing the categorical cross entropy loss using 

the Adam optimizer with a batch size of 25 and learning rate of 1e−4 for 5 epochs. The 

model was trained and tested in a 6-fold cross-validation scheme. Prior exploration using a 

test set indicated that stopping training at 5 epochs prevented overfitting while yielding 

satisfactory categorical accuracy, so this value was used in all cross-validation folds. For 

each fold, the corresponding trained model was applied to the withheld set of WSIs by 

sampling image patches in a raster pattern from a sliding window (1024×1024-pixels) with a 

stride of 448 pixels, yielding a 32×32-pixel categorical probability map associated with each 

respective image patch. These patches were stitched together to yield a categorical 

probability map of the complete WSI, downsampled by a factor of 32.

Marsh et al. Page 6

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



IV. Results

A. Performance on Patches

The patch-based model’s performance in predicting image patch category was evaluated in 

terms of precision, recall, and F1-score averages over cross-validation runs. Results are 

shown in Table II. A normalized confusion matrix derived is shown in Table III. F1-score 

(the harmonic mean of precision and recall) for the non-sclerosed category is somewhat 

higher than for tubulointerstium and sclerosed. This may be anticipated, given the greater 

variability in appearance associated with both the bulk tissue and the pathology (e.g., left 

panel of Figure 2). Examples of correctly and incorrectly identified glomeruli are shown in 

Figure 4. Note that the model correctly classifies non-sclerotic and sclerotic glomeruli even 

in the presence of preparation artifacts, staining variations, indeterminate Bowman’s space, 

and significant background whitespace within the image patch. While the patch-based model 

performed well in this proof-of-concept scenario, it is ultimately more important to gauge 

performance on WSI.

B. Performance on WSI: Pixelwise Results

Selected WSIs are shown with their associated annotations and predicted probability maps 

for examples having large numbers of sclerosed glomeruli (Figure 5), small numbers of 

sclerosed glomeruli along with visible section folding artifact (Figure 6), and large regions 

of renal capsule (Figure 7), for both the patch-based and fully convolutional models. 

Probability magnitude is indicated by the brightness of color associated with each label 

(blue→non-sclerosed, red→sclerosed, tubulointerstitium not shown). The patch-based 

model does not generalize well to the task of segmenting glomeruli in WSI, especially in 

instances with small numbers of sclerosed glomeruli and prominent renal capsule. The fully 

convolutional model predictions, however, appear faithful in position and shape to the 

majority of annotated glomeruli. Additionally, the fully convolutional model’s glomerular 

labeling is much more focal in nature, whereas the patch-based model is often characterized 

by diffuse regions of positive labeling. It is also noteworthy that folding artifacts (see Figure 

6a) have no apparent effect on the fully convolutional model’s performance.

To quantify agreement between model predictions and pathologist annotations on a pixel-by-

pixel basis, each pixel in the probability maps was assigned the categorical label associated 

with the highest probability at that point. Percent area fraction (Table IV) and intersection-

over-union (IOU) (Table V) metrics were computed from the predicted label maps for all 

WSIs in each cross-validation fold. The IOU (also known as the Jaccard index) is computed 

by comparing the number of pixels in each category in which the predicted and annotated 

labels agree (intersection) divided by the total number of predicted and annotated pixels 

assigned a label for that category (union). These quantities were computed in aggregate for 

all pixels in the WSI predictions. Both models have high concurrence for tubulointerstitial 

pixels (Tables IV and V). Non-sclerosed areas were more reliably labeled by the fully 

convolutional compared to the patch-based model, as measured by area fraction. The fully 

convolutional model’s score was higher than the pathologists’ assessment by 28%, whereas 

the patch-based model overestimated by 58%. Model differences are most stark in the 

sclerosed category. The patch-based model drastically overestimates the sclerosed area 
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(6.0x), compared to 1.7x overprediction for the fully convolutional model. IOU scores are 

even more telling, with the fully convolutional model having respectable scores of 0.59 and 

0.36 for non-sclerosed and sclerosed areas, respectively, while the patch-based model returns 

IOU values of only 0.20 and 0.07, respectively.

Kidney preimplantation biopsy evaluation requires the determination of the fraction of the 

number of sclerosed glomeruli in a WSI (given by F = nS/(nS+nN)). An equivalent, 

pixelbased surrogate measure was computed for comparison using the predicted label maps 

given by each model. The sclerosed fraction was computed as Fpixel = nS,pixel/(nS,pixel + 

nN,pixell), where nS,pixel and nN,pixel are the number of pixels labeled as sclerosed and non-

sclerosed, respectively. To assess the models’ accuracy in estimating the sclerosed fraction, 

we trained zero-intercept linear regression models. These linear models took Fpixel as input 

to be fit to F, as determined by pathologist annotations. The models were evaluated by R2 

and root mean square error (RMSE) on the cross-validation test set.

The fully convolutional model showed greater correlation with percent global 

glomerulosclerosis (R2 = 0.828) compared with the patch-based model (R2 = −0.491). The 

mean slope of regression (averaged over cross-validation folds) for the patch-based model 

was 0.640, and 0.581 for the fully convolutional model. The resulting output is shown in 

Figure 8A. Error bars indicate the 95% confidence interval, assuming the sclerosed 

population fraction is characterized by a beta distribution. In practice, prior results have 

indicated poorer clinical outcome for donor kidneys with greater than 20% global 

glomerulosclerosis. Gray dotted lines are plotted at the 20% point on each axis, dividing the 

plot into quadrants. In this way, the plot can be read as showing that the model agrees with 

trained observers for samples lying in the lower left quadrant (organ more acceptable) and 

upper right quadrant (organ less acceptable). It can be clearly seen that the fully 

convolutional model output agrees with the pathologists’ assessments to a far greater degree 

than the patch-based model in this regard.

C. Performance on WSI: Segmenting Glomeruli with Blob Detection Post-Processing

While the fully convolutional model’s pixelwise performance described above shows 

significant promise for evaluating slides in a global sense, identification of individual 

glomeruli is an important additional step for pathologists’ visual confirmation. In addition, 

identifying individual glomeruli enables the model to generate position and shape 

information for input to other glomerulus image characterization procedures. Only the fully 

convolutional model was utilized in this procedure, because of its superior performance and 

resolution relative to the patch-based model. A conventional Laplacian-of-Gaussian (LoG) 

blob-detection algorithm [51] was used to process the fully convolutional model’s 

probability map predictions for identification of the locations of sclerosed and non-sclerosed 

glomeruli. The LoG algorithm (implemented in the scikit-image Python library [52]) outputs 

position and approximate radius of detected objects. Examples of output from blob detection 

are shown in Figure 9 for the previously depicted WSIs in Figures 5–7. In the panels 

showing glomerulus detections, solid circles indicate confirmed matches to annotations, X’s 

mark incorrect glomerulus detections, and open rectangles indicate annotated glomeruli that 

were overlooked by the model.
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Accuracy metrics for the predictions are given in Table VI. A detected blob was considered 

positively identified if its center was located within the area of a region in the annotation 

map, and if it had the same label as that annotated region. The blob-detection algorithm 

threshold operating point of 0.25 is indicated in the free-response ROC curves in Figure 10, 

which display detection sensitivity v as a function of average false positives per image. At 

the selected operating point, the total number of detected sclerosed and non-sclerosed 

glomeruli were modestly higher than the pathologists’ assessments, differing by 14.9% and 

8.9%, respectively. Precision and recall were higher for non-sclerosed glomeruli than for 

sclerosed, reflected in F1 scores of 0.8475 and 0.6492, respectively. Linear regression of the 

sclerosed fraction Fblob = nS,blob/(nS,blob + nN,blob) (where nS,blob and nN,blob are number of 

sclerosed and non-sclerosed glomeruli obtained from the blob-detected probability maps) 

versus the pathologists’ assessment for each WSI in the training set was computed and used 

to regress the blob-detected probability maps in the cross-validation test set (Figure 8C, 

right). The mean coefficient of regression (averaged over cross-validation folds) was 0.978. 

Both R2 and RMSE were improved versus the equivalent pixel-based metrics for this model 

(R2: 0.863 vs. 0.828, RMSE: 0.061 vs. 0.079). Note that the fully convolutional model’s 

RMSE value approached the intrinsic error of the pathologists assessment (0.043), computed 

from the square root of the mean value of sclerosed fraction variance.

D. Misclassified Glomeruli

A list of misclassified glomeruli images from the test set were submitted to the pathologists 

responsible for the ground truth annotations in order to determine the rate of actual 

misclassified glomeruli, and also to gauge the incidence of glomeruli that may have escaped 

initial inspection. Of the false positive predictions represented in Table VI, 34 glomeruli 

were determined to have been overlooked in the annotation process, 7 were judged to be 

misidentified by the pathologists, and 13 were correctly identified by the fully convolutional 

model but positioned immediately adjacent to (rather than atop) the annotated glomeruli. Of 

the false positive predictions that were not tubulointerstitium, 199 were areas of cyst or 

tattered regions associated with frozen artifact, 83 were vessels, 6 were areas of thick or 

folded tissue, 3 were instances of hyaline or atrophied tubules, 7 were borderline cases not 

clearly normal or sclerosed, and 13 were areas of where the detected blob encompassed 

multiple glomeruli.

V. Discussion

Several factors were key to the success of the fully convolutional model relative to the patch-

based model. Because the fully convolutional network’s output maintained pixel-wise 

fidelity to the downsampled annotation map, network training and prediction occurred at a 

higher resolution than the patch-based approach. In particular, the fully convolutional model 

was exposed to a far greater variety of tissue configurations, in which all areas of the input 

image patches were able to inform the model during training.

The use of a dilated convolutional layer [49], [50] also increased the receptive field of the 

network. In order to illustrate the effect of the dilated convolution, we constructed and 

trained a model that replicated the same structure as the fully convolutional model, but 
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replaced the dilated convolution layer with a normal convolution layer. Additionally, we 

implemented linearized versions of both fully convolutional models with all weights set to 

unity, biases set to zero, max pooling layers replaced with average pooling, and activations 

set to the identity function. An “image” array initialized to zero, except for a single point set 

to a constant nonzero RGB value, was used as input to the linearized models. The central 

value of each linearized model’s output array was stored in a result array at the same 

position as the nonzero point in the input array. Linearized model outputs were computed for 

each realization of the input as the nonzero point was moved over every position in the array. 

The extent of the receptive field was determined by the nonzero points in the result array. 

The results are shown in Figure 8B, and can be interpreted as idealized “point spread 

functions” that map the relative contribution of nearby input pixels to an individual output 

point (ignoring learned weights in this illustration). Regression plots for sclerosed 

glomerulus fraction using blob detection post-processing for both models show the 

improvement in prediction agreement with pathologist assessments enabled by the dilated 

convolution layer (Figure 8C). The two-tailed p-value for the difference between the 

correlation coefficients of the two models was 0.056, approaching significance at the 95% 

level. The difference in prediction between the models was most evident for samples with 

large capsule areas, in which the model without the dilated convolution layer erroneously 

inferred sclerosed glomeruli adjacent to fibrous regions. We speculate that the model 

utilizing dilated convolution was better able to infer regional context because of its larger 

receptive field.

Although the size of the final model’s receptive field was increased, we found that, for a 

given input image patch, the central area of the model prediction output array typically 

exhibited higher correlation with the corresponding annotation region than areas closer to 

the output array’s perimeter. Thus, the stride used in selecting image patches for training and 

prediction was chosen to be 448 pixels so as to enable sample overlap of 576 pixels (56% 

overlap for 1024-pixel square arrays). Only the central, non-overlapping portions of the 

prediction patches were used to assemble the final probability maps, which markedly 

improved results when compared to the use of, for instance, an 896-pixel stride.

Apart from prediction performance, a key operational advantage of the fully convolutional 

model relative to the patch-based model was the dramatic decrease in time required to 

generate output probability maps. For the GPU utilized in this study (a single nVidia Tesla 

K20m), the median time to process each 448×448 pixel image patch input to the patch-based 

model was 0.056 sec, and the median time required to process each 1024×1024 pixel image 

patch input to the fully convolutional model was 0.50 sec. Although the time required per 

patch was larger for the fully convolutional model, there were far fewer patches required to 

process an entire image than for the patch-based model at equivalent output resolution. For 

the largest image used in this study (482 megapixels), the fully convolutional model required 

20 minutes to process the corresponding 2415 input image patches, whereas the patch-based 

model at equivalent output resolution would require a prohibitive 440 minutes to process the 

corresponding 471 396 input image patches, a 22-fold increase. Note that the times cited are 

for a 5-year old GPU; one may expect the processing times to decrease substantially for 

state-of-the-art, multiplexed GPUs. Clinically, the time required of a pathologist to evaluate 
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a slide may be as short as 20 minutes; thus, the fully convolutional model should easily be 

capable of operating within such constraints when running on modern hardware.

Of the glomeruli misidentified by the fully convolutional model that were not associated 

with generic tubulointerstitium, by far the largest number occurred in areas centered on 

cysts, vessels, or holes. Many of these regions included somewhat circular features similar in 

scale to glomeruli, which may have led to the misclassification. It is possible that the 

model’s performance could be further enhanced by labeling and training on WSIs annotated 

with these categories. Very few instances of misclassification occurred because of tissue 

folding, however, suggesting that the model was insensitive to this artifact.

Using blob detection to infer glomerulus presence from the pixel map incurs the same 

potential drawbacks as those found in other morphological detection methods, namely the 

need to determine appropriate input parameters based on domain knowledge. In this case, 

parameters for minimum and maximum radius and minimum intensity threshold were fixed 

at levels which yielded reasonable discrimination between closely spaced glomeruli, and 

which excluded low-intensity regions or objects too small to be glomeruli. In making these 

choices, however, it is possible that additional errors may arise that can obscure the quality 

of the underlying data. Figure 11 highlights one type of error in which adjacent predicted 

glomerular regions are not resolved by the LoG algorithm, leading to a false negative result 

for one of the adjoining glomeruli in spite of qualitatively correct labeling displayed by the 

fully convolutional model’s probability map. Nevertheless, this post-processing step allows 

glomerulus-level estimation of the model’s fitness for slide evaluation through direct 

comparison with the pathologists’ estimates of glomerulus populations. We anticipate that 

future work will include means of accounting for and training to glomerulus population in 

the network architecture.

In the long run, we aim to measure the extent to which this model reduces the inter-observer 

variability of pathologist assessments, and the intrinsic error associated with assessing 

percent globular sclerosis off of a single WSI. Though very preliminary, it appears that the 

variability of the model’s output is lower across technical replicates (Table VII). Two of the 

kidneys associated with this study had five or more associated WSIs, and were, therefore, 

well-controlled technical replicates. In both series, the average value of the model prediction 

was in close agreement with the pathologists’ determination; moreover, the standard 

deviation of the model output was lower than for the pathologist assessment, suggesting that 

the model may be able to decrease evaluation variability.

VI. Conclusion

Two deep-learning models were adapted from a pretrained CNN for the purpose of 

glomerular segmentation and classification of glomeruli in frozen-section whole-slide 

images. This task is critical for the time-sensitive evaluation of donor kidneys before 

transplantation. The initial patch-based architecture was able to robustly categorize sclerosed 

glomerular image patches from non-sclerosed after training with a relatively small set of 

samples, showing the utility of transfer learning with a general-purpose image classification 

CNN. Applied to whole-slide images, the patch-based model was outperformed by a fully 
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convolutional model based on the same pretrained CNN. A blob detection post-processing 

step was used to generate discrete maps of glomeruli and their associated class (sclerosed or 

non-sclerosed). Percent global glomerulosclerosis, a key metric used in grading kidneys for 

transplant suitability, indicated performance for the fully convolutional CNN nearly 

equivalent to that of a board-certified clinical pathologist. We are optimistic that the 

methodology described here has the potential to be an essential part of the workflow for 

transplant evaluation in the clinical setting.
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Fig. 1. 
Example whole-slide image (WSI) of H&E-stained human renal frozen wedge biopsy 

scanned at 20X, with inset showing normal (yellow) and sclerosed (cyan) glomeruli as 

labeled by trained observers. Note the variability of appearance of glomeruli between and 

within categories.
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Fig. 2. 
Example image patches (at 20X magnification) of globally sclerosed glomeruli from frozen 

(left) and formalin-fixed (right) H&E slide preparations. Variability in glomerular 

appearance and stain intensity is greater in frozen preparations. Also note variability in stain 

intensity in frozen samples, typical of the dataset used in this study.
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Fig. 3. 
Data path for computation of sclerosed glomeruli fraction. Both patch-based and fully 

convolutional models utilize pretrained VGG16 architecture with frozen weights, truncated 

before bottleneck. Input patch sizes were 448×448 pixels for patch-based model, and 

1024×1024 pixels for fully convolutional model.
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Fig. 4. 
Examples of patch-based model predictions on image patches containing isolated glomeruli. 

Top: Highest scored correctly identified patches. The model correctly identified sclerosed 

and non-sclerosed glomeruli, even in the presence of variable stain intensity and glomerular 

appearance. Bottom: Lowest scored incorrectly labeled patches; predicted label is shown in 

quotes beneath each image.
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Fig. 5. 
A: WSI exhibiting a large number of sclerosed glomeruli. B: Ground truth annotations 

indicating positions and shapes of non-sclerosed (blue) and sclerosed (red) glomeruli. C: 

Patch-based model prediction probability map. D: Fully convolutional model prediction 

probability map.
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Fig. 6. 
A: WSI exhibiting very few sclerosed glomeruli, as well as folding artifacts. B: Ground truth 

annotations indicating positions and shapes of nonsclerosed (blue) and sclerosed (red) 

glomeruli. C: Patch-based model prediction probability map. D: Fully convolutional model 

prediction probability map.
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Fig. 7. 
A: WSI exhibiting large region of renal capsule. B: Ground truth annotations indicating 

positions and shapes of non-sclerosed (blue) and sclerosed (red) glomeruli. C: Patch-based 

model prediction probability map. D: Fully convolutional model prediction probability map.
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Fig. 8. 
A: Pixel-wise model predictions of sclerosed glomerulus fraction vs. pathologists’ 

assessment for patch-based model (left) and fully convolutional model (right). Horizontal 

error bars indicate 95% confidence level for pathologist assessments. Dotted grey lines 

indicate a hypothetical clinical cutoff for rejection at 20% global glomerulosclerosis. B: 

Receptive field intensity map for fully convolutional model without dilated convolution layer 

(left) and with dilated convolution layer (right). Receptive field extent for both models are 

drawn to scale on image of normal glomerulus extracted from a WSI (center). C: Predictions 

of sclerosed glomerulus fraction vs pathologists assessment for fully convolutional model 

without dilated convolution layer (left) and with dilated convolution layer (right) after blob-

detection postprocessing. Error bars indicate 95% confidence level, assuming the sclerosed 

and non-sclerosed glomeruli population is characterized by a beta distribution. Dotted grey 

lines indicate a hypothetical clinical cutoff for rejection at 20% global glomerulosclerosis.
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Fig. 9. 
Panels A, C, E: WSI annotations indicating positions and shapes of non-sclerosed (blue) and 

sclerosed (red) glomeruli. Panels B, D, F: Corresponding blob detection results using fully 

convolutional model prediction label maps as input. Solid circles indicate confirmed matches 

with annotations, X’s mark incorrect glomerulus detections, and open rectangles indicate 

annotated glomeruli that were overlooked by the model.
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Fig. 10. 
Free-response ROC curves for blob-detection algorithm applied to predicted probability 

maps generated by the fully convolutional model. Sensitivity vs false positive detections per 

image are shown for all glomeruli (left), nonsclerosed glomeruli (middle), and sclerosed 

glomeruli (right). Arrow indicate the selected operating point threshold (0.25).
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Fig. 11. 
An example blob detection error highlighted within dotted cyan circle. A: Image patch 

extracted from WSI annotation map, indicating positions and shapes of non-sclerosed (blue) 

and sclerosed (red) glomeruli. B: Probability map for the same image patch. C: Blob 

detection results using fully convolutional model prediction label map as input. Solid circles 

indicate confirmed matches with annotations, X’s mark incorrect glomerulus detections, and 

open rectangles indicate annotated glomeruli that were overlooked by the model. The blob 

detection algorithm fails to differentiate the model’s correctly-identified adjoining sclerosed 

glomeruli in this instance.
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TABLE II

Patch-based model performance when categorizing isolated glomeruli

Precision Recall F1-score

Tubulointerstitial 0.932 0.898 0.915

Non-sclerosed 0.932 0.962 0.947

Sclerosed 0.893 0.865 0.879
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TABLE III

Normalized confusion matrix for patch-based model when categorizing isolated glomeruli

Predicted\True Tubulointerstitial Non-sclerosed Sclerosed

Tubulointerstitial 0.898 0.077 0.025

Non-sclerosed 0.024 0.962 0.014

Sclerosed 0.062 0.073 0.865
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TABLE IV

Pixel area fraction

Tubulointerstitial Non-sclerosed Sclerosed

Pathologist 0.9639 0.0327 0.0033

Fully conv. model 0.9526 0.0418 0.0057

Patch-based model 0.9285 0.0518 0.0197
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TABLE V

IOU (by pixel) predicted by each model, referenced to pathologist annotations

Tubulointerstitial Non-sclerosed Sclerosed

Fully conv. model 0.9766 0.5949 0.3560

Patch-based model 0.9160 0.2017 0.0713
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TABLE VI

Accuracy metrics computed from the fully convolutional model’s probability maps of WSIs after blob 

detection.

Non-sclerosed Sclerosed

Pathologists’ count 2997 870

Predicted count 3264 1000

Correct (true positive) 2653 607

Incorrect (false positive) 611 393

Missed (false negative) 344 263

Precision 0.8128 0.6070

Recall 0.8852 0.6977

F1-score 0.8475 0.6492
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TABLE VII

% global glomerulosclerosis estimates for kidneys with well-controlled technical replicates (5 or more 

sections).

Pathologist Model

mean SD mean SD

Case 1 24.2 5.2 25.5 4.8

Case 2 2.6 1.7 2.7 0.3
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