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SUMMARY

Many research studies aim to draw causal inferences using data from large, nationally representative
survey samples, and many of these studies use propensity score matching to make those causal inferences
as rigorous as possible given the non-experimental nature of the data. However, very few applied studies are
careful about incorporating the survey design with the propensity score analysis, which may mean that the
results do not generate population inferences. This may be because few methodological studies examine
how to best combine these methods. Furthermore, even fewer of them investigate different non-response
mechanisms. This study examines methods for handling survey weights in propensity score matching
analyses of survey data under different non-response mechanisms. Our main conclusions are: (i) whether
the survey weights are incorporated in the estimation of the propensity score does not impact estimation
of the population treatment effect, as long as good population treated-comparison balance is achieved on
confounders, (ii) survey weights must be used in the outcome analysis, and (iii) the transferring of survey
weights (i.e., assigning the weights of the treated units to the comparison units matched to them) can be
beneficial under certain non-response mechanisms.
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1. INTRODUCTION

1.1. Background

Non-experimental data are increasingly used to estimate the causal effects of an exposure or intervention
(hereafter “treatment”), especially when a randomized trial is infeasible or unethical. More often than not,
the interest is in causal effect estimates that apply to an entire target population, not just the data sample.
These interests combined call using data that inform about the target population and statistical methods
that ensure accurate inferences. Two tools for these purposes are large-scale nationally representative data
sets and propensity score methods.

Large-scale complex surveys are widely used and usually have a well-defined target population. The
sampling framework may be complicated, and the sampling probabilities vary depending on the sampling
of sub-populations. When making inferences about the target population, survey weights and other survey
design elements should be correctly used in data analysis; otherwise parameter estimates may not relate
to the original target population of the survey (see Hansen and others, 1983; Korn and Graubard, 1995a,b;
Little, 2003).

The causal inference framework introduced by Rubin (1974) extended the estimation of causal effects
to non-experimental studies. Since propensity scores (i.e., the probability of receiving treatment given a set
of observed covariates) were introduced by Rosenbaum and Rubin (1983), a wide range of methods have
been developed to estimate treatment effects in non-experimental studies (e.g., propensity score based
matching, weighting, and subclassification).

In particular, propensity score matching estimators have been widely used in the context of non-
experimental studies. Matching methods help reduce bias in the estimation of causal effects (Rubin, 1973a)
and are intuitive and relatively easy to implement. Standard propensity score matching methods, however,
do not give guidance on how to incorporate survey weights, and conceptually it is somewhat unclear
how to do so. As a consequence, researchers using propensity score matching often do not incorporate
the complex survey design (e.g., Morgan and others, 2010). This article aims to provide guidance on
propensity score matching using complex survey data to ensure that the estimated causal effects apply to
the target population.

1.2. Previous research in this area

There has been extensive work in each of the two areas to be investigated in this article (complex surveys
and propensity scores), but only limited work on how to combine them.

Propensity score methods have been developed under the assumption of a simple random sample (SRS),
yet this sampling scheme is hardly ever used since every unit in the population has to be listed, making this
sampling method very cumbersome to use for large populations. To ensure representation of the population,
complex survey techniques such as stratification and clustering may be implemented. In addition to the
sampling design, certain adjustments (e.g., adjustment for non-response or post-stratification to match
population composition) are also built into survey weights, which are used to scale the sample back to the
population.

There is general consensus that ignoring survey weights leads to external validity bias, because infer-
ences about the population are based on a often unrepresentative analytic sample. Thus, survey weights
and the sampling design should be incorporated in the estimation process. It has been widely docu-
mented how to incorporate survey weights in the estimation of means, totals, and ratios (see Cochran,
1977; Groves and others, 2011), nonetheless there is controversy over how to incorporate survey weights
in more complex statistical analysis (see Gelman, 2007), and to this propensity score methods are
no exception. There is thus, a broad array of approaches in the applied literature using propensity
score methods with complex survey data, and until recently there was almost no methodological work
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on the best ways to do so, with the exception of Zanutto (2006), Ridgeway and others (2015), and
Austin and others (2016).

A propensity score analysis includes two key stages: (i) estimating propensity scores and (ii) using
them in the estimation of causal effects. Regarding whether to use survey weights in the estimation of the
propensity scores, Heckman and Todd (2009) argue—in the context of propensity score matching—that
it is fine to not do so because “the odds ratio of the propensity score estimated using misspecified weights
is monotonically related to the odds ratio of the true propensity scores” (p. 3). Based on simulations,
Austin and others (2016) conclude that whether survey weights are incorporated in propensity scores
estimation does not affect the performance of matching estimators. With propensity score weighting,
Brunell and DiNardo (2004) argue that not incorporating survey weights in propensity score estimation
“does not change the relative weighting of the data” (p. 32); Ridgeway and others (2015), however,
argue that failure to incorporate survey weights in the estimation of the propensity scores may lead to
inconsistent estimators. In addition, there are questions about whether/how survey weights should be
used in the second stage, the use of the propensity scores. That is, after implementing propensity score
matching, whether survey weights need to be used in assessing the balance of the covariates, or, with
propensity score weighting, how the final weights should be constructed. In this article, we continue
examining how survey weights should be handled in propensity score matching analysis and extend
the scope of previous investigation to incorporate different non-response mechanisms. This allows us to
evaluate matching estimators in realistic scenarios (as non-response is nearly always present) and identify
non-response mechanisms that may impact the performance of the matching estimators. Our main goal is
to identify ways in which the survey weights should be incorporated when using propensity score matching
to estimate causal effects, under a variety of non-response mechanisms. The non-response aspect of this
work is related to the literature on propensity methods and missing data, which has so far focused on
multiple imputation (Seaman and others, 2012; Mitra and Reiter, 2016); our work is different in that it
deals with unit non-response that has informed the computation of survey weights.

The rest of this article is organized as follows: in Section 2, we discuss the definitions and assumptions
involved in the estimation of the average causal effect and strategies for incorporating survey weights
in the estimation procedure. Section 3 describes a simulation study and summarizes our main findings.
Section 4 compares the performance of the different estimation procedures in an application using the Early
Childhood Longitudinal Study, Kindergarten Class of 1998–1999 (ESCL-K). In Section 5, we present our
main conclusions and discussion.

2. DEFINITIONS, ASSUMPTIONS, PROPENSITY SCORE AND SURVEY WEIGHTS

2.1. Definitions and assumptions

The causal inference framework. Traditionally, causal effects are defined based on the Rubin Causal
Model (RCM) (Rubin, 1974). In the RCM, the causal effect of a binary treatment T (with value 1 repre-
senting the treatment of interest and 0 a comparison condition) is defined in terms of potential outcomes.
For each unit i, Yi(t) (with t = 0, 1) represents the outcome that would have been observed if unit i
received treatment t. For any unit i, only one potential outcome in the pair {Yi(0), Yi(1)} is observed,
and the observed outcome is Yi = Yi(1) × Ti + Yi(0) × (1 − Ti). As unit level treatment effects are not
identified, we are often interested in average treatment effects. At the population level, the commonly used
average treatment effects are the population average treatment effect (PATE) and the population average
treatment effect on the treated (PATT).

The PATE is defined as the average of the individual treatment effects over the population, PATE
= 1

N

∑N
i=1 [Yi(1) − Yi(0)], where N represents the population size. The PATT is the average of the

individual treatment effects over the units in the population who were actually treated, PATT =
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1∑N
i=1 Ti

∑N
i=1 Ti [Yi(1) − Yi(0)]. When treatment effects are the same for all units in the population, the

PATE is equal to the PATT. When treatment effects are heterogeneous, the PATT and PATE can be
quite different. When treatment is randomized, estimation of causal effects is straightforward. With non-
experimental data, a number of assumptions are needed to interpret results as causal, the most important of
which is that there are no unmeasured confounders (for detailed discussions, see Rosenbaum and Rubin,
1983; Hernan and Robins, 2017).

2.2. Population vs. sample treatment effects

We would like to estimate population causal effects but it is rare to have full data on an entire population.
In reality, causal effects are often estimated using a sample drawn from the population. Thus, we need
to differentiate the PATE (or PATT) from the sample average treatment effect (or the average treatment
effect for the treated units in the sample), hereafter SATE (SATT). When does a valid estimator for the
SATE (SATT) also correctly estimate the PATE (PATT)? The answer depends on two key factors: (1) the
sampling design and (2) the non-response mechanism.

With heterogeneous treatment effects, an unbiased estimator of the SATE (SATT) will accurately
estimate the PATE (PATT) only when the sample distribution of the confounders is similar to its population
counterpart. Therefore, unless survey weights are used to weight the sample back to the population, using
the survey sample to estimate an ATE (ATT) will not result in a consistent estimator for the PATE (PATT).

In addition, the nature of the non-response mechanism can potentially impact the estimation of the
PATE (PATT). Non-response, a phenomenon by which data cannot be collected for some units that were
initially selected to be in the survey sample, tends to be the rule rather the exception in complex surveys.
Non-response is a form of missing data. Traditionally, missing data mechanisms are grouped in three
categories: Missing Completely at Random (MCAR), Missing at Random (MAR), and Missing Not at
Random (MNAR) (Little and Rubin, 1989). Even if the sampling design itself implies that an unbiased
estimate of the SATE (SATT) is also an unbiased estimate of the PATE (PATT) (e.g., SRS), if the non-
response mechanism is either MAR or MNAR, an estimate of the SATE (SATT) may be a poor estimate of
the PATE (PATT). Survey weights generally incorporate non-response adjustment; failure to include them
in the estimation procedure may produce misleading results. More details on non-response mechanisms
are available in Appendix A in the supplementary material available at Biostatistics online.

2.3. Survey weights and the propensity score

In this section, we formalize the non-response mechanisms and the propensity score model. Consider
a binary indicator Si that takes the value 1 if the ith unit has been selected into the survey sample and
0 otherwise. Additionally consider a response indicator, Ri, which takes the value 1 if unit i responds
to the survey. Lastly, consider Xi which represents a q-dimensional vector, for unit i, that contains
all the confounders (i.e., X has all the covariates that are related to the treatment assignment and the
potential outcomes). We assume that at the population level each Oi = (Xi, Ti, Yi, Si, Ri) is indepen-
dent and identically distributed with a joint density function f : R

q+1 × {0, 1}3 → R
+. We represent

the marginal distribution for a subset of covariates Z (i.e., Z ⊂ X) with fZ. We assume that the sur-
vey sample has finite size of n = ∑N

i=1 SRi, where N represents the population size, and for every
i = 1, . . . , N , SRi = Si × Ri. Note that SRi constitutes a indicator variable that takes the value 1 if
unit i is selected into the survey and responds to the survey. We consider the case where the probability
of being observed in the sample (i.e., SR = 1) is function of X and potentially the treatment indicator
(T ), specifically, p = fSR | X,T (SR = 1 | X = x, T = t), where fSR | X,T : R

q+1 → (0, 1). We assume that
p ∈ (0, 1), i.e., there is not a set of values of X and T for which the probability of being in the sam-
ple is exactly 1 or exactly 0. The final survey weights, ω, are equal to the inverse of the probability

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx063#supplementary-data
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of being observed in the sample, that is ω = 1

p
= 1

fSR | X,T (SR = 1 | X = x, T = t)
. These final survey

weights combine the original sampling weights (associated with the designed sampling probabilities)
with corrections for non-response (see Appendix B of supplementary material available at Biostatistics
online).

We define the propensity score as π = fT | X (T = 1 | X = x), the probability of receiving treatment
conditional on X, with fT | X : R

q → (0, 1). Note that π represents the probability of receiving treatment in
the population. To estimate π , survey weights need to be incorporated in the estimation procedure. Failure
to do so will result in estimating the propensity score in the sample, π S = fT | X,RS (T = 1 | X = x, RS = 1),
with fT | X,RS : R

q+1 → (0, 1). Note that if the sample distribution of X is different from its population
counterpart, then π �= π S .

2.4. Survey weights after matching

Throughout this article, we focus on estimating the PATT. We argue that in order to estimate the PATT,
survey weights may not need to be incorporated in the estimation of the propensity score model, and show
that the weights of the treated units should be transferred to the comparison units to which they have been
matched to, before estimating the outcome model—as suggested by Reardon and others (2009). To see
this, consider the following strategy: in a first step, we implement a matching procedure using the predicted
propensity score (either the π̂ S or π̂ can be used in the procedure). We assume that k comparison units
were matched without replacement to each treated observation. Now, in order to identify the weights for
the treated

(
ωt

)
and comparison units (ωc) to use in the outcome analysis, we note that under a successful

implementation of the matching procedure, for every x in X, the following equations hold:

fX | T (X = x | T = 1) = wc(x) × fx | (T ,M )(X = x | T = 1, M = 1), (2.1)

fX | T (X = x | T = 1) = wt(x) × fX | (T ,M )(X = x | T = 0, M = 1). (2.2)

In other words, after weighting, we want the distribution of the covariates among treated and comparison
units in the matched sample (M = 1) to be similar to the distribution of the covariates among the treated
at the population level. From (2.2), we obtain that

wt(x) = fX | T (X = x | T = 1)

fX | (T ,M )(X = x | T = 1, M = 1)

= fM | T (M = 1 | T )

fM | (X,T )(M = 1 | X = x, T = 1)
. (2.3)

If in matching we do not trim any treated units, then fM | T (M = 1 | T = 1) = fSR | T (SR = 1 | T = 1) and
fM | X,T (M = 1 | X = x, T = 1) = fSR | X,T (SR = 1 | X = x, T = 1). Thus (2.3) becomes:

ωt(x) = 1

fSR | X,T (SR = 1 | X = x, T = 1)
. (2.4)

Therefore, we can conclude that units in the treatment group should be weighted using the survey weights
assigned by the survey design. Combining (2.1), (2.2), and (2.4) allows us to find an expression for the

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx063#supplementary-data
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weights of the comparison units:

wc(x) = ωt(x) × fX | (T ,M )(X = x | T = 1, M = 1)

fX | (T ,M )(X = x | T = 0, M = 1)

= ωt(x) × f(T | X,M )(T = 1 | X = x, M = 1)

1 − f(T | X,M )(T = 1 | X = x, M = 1)
× f(T | M )(T = 0 | M = 1)

f(T | M )(T = 1 | M = 1)
, (2.5)

where fT | X,M (T = 1 | X = x, M = 1) is the value of the propensity score computed among the matched

observations. Since we implemented k : 1 matching it holds that
fT | M (T = 0 | M = 1)

fT | M (T = 1 | M = 1)
=

k
(k+1)

1
(k+1)

= k , thus

we can write (2.5) as

ωc(x) = ωt(x) × fT | X,M (T = 1 | X = x, M = 1)

1 − fT | X,M (T = 1 | X = x, M = 1)
× k .

Also note that for a large matched sample, it should hold that

fT | X,M (T = 1 | X = x, M = 1)

1 − fT | X,M (T = 1 | X = x, M = 1)
= 1

k
.

Thus ωc(x) = ωt(x).
This suggests that the matched comparison units should be assigned the survey weight of the treated

unit they have been matched to. Thus, the weights of the units in the comparison group are different from
their original survey weights. Details of the resulting estimator of the PATT using this weight transfer are
available in Appendix C in the supplementary material available at Biostatistics online.

3. SIMULATION STUDY

In order to explore the empirical implications of the results of the previous section, we implemented a
simulation study to assess (i) whether the performance of a propensity score matching estimator is affected
by how (or if) the survey weights are incorporated in the estimation of the propensity score model, (ii)
whether the weight transfer presented in Section 2.4 improves the performance of matching estimators,
and (iii) whether our conclusions depend on the non-response mechanism and on the magnitude of the
difference between the SATT and the PATT.

Our simulation set-up followed closely the one used by Austin and others (2016). This prior study
considered a population of size 1 000 000, with 10 strata, each stratum including 20 clusters, each cluster
composed of 5 000 units. The baseline covariates (X1, ..., X6)were generated as independent normal random
variables, all with unit variance, but whose means varied across strata and clusters. Specifically, in strata
j (with j = 1, ..., 10), the mean of covariate l (with l = 1, ..., 6) deviated from 0 by μlj, with μlj ∼
N

(
0, τ stratum

)
. Within a stratum, the mean of the covariate in cluster k (with k = 1, ..., 20) deviated from

the stratum specific mean by μlk , with μlk ∼ N
(
0, τ cluster

)
. Thus, the distribution of the lth variable, in

the jth stratum, among the units of the kth cluster was Xl,ijk ∼ N
(
μlj + μlk , 1

)
. We set τ stratum = 0.35

and τ cluster = 0.25, 0.15, 0.05. The three values of τ cluster defined scenarios 1, 2, and 3, respectively. The
probability of receiving treatment depended on these six covariates via a logistic model. Table 1 shows
the balance of the covariates using the population data [balance was measured by computing standardized
mean differences (SMD)]: across all scenarios, imbalance increases from X1 to X6. The potential outcomes
were generated using a normal distribution with conditional means defined as a linear function of treatment,

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx063#supplementary-data
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Table 1. SMD (population level)

Scenario X1 X2 X3 X4 X5 X6

1 0.11 0.28 0.43 0.49 0.69 0.81
2 0.03 0.16 0.34 0.59 0.57 0.91
3 0.09 0.22 0.33 0.48 0.60 0.81

X, and interactions terms between treatment and X1, X2 and X3 (i.e., the treatment effect is heterogeneous),
the variance of the potential outcomes were set equal to 1. We modifiedAustin and others (2016) simulation
set-up by introducing stratum-specific treatment effects, which allowed us to vary the difference between
the PATT and the SATT. We modified the coefficient associated with the stratum-specific effects, such that(

SATT
PATT − 1

) × 100 took roughly the values −50%, −40%, −30%, −20%, −10%, and 0%. For full details
of the data generating mechanism, see Appendix B in the supplementary material available at Biostatistics
online.

We also extend the original setup by considering four non-response scenarios. The first two scenarios
considered were: No-missing data (NM ) and Missing at Random where non-response depended only on
the six covariates (MAR). The third was Missing at Random with additional covariate (MARX ) where
non-response depended on the same six covariates plus an additional covariate X7 not included in the
survey data set. In this situation, survey weights (which incorporate adjustment for non-response) were
constructed using all seven covariates, but data analysis used only six; this reflects the reality that some
data (e.g., number of contact attempts) may be available to the survey’s statisticians but not available
to data users. The fourth mechanism was Missing at Random where non-response depended on the six
covariates and the treatment received (MART ). Across the four mechanisms, the probability of response
was generated using logistic models.

The final survey weight for each surveyed individual was defined as the planned number of persons
represented by the individual (i.e., the sampling weight) times the inverse of that individual’s probability
of responding. The average response rate across the MAR, MARX, and MART models was close to 90%.
While this response rate is high, it allowed us to compare the performance of the different PATT estimators
without requiring sample size adjustments. In survey practice, to compensate for non-response, samples
sizes are often increased by the inverse of the average response rate. By using a relatively high response
rate here, we did not needed to implement such adjustments. We believe that increasing non-response will
only exacerbate our results.

For each scenario, and for each level of PATT–SATT relative difference, we ran 1000 iterations, and
compare several estimators (see Section 3.1) using three metrics: bias (in absolute value), root mean
square error (RMSE, defined as the square root of the sum of the squared bias and the variance of the
estimator), and empirical coverage of the 95% confidence interval (95% CI). The list of R packages used
in the simulation study are available in Appendix E in the supplementary material available at Biostatistics
online.

3.1. Estimators of the PATT

The estimators of the PATT considered in this article are grouped based on: (i) how survey weights are
used in the estimation of the propensity score and (ii) whether the weight transfer described in Section
2.4 is implemented. Regarding (i), we consider three alternatives: (1) not incorporating survey weights in
propensity score estimation (UPS), (2) using a survey-weighted model to estimate the propensity score
(WPS), and (3) including survey weights as a covariate in the propensity score model (CPS). Once the
propensity score was estimated, 1:1 nearest neighbor matching without replacement was implemented.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx063#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx063#supplementary-data
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Regarding (ii), after matching, either (1) the survey weight of the treated was transferred to the comparison
units they have been matched to (WT ) or (2) each observation retained their original survey weights (OW ).
Each estimator is labeled by the options it has for (i) and (ii), e.g., CPS |WT is the estimator that uses
survey weights as a covariate in the propensity score model and implements the weight transfer.

In addition to the six estimators previously described, we also consider a “Naïve” estimator which uses
propensity score matching but completely ignores survey design. That is, it does not use survey weights,
either in estimating the propensity score or in weighting the outcome model. The Naïve estimator is a
valid estimator of the SATT but not necessarily the PATT.

Various authors (Cochran and Rubin, 1973; Rubin, 1973b; Carpenter, 1977; Rubin, 1979; Rosenbaum
and Rubin, 1984; Rubin and Thomas, 2000; Glazerman and others, 2003; Imai and Van Dyk, 2004; Abadie
and Imbens, 2006) have pointed out that defining an outcome model that adjusts for confounders in the
estimation of causal effects can improve causal inferences. Thus, following Ridgeway and others (2015),
we considered two outcome models: (i) an “unadjusted” model that has the treatment assigned (T ) as
the only regressor and (ii) an “adjusted” model that in addition to T , includes the baselines covariates as
regressors, but it does not include interaction terms.

3.2. Results

Diagnostics We evaluated how balanced the distribution of the survey weights and baseline covariates
was between the treated and comparison groups as a result of implementing the matching procedures
described in Section 3.1. Balance was measured using SMD. For the six estimators that are the focus
of this investigation, we calculated SMDs using survey weights to measure balance at the population
level. For the Naive estimator (which ignores survey weights), unweighted SMDs were used, measuring
balance at the sample level. To provide some benchmarks, Table 1 shows population balance (or lack
thereof) before any matching.

Figure 1 summarizes our main findings for Scenario 1. In each panel, the vertical axis displays the
average value of the SMD (across the 1000 iterations in our simulation study). Each row of plots represents
a different non-response scenario. The horizontal solid line in Figure 1 shows the threshold value of 0.20
(see Rosenbaum and Rubin, 1985); SMDs above that threshold indicate that the matching procedure was
not effective.

The patterns that we observe in Scenario 1 are consistent across Scenarios 2 and 3 (see Appendix F in
the supplementary material available at Biostatistics online). In general, good balance was achieved by
all matching procedures, although there were some exceptions, the SMD for covariate X6 is not always
below 0.20 when the non-response mechanism is MART. This result is not surprising given that, at the
population level, X6 had the greatest imbalance (see Table 1). Second, when the non-response mechanism
is MAR, MARX, or No Missing, the weight transfer may translate into worse balance. Nevertheless, this
situation was reversed when the non-response mechanism is MART. In fact, failure to implement the
weight transfer can yield poor balance in some of the covariates. Interestingly, we observe that when the
non-response mechanism is different from MART, balance in the covariates translated into balance of the
survey weights.

Finally, note that for most of the baseline covariates and across non-response mechanisms the Naive
method achieves better balance than any other of the matching procedures implemented. However, it is
important to notice that the Naive method achieves good balance in the sample, but this does not imply
that good balance is achieved in the population.

Treatment effect estimation results The estimators that only used the treatment indicator (T ) as a covariate
in the outcome model estimation are labeled as “Y ∼ T,” whereas the estimators that additionally adjust
for the vector of covariates X are labeled as “Y ∼ T + X.”

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx063#supplementary-data
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Fig. 1. Diagnostics: Scenario 1.Average SMD computed in the matched samples in Scenario 1. Each marker represents
how the survey weights were incorporated in estimation of the propensity score model: (�) survey weights were not
used in the estimation of the propensity score model, but the sample weights are used in the computation of the SMD
after matching, (•) survey weights were incorporated in a weighted estimation of the propensity score model, and (�)
survey weights were used as a covariate in the estimation of the propensity score model. Black markers are associated
with the weight transfer described in Section 2.4, and gray markers show the balance achieved original survey weights
are used. We also display the SMD achieved by the Naive estimator using a black asterisk.
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Fig. 2. Results: Scenario 1 bias in absolute value, coverage, and root mean squared error (RMSE) as functions of the
% difference between the SATT and PATT (simulation study). Each marker represents how the survey weights were
incorporated in estimation of the propensity score model: (�) survey weights were not used in the estimation of the
propensity score model, but the sample weights are used in the computation of the SMD after matching, (•) survey
weights were incorporated in a weighted estimation of the propensity score model and (�) survey weights were used
as a covariate in the estimation of the propensity score model. Black lines show the results when the wight transfer
(see Section 2.4) is implemented, and gray lines show the results when the original survey weights are used. Results
for the Naive estimator are displayed using a black asterisk.



Propensity score matching with complex survey data 157

Figure 2 displays the estimation results for Scenario 1. Each column in the plot shows one of the metrics
(bias in absolute value, empirical coverage of the 95% CI minus 0.95 and RMSE) chosen to assess the
performance of the different matching estimators. Each row of plots represent a different non-response
scenario.

Differences in the performance of the estimators are more pronounced when we consider the “unad-
justed” estimators. As expected, as the percentage difference between the SATT and the PATT increases
in absolute value, the naive estimator performance worsens. Notice that this result holds even when the
outcome model adjusts for the covariates. When survey weights are incorporated in the analysis, keeping
the original weights translates to reduction of bias (this is true for all non-response mechanisms considered
except MART). Adjusting for covariates in the outcome model translates into better performance (across
the three metrics considered). In general, we observe that how the survey weights are incorporated in the
estimation of the propensity score does not yield differences in the performance of the estimators. When
the non-response model is MART we observe that the weight transfer reduces bias associated with the
estimation of the PATT; this is true even after adjusting for relevant covariates (although is more obvious
among the “unadjusted” estimators of the PATT). Furthermore, among the “unadjusted” estimators, we
observe that the weight transfer is not only associated with better balance but also better coverage and
better RMSE. Among the “unadjusted” estimators and when the non-response mechanisms is MART,
we also observe that a weighted estimation of the propensity score models translates into gains of effi-
ciency (reduction of the RMSE). Nevertheless, this gain is not substantial when covariates are included
in the outcome model. We believe that the reason why the weight transfer described in Section 2.4 does
not improve the performance of the estimators in the non-response mechanisms besides MART (i.e.,
MAR, MARX, and No-Missing) is due to the fact that if the matching procedure is successful, then
balance in the covariates will translate in balance of the survey weights. Therefore, the weight transfer
is implicitly implemented. This hypothesis seems to be confirmed by Figure 1, which shows that when
that non-response mechanism is different from MART, balance in the covariates translates into balance
of the survey weights. Furthermore, notice that when the non-response is MART good balance of the
baseline covariates does not imply good balance of the survey weights, and therefore the weight transfer
improves the performance of the estimators (a similar pattern can be observed in Scenarios 2 and 3, see
Appendix F in the supplementary material available at Biostatistics online). Another key feature of the
results depicted in Figure 2, is that even when the percentage difference between the SATT and the PATT
is as high as 50%, incorporating the survey weights translates into significant bias reduction. However,
as the percentage difference between the SATT and the PATT gets close to 0, no significant differences
in the performance of the naive and the other estimators is observed (this is the default scenario of the
simulation set-up implemented by Austin and others, 2016).

4. APPLICATION

In this section, we use The Early Childhood Longitudinal Study, Kindergarten class 1998–1999 (ECLS-
K) (Tourangeau and others, 2009). The ECLS-K examines early school experiences from kindergarten
through eighth grade of a large US cohort, with information collected at the child, household and school
levels. The data was accessed through http://www.researchconnections.org/childcare/studies/28023 (see
National Center for Education Statistics, 2011).

We estimate the effect of elementary school special education services on math achievement in fifth
grade, replicating Keller and Tipton (2016). Keller and Tipton provide an excellent guide on how to use
different R packages to estimate causal effects by implementing different matching procedures using the
work of Morgan and others (2010) as a motivating example. We follow closely the work by Keller and
Tipton since they provide a comprehensive list of the variables used in their analysis. Neither Morgan
and others nor Keller and Tipton, however, explicitly mention how the survey weights are incorporated

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx063#supplementary-data
http://www.researchconnections.org/childcare/studies/28023
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Table 2. SMD achieved by the different estimation procedures

Variable Naive UPS | OW UPS |WT CPS | OW CPS |WT WPS | OW WPS |WT

FEMALE 0.08 0.08 0.06 0.08 0.06 0.03 0.01
WHITE 0.05 0.05 0.05 0.05 0.05 0.10 0.14
WKSESL 0.04 0.04 0.06 0.04 0.06 0.05 0.09
C1R4RSCL 0.04 0.04 0.03 0.04 0.03 0.06 0.04
C1R4MSCL 0.13 0.13 0.24 0.13 0.24 0.00 0.04
S2KPUPRI 0.25 0.25 0.15 0.25 0.15 0.01 0.02
P1ELHS 0.02 0.02 0.04 0.02 0.04 0.02 0.10
P1EHS 0.06 0.06 0.09 0.06 0.09 0.05 0.03
P1ESC 0.10 0.10 0.08 0.10 0.08 0.02 0.00
P1EC 0.15 0.15 0.09 0.15 0.09 0.13 0.04
P1EMS 0.00 0.00 0.07 0.00 0.07 0.08 0.04
P1EPHD 0.04 0.04 0.00 0.04 0.00 0.10 0.05
P1FIRKDG 0.16 0.16 0.14 0.16 0.14 0.20 0.17
P1AGEENT 0.12 0.12 0.07 0.12 0.07 0.06 0.06
T1LEARN 0.01 0.01 0.05 0.01 0.05 0.05 0.10
P1HSEVER 0.03 0.03 0.03 0.03 0.03 0.03 0.16
FKCHGSCH 0.00 0.00 0.09 0.00 0.09 0.05 0.12
S2KMINOR 0.10 0.10 0.09 0.10 0.09 0.21 0.12
P1FSTAMP 0.02 0.02 0.13 0.02 0.13 0.05 0.14
SGLPAR 0.05 0.05 0.07 0.05 0.07 0.04 0.17
TWOPAR 0.05 0.05 0.07 0.05 0.07 0.04 0.17
P1NUMSIB 0.06 0.06 0.01 0.06 0.01 0.07 0.12
P1HMAFB 0.04 0.04 0.17 0.04 0.17 0.03 0.19
WKCAREPK 0.03 0.03 0.14 0.03 0.14 0.06 0.06
P1EARLY 0.07 0.07 0.09 0.07 0.09 0.05 0.09
P1WEIGHO 0.06 0.06 0.11 0.06 0.11 0.05 0.09
C1FMOTOR 0.14 0.14 0.29 0.14 0.29 0.13 0.11
C1GMOTOR 0.15 0.15 0.20 0.15 0.20 0.06 0.07
P1HSCALE 0.12 0.12 0.08 0.12 0.08 0.04 0.05
P1SADLON 0.04 0.04 0.22 0.04 0.22 0.02 0.01
P1IMPULS 0.09 0.09 0.17 0.09 0.17 0.02 0.06
P1ATTENI 0.14 0.14 0.23 0.14 0.23 0.10 0.04
P1SOLVE 0.26 0.26 0.38 0.26 0.38 0.20 0.14
P1PRONOU 0.03 0.03 0.10 0.03 0.10 0.28 0.26
P1DISABL 0.13 0.13 0.08 0.13 0.08 0.12 0.04
AVG4RSCL 0.03 0.03 0.04 0.03 0.04 0.15 0.03
AVG4MSCL 0.01 0.01 0.04 0.01 0.04 0.19 0.02
AVGWKSES 0.03 0.03 0.06 0.03 0.06 0.14 0.03
C1_6FC0 0.11 0.11 0.00 0.11 0.00 0.08 0.00

in propensity score matching. We apply to this data example all the methods considered in our simulation
study. Since our goal is methodological, to compare the different methods, we do not assess the plausibility
of the key assumptions that would be needed to interpret the results as causal, and thus the results should
not be treated as definitive regarding the causal effect of special education services on learning skills.

We follow Keller and Tipton (2016) in considering 39 covariates in propensity score estimation, includ-
ing demographic, socio-economical, academic, household and school level variables (a codebook of these
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Table 3. PATT estimation unadjusted vs. adjusted

Unadjusted 95% CI Adjusted 95% CI

Naive −2.62 (−4.44; −0.81) −3.30 (−5.98; −0.61)
UPS | OW −5.25 (−8.55; −1.94) −7.86 (−13.42; −2.30)
UPS |WT −4.33 (−7.24; −1.42) −9.92 (−14.98; −4.86)
CPS | OW −5.79 (−8.98; −2.61) −6.63 (−12.18; −1.08)
CPS |WT −5.31 (−8.39; −2.24) −7.59 (−12.89; −2.29)
WPS | OW −4.62 (−8.05; −1.19) −6.39 (−11.90; −0.88)
WPS |WT −2.80 (−6.13; 0.53) −5.97 (−11.34; −0.61)

The first column displays the estimation result of implementing an unadjusted regression model
and the second column shows the associated 95% CI. The third column, shows the results of
estimating the PATT adjusting for the set of covariates considered in Table 2, and the last column
shows the associated 95% CI.

variables is available in SUP_Application.R in the supplementary material available at Biostatistics online).
We fit an unadjusted outcome model as well as an outcome model that adjusts for the same set of covariates
included in the propensity score model. Table 2 displays the balance achieved by each of the methods
we investigate. Overall most of the matching procedures were effective in increasing the balance for the
covariates. Nevertheless, some of the methods were not able to improve balance enough to generate SMDs
smaller than 0.20 on some of the covariates (see the gray shaded cells in Table 2). WPS |WT is the only
method that achieved SMDs smaller than 0.20 in 38 of the 39 covariates considered. The last row in
Table 2 shows the SMD of the survey weights after the matching procedure. Note that good balance in
the covariates does translate into good balance in the survey weights across all methods; this seems to
indicate that the non-response mechanism may not be MART, and thus that the weight transfer may not
be needed to improve estimation of the PATT in this case.

Table 3 shows the estimated PATT. As expected, most of the estimators produce similar estimates,
except for the Naive estimator, which is likely biased when estimating the PATT.

5. DISCUSSION

In this article, we explore how different ways of using survey weights can affect the performance of
propensity score matching PATT estimators based on complex survey data when different non-response
mechanisms are considered. To our knowledge, this is the first article that explores the impact of non-
response mechanisms on the performance of propensity score matching estimators.

We have also evaluated how the difference between that SATT and the PATT affect the performance
of different propensity score matching estimators. When we first replicated the simulation study designed
by Austin and others (2016), we found that the Naïve estimator of the PATT performed as well as any
of the other PATT estimators considered by the authors. This was due to the fact that the PATT and the
SATT where practically identical. Based on our simulation study and application to the ECLS-K dataset,
we conclude that:

How the survey weights are incorporated in the estimation of the propensity score does not affect
the performance of the matching estimators. This result holds true across all non-response mechanisms,
although we found evidence that a weighted estimation of the propensity score model can increase the
efficiency of the PATT estimator when an unadjusted outcome model is estimated and the missing data
pattern is MART.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx063#supplementary-data
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Adjusting for relevant covariates in the outcome model improves the performance of the estimators.
This result is consistent with findings by others (e.g., Drake, 1993; McCaffrey and others, 2004; Frölich,
2007; Robins and others, 2007; Lee and others, 2011; Imai and Ratkovic, 2014; Ridgeway and others,
2015).

Survey weights should be incorporated in the outcome analysis. Our results indicate that not including
survey weights in the estimation procedure may lead to substantial bias.

A weight transfer improves the performance of the matching estimators under the MART non-response
mechanism. This performance improvement occurs when the PATT is estimated using an unadjusted
outcome model.

Population balance of covariates is crucial to the estimation of population treatment effects. We found
that the key element to obtain accurate estimates of the PATT is to achieve good population balance in the
observed covariates. That is, survey weights need to be incorporated when assessing balance. Population
balance (evaluated by SMD) was the best predictor of the performance of the estimator. In our simulation
study, we observe that the average correlation (i.e., averaged across the covariates) between bias and
SMD achieved by the estimators that use survey weights (i.e., excluding the Naive estimator) is 0.77; the
correlations (also excluding the Naive estimator) of Coverage and RMSE with SMD are −0.66 and 0.62,
respectively. For the Naive estimator, we also computed the correlation of SMD (in this case, representing
sample balance) with the three performance metrics; the correlations are 0.00 with Bias, −0.15 with
Coverage, and −0.1 with RMSE. This shows that good sample balance does not necessarily translate into
good performance of the propensity score matching estimator; it is population balance that matters.

The balance achieved in the survey weights after the matching procedure could potentially help identify
the nature of the non-response mechanism. When the non-response is MART we observed that: (i) good
balance in the confounders does not imply balance of the survey weights and (ii) the weight transfer
improves the performance of the estimators. We therefore recommend checking population balance on
the covariates and on the survey weights after matching. If balance is achieved on the former but not on
the latter, and especially if there is theoretical or prior empirical basis to suspect that non-response (or
sample selection) may have been influenced by treatment status, we recommend implementing a weight
transfer.

It is important to note that the CIs presented in this article were constructed using the “survey” package
in R (Lumley, 2016). There has been limited work to evaluate the asymptotic properties of matching
estimators, except for the significant contributions made byAbadie and Imbens (2006),Abadie and Imbens
(2008), and Abadie and Imbens (2016). Future work will focus on generalizing their results to the context
of complex survey data.

In our article, we have restricted our attention to matching estimators of the PATT where the matching
procedure was implemented without replacement. It has been pointed out—in the context of a SRS—that
when matching with replacement is used, weights should be created to guarantee that the matched treated
and comparison groups are weighted up to be similar (Ho and others, 2011); future work will extend
such weights computation to cover matching with replacement using complex survey data. Finally, in
our simulation study we assume that the propensity score model is correctly specified. Future work will
evaluate how the performance of propensity score matching estimators is affected by misspecification of
the propensity score model, of the outcome model, and of both.

In conclusion, accurate estimates of the PATT can be obtained using complex survey data and propensity
score matching, especially if it can be shown that good covariate balance is obtained in the population of
interest.

SUPPLEMENTARY MATERIAL
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