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Abstract

A series of triiron complexes supported by a tris(β-diketiminate)cyclophane (L3–) catalyze the 

reduction of dinitrogen to tris(trimethylsilyl)amine using KC8 and Me3SiCl. Employing Fe3Br3L 
affords 83 ± 7 equiv. NH4

+/complex after protonolysis, which is a 50% yield based on reducing 

equivalents. The series of triiron compounds tested evidences the subtle effects of ancillary donors, 

including halides, hydrides, sulfides, and carbonyl ligands, and metal oxidation state on N(SiMe3)3 

yield, and highlight Fe3(μ3-N)L as a common species in product mixtures. These results suggest 

that ancillary ligands can be abstracted with Lewis acids under reducing conditions.
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Industrialization of ammonia production was realized from Haber’s and Bosch’s discoveries 

over 100 years ago, and the eponymous process is hitherto largely un-changed.1–4 Despite 

the high efficiency and yields afforded by the Haber-Bosch process, several environmental 

and economic problems remain unresolved (e.g., carbon foot-print and transportation and 

distribution costs). Developing new approaches for N2 fixation that address these problems 

are, therefore, of great interest. Many current strategies are inspired by the proposed 

mechanism of N2 fixation by the FeMo co-factor of nitrogenase.5,6 There are several reports 

of molecular complexes that yield ammonia from electron and proton sources; however, 

these catalysts usually require cryogenic temperatures and proton reduction can be 

competitive with N2 reduction.7–12 To circumvent H2 production, trimethylsilyl chloride 

(Me3SiCl) has been employed as a proton surrogate in these reactions to afford 

tris(trimethylsilyl)amine instead of ammonia; N(SiMe3)3 can be readily converted to NH4
+ 

by protonolysis.13,14 A number of complexes employing Group 5–9 metals have been 

utilized for the catalytic silylation of dinitrogen, with the highest turnovers reported by 

Masuda and coworkers (270 N(SiMe3)3 equiv. per complex).9,15,16

We have previously shown that halide-bridged Fe3 clusters are competent for the 

stoichiometric reduction of dinitrogen. However, we were unable to release the bound 

dinitrogen-derived amide or imide ligands by protonolysis without complex decomposition,
17 and we postulated that Me3Si+ instead of H+ might be compatible with our complexes. 

Herein, we report that a family of triiron complexes housed within a tris(β-diketiminate) 

cyclophane effect the catalytic conversion of N2 to N(SiMe3)3 using KC8 and Me3SiCl. 

Notably, the series of complexes span varying oxidation states and ancillary bridging ligands 

(Figure 1) allowing for the first systematic evaluation of the effect of nitrogenase-relevant 

ancillary ligands on dinitrogen activation.17–26 Our results demonstrate that the non-

cyclophane donors are labile under reducing conditions as a putative μ3-nitridotriiron(II) 

complex is observed as a major and common product of most reactions.

Using previously reported protocols for catalytic silylation of N2 with KC8 and Me3SiCl,
27–30 reaction of 500 equiv. KC8 and 500 equiv. Me3SiCl in the presence of 0.2 mol% 

Fe3Br3L generated N(SiMe3)3, corresponding to 33 ± 3 equiv. of N(SiMe3)3 per cluster 

(N(SiMe3)3/Fe3) and a 20% yield based on KC8. The tris(trimethylsilyl)amine was 

confirmed as a product by GC and quantified indirectly as NH4
+ in acid digested product 

mixtures by 1H-NMR spec-troscopy (Supporting Information, Figure S14). Encouraged by 

this result, we sought to evaluate the effect of time, solvent, and catalyst loading using the 

number of N(SiMe3)3/Fe3 as the reporter.

Plots of equivalents of fixed nitrogen for reactions conducted in toluene and using 0.2 mol% 

catalyst versus time are logarithmic, and do not reach completion even after 120 h (Figure 

S16). As a means of standardizing our optimization protocol, we elected to evaluate product 

yields after 24 h. We probed the relationship between N(SiMe3)3 production compared to 

molar equivalents of KC8 and Me3SiCl used in the reaction. In all cases, we maintained an 

equimolar ratio of reductant to silyl reagent, and observed a positive correlation between the 

N(SiMe3)3 yield and KC8/Me3SiCl equivalents (Figure 2). However, the efficiency of 

converting electrons from KC8 into N(SiMe3)3 decreases with increasing KC8 and Me3SiCl 
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equivalents from 28% for 125 equiv. KC8 to 16% for 1000 equiv. KC8. This decreased 

efficacy remains under investigation but could arise from accelerated catalyst decomposition 

or an increased rate of disilane formation from transient Me3Si• radicals. To investigate the 

possibility of catalyst decom-position under catalytic conditions, we compared the yield 

from portionwise additions of KC8 and Me3SiCl to the catalyst with that for a single 

addition; 125 equiv. KC8 and Me3SiCl were added at 6 h intervals, and the reaction 

quenched after 24 h. Following this approach, the yield was 32 equiv. N(SiMe3)3 per 

complex after quenching. This value is comparable to that obtained from a single-addition of 

500 equiv. KC8/Me3SiCl, suggesting a catalyst fidelity up to 500 equiv. of reductant. We 

also evaluated how the concentration of Fe3Br3L effected the yield of N(SiMe3)3 (see Figure 

S17). The concentration of the catalyst has little or no influence on the obtained yields; more 

detailed mechanistic studies will be required and are the focus of ongoing work. Taken 

together, these results support that catalysts decomposition is unlikely responsible for the 

reduced efficiency with respect to KC8.

With respect to the effect of solvent on catalysis, N(SiMe3)3 yields were determined after 24 

h for reactions under analogous conditions, utilizing toluene, THF, and Et2O. Given the poor 

solubility of Fe3Br3L in Et2O, a standard approach was applied in which an aliquot of a 

toluene stock solution of Fe3Br3L was diluted ten-fold in the appropriate solvent (for a final 

9:1 mixture). Reactions employing Et2O afforded higher yields than those with exclusively 

toluene for all tested triiron complexes (vide infra) with yield enhancements of two- or 

three-fold in some cases whereas the lowest yields were obtained with THF (15 equiv. 

N(SiMe3)3 for Fe3Br3L). We, therefore, provide only data for PhMe and 9:1 Et2O:PhMe in 

Table 1. This improvement using Et2O can be rationalized as a combination of possible 

factors, such as an increased solubility of N2 in Et2O and solubility differences for triiron 

intermediates.31–33 Whereas the yields obtained in the 9:1 Et2O:PhMe mixture are 

comparable to other iron-based catalysts for this reaction under ambient conditions,
11,27,29,30,34–36 the yield based on KC8 – that is, the efficiency with which reducing 

equivalents are converted into N(SiMe3)3 – is the highest of any reported system (Table S2). 

Lowering the reaction temperature to −34 °C results in only 33 ± 3 equiv. of N(SiMe3)3 per 

complex – a 20% yield based on KC8 – in 9:1 Et2O:PhMe after 24 h. Extending the reaction 

time to 96 h at −34 °C, however, affords 83 ± 6 N(SiMe3)3/Fe3 N (SiMe3)3, which correlates 

with a 50% yield based on reducing equivalents (Figure S18). This temperature effect on 

dinitrogen silylation is similar to that reported by Masuda and coworkers for a Co complex.
16 To our knowledge, these triiron compounds are the most effective reported catalytic 

systems for this reaction, independent of metal ion type or complex nu-clearity (Table S3).
9,16,28,37

Consistent with homogeneous catalysis, reaction filtrates retain catalytic activity whereas 

residues are comparatively ineffective (see Supporting Information). However, one proposed 

complication of utilizing Me3Si+ in lieu of H+ as an electrophile in this system is that silyl 

radicals – generated from one-electron reduction of Me3Si+– may react directly with N2 to 

generate N(SiMe3)3.13,14 Control experiments using no Fe catalyst or an equimolar amount 

of iron as FeBr2 evidence minimal or no activity under the conditions employed for catalytic 

turnover (Entry 13, Table 1). The importance of our multinucleating system is evident by the 
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comparison of our observed turnovers to that a dimeric β-diketiminate iron(II) complex, 

[FeClL′ ]2 (L′ = DIPP-nacnac).38 Employing an equimolar in iron amount of [FeClL′ ]2 

results in lower yields (ca. 33%) as compared to our complexes (Entry 14, Table 1), along 

with a likely greater contribution from heterogeneous species in catalysis (Supporting 

Information).

Given the family of triiron compounds at our disposal, we then explored the effect of the 

bridging ligand identity on yield of N(SiMe3)3 (Table 1). First, the halide-bridged complexes 

afford similar yields, with the order being Br ≈ F > Cl. We postulate that this ordering may 

reflect the relative stabilities of transient μ3-halide or di(μ-halide) complexes; access to these 

types of complexes to test this hypothesis remains elusive. Second, the trihydride species, 

Fe3H3L, affords ~50% less N(SiMe3)3 than the bromide congener whereas that of the 

dihydride-formate, Fe3(H)2(HCOO)L is comparable to Fe3Br3L (cf. entries 5 and 7 with 1, 

Table 1). This observation is noteworthy given the proposed importance of hydrides in N2 

reduction for the nitrogenase cofactors and contrasts reports of di-nitrogen reduction by 

reported iron hydride model compounds.39–41 Third, there is no apparent correlation 

between metal formal oxidation states of the starting complexes and yield of amine. For 

example, the tri(μ-sulfido)triiron(III) and tribromotriiron(II) complexes provide similar 

yields, whereas the triiron(I/I/II) species is statistically lower (cf. entries 11, 1, and 7, Table 

1). The ligand field differences across the three compounds tempers any general conclusions 

as reduction and loss of halide donors from Fe3Br3L would generate Fe(I) centers in weaker 

ligand field as compared to the di(μ-carbonyl)(μ3-hydride) compound.

1H-NMR spectra recorded on products from reduction reactions with varying equivalents of 

KC8 and Me3SiCl indicated formation of a D3h symmetric species, which we tentatively 

assign to a μ3-nitridotriiron(II) complex (Figures S19−S24, vide infra). The extent of 

accumulation of this compound is sensitive to solvent and bridging ligands in the initial 

triiron complex. For example, reaction of 3 equiv. KC8 and Me3SiCl with Fe3Br3L in Et2O 

generates predominantly the μ3-nitridotriiron(II) complex, whereas the analogous reaction 

with 6 equiv. KC8 and Me3SiCl affords predominantly the previously reported tri(μ-

amido)triiron(II) compound, Fe3(NH2)3L (Figure S19−S20).17 There was also minimal 

formation of the μ3nitridotriiron(II) species upon reduction of Fe3H3L, Fe3H2(O2CH)L, or 

(FeCO)2Fe(μ3-H)L in the presence of Me3SiCl.

This μ3-nitridotriiron(II) complex could be independently synthesized by reduction of the 

reported Fe3Br2(μ3-N)L using two equivalents of KC8 or KHBR3 (R = Et or sec-But).22,42 

Attempts to obtain single crystals of sufficient quality for structural characterization have 

been as yet unsuccessful; crystals obtained hitherto are typically twinned, which we were 

unable to resolve in the data analysis.43 The formulation, Fe3NL, is consistent with ESI-MS 

data collected on THF solutions of this compound, although the data evidence adventitious 

oxidation of complexes during analysis. 1H-NMR spectra of Fe3(μ3-N)L are consistent with 

D3h symmetry and the resonances agree with those of the common species observed in the 

catalytic silylation product mixtures mentioned above. Taken together, our data support a 

structure in which a nitride ligand is present in a μ3-bridging mode and a structure analogous 

to our previously reported chalco-genide-bridged tricopper complexes.21
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Our data indicates, surprisingly, that bridging ligand identity has minimal influence on fixed-

nitrogen yield. This result implies that, under reducing conditions, the initial bridging 

ligands may undergo silylation for formate, sulfide, nitride, or oxide and dissociation leading 

to compounds with single atom μ3-donors (e.g., sulfide) or one μ3- and one μ-donor. These 

species are likely reactive towards dinitrogen to install nitride donors; however, silylation of 

the remaining donors (e.g., sulfide) instead of the dinitrogen-derived nitride provides a 

pathway towards Fe3(μ3-N)L (Figure 3). Subjecting Fe3(μ3-N)L to the same reaction 

conditions as described above results in comparable albeit lower N(SiMe3)3 yields (Table 1). 

In addition, treatment of Fe3(μ3-N)L with up to 20 equiv. of KC8 and Me3SiCl results in 

recovery of the nitride complex, suggesting stability of this complex under the reaction 

conditions (Figure S25−S27). We postulate, then, that the starting bridging ligands can be 

diluted from a catalytically-active species as the reaction proceeds, and ultimately funnel 

towards the μ3-nitride species. Indeed, we can correlate the greater accumulation of the 

Fe3(μ3-N)L in those systems with less covalent metal-ligand interactions (e.g., Fe3Br3L) as 

compared to those with greater covalency (e.g., Fe3S3L). Therefore, we do not have 

definitive evidence for any specific benefit for supporting ligands on reaction yield. Our data 

do not suggest substitution of our ancillary ligands by chloride as Fe3Cl3L or C2v-symmetric 

species containing chlorides were not identified in our studies; we cannot rigorously exclude 

an additive effect by halide ions, although precipitation of potassium halides is expected to 

be highly favored. Another possible explanation relies on the fact that these ligands may 

influence recyclability and the reaction kinetics, but the predicted diverse speciation of the 

metal complexes during early turnover likely complicate this analysis (i.e., speciation 

changes as bridging ligands are exchanged for nitride). To validate the specific consequence 

of a particular bridging ligand, single turnover reactivity studies of the dinitrogen-reactive 

triiron complexes will be required rather than the precatalysts reported here. Candidate 

compounds include Fe3(μ3-X)L and Fe3(μ-Y)(μ3-X)L in which X and Y are varied 

systematically. Our results agree with previous reports by Nishibayashi and collaborators 

that showed minimal dependence of carbonyl or cyclo-pentadienyl ligands on the catalytic 

activity of iron(0) compounds attributed to ligand release under cycling conditions.34 In 

addition, our results are surprisingly complementary to recent work on the nitrogenase 

cofactors that evidence ligand dissociation – specifically, sulfide – upon reductive activation 

of the cluster.44 Release of bridging ligands to generate open coordination sites in weak-field 

ligated multiiron species is likely a common theme, and suggests new opportunities in the 

design of such catalysts.

In summary, a series of triiron clusters are competent for the catalytic fixation of dinitrogen 

to produce N(SiMe3)3 from Me3SiCl and KC8 under a dinitrogen atmosphere. Turnovers 

ranged from 20 to 83 ± 7 N(SiMe3)3/catalyst, with higher yields obtained in a mixture of 

Et2O/PhMe 9:1. To date, members of this triiron series exhibit the highest yields of 

N(SiMe3)3 based on KC8 for this reaction.

Detailed mechanistic studies employing the nitridotriiron(II) complex as well as the targeted 

synthesis of possible intermediates are ongoing.
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Figure 1. 
Catalytic silylation of N2 (top) for the formation of N(SiMe3)3 and a series of planar triiron 

clusters (bottom) supported by L3– employed here.
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Figure 2. 
Effect of KC8/ Me3SiCl equivalents on N(SiMe3)3 production (blue squares) using Fe3Br3L 

catalytic system and corresponding yields based on KC8 (red circles). Solid lines are 

included as visual guides for the general trend. Reaction conditions: equimolar amounts of 

KC8 and Me3SiCl in toluene at room temperature for 24 h.
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Figure 3. 
Proposed reaction pathways during the catalytic cycle of a generic Fe3XY2L complex.
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Table 1.

Catalytic dinitrogen silylation by triiron complexes 
(a)

Entry
Triiron Com-

plex
(b)

N(SiMe3)3/Fe3 (yield in %)

Solvent A Solvent B

1
Fe3Br3L 33 ± 3 (20)

57 ± 7 (34)

83 ± 7 (50)
(c)

2
Fe3Br3L

(d) 32 (19) 63 (38)

3 Fe3F3L 18 ± 2 (11) 64 ± 6 (38)

4 Fe3Cl3L 22 ± 2 (13) 45 ± 7 (27)

5 Fe3H3L 21 ± 3 (13) 34 ± 5 (20)

6 Fe3H2(O2CH)L 27 ± 5 (16) 60 ± 7 (36)

7 (FeCO)2Fe(μ3H)L 21 ± 3 (13) 35 ± 3 (21)

8 Fe3Br2(μ3-N)L 29 ± 3 (17) 51 ± 4 (31)

9 Fe3(μ3-N)L 31 ± 6 (19) 43 ± 3 (26)

10 Fe3O3L 25 ± 4 (15) 46 ± 4 (28)

11 Fe3S3L 31 (19) 58 ± 1 (35)

12
1.5 [FeClL′ ]2

(e) 17 ± 2 (10)
46 ± 8 (28)

56 (38)
(c)

13 No Catalyst 0.7 (0) <0.1 (0)

14 FeBr2 0.9 (0) -------

(a)
Reaction conditions unless stated otherwise: 500 equiv. of KC8 and 500 equiv. of TMSCl after 24 h at room temperature in triplicate. Solvents A 

and B are PhMe and Et2 O:PhMe 9:1, respectively. N(SiMe3)3 was quantified by acidolysis followed by 1H-NMR

(b)
the synthesis of triiron complexes are reported or referenced in the supporting information;

(c)
result after 96 h at −34 °C;

(d)
portionwise method;

(e)
L′ = DIPP-nacnac.
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