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Abstract

It is well established that repeated social defeat stress can induce negative long-term conse-

quences such as increased anxiety-like behavior and enhances the reinforcing effect of psy-

chostimulants in rodents. In the current study, we evaluated how the immune system may

play a role in these long-term effects of stress. A total of 148 OF1 mice were divided into dif-

ferent experimental groups according to stress condition (exploration or social defeat) and

pre-treatment (saline, 5 or 10 mg/kg of the anti-inflammatory indomethacin) before each

social defeat or exploration episode. Three weeks after the last social defeat, anxiety was

evaluated using an elevated plus maze paradigm. After this test, conditioned place prefer-

ence (CPP) was induced by a subthreshold dose of cocaine (1 mg/kg). Biological samples

were taken four hours after the first and the fourth social defeat, 3 weeks after the last defeat

episode, and after the CPP procedure. Plasma and brain tissue (prefrontal cortex, striatum

and hippocampus) were used to determine the levels of the pro-inflammatory cytokine inter-

leukin 6 (IL-6). Results showed an increase of peripheral and brain IL-6 levels after the first

and fourth social defeat that was reverted three weeks later. Intraperitoneal administration

of the anti-inflammatory drug indomethacin before each episode of stress prevented this

enhancement of IL-6 levels and also reversed the increase in the rewarding effects of

cocaine in defeated mice. Conversely, this protective effect was not observed with respect

to the anxiogenic consequences of social stress. Our results confirm the hypothesis of a

modulatory proinflammatory contribution to stress-induced vulnerability to drug abuse disor-

ders and highlight anti-inflammatory interventions as a potential therapeutic tool to treat

stress-related addiction disorders.

Introduction

Scientific evidence suggests that alterations of inflammatory parameters are linked to a vulner-

ability to mental illnesses [1], including depression [2, 3, 4], bipolar disorder [5, 6, 7], schizo-

phrenia [8, 9, 10] and autism [11]. In addition, substance use disorders (SUD) are assumed to

be related to changes in the immune system activity [12, 13]. Addiction can be considered a
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multifactorial mental disorder caused by an interaction between biological and environmental

factors [14, 15, 16]. Although the exact mechanisms of the genesis of addiction have not been

completely unraveled, a growing body of evidence relates alterations of the immune response

to a possible cause of vulnerability to SUD [17, 18]. Neuroinflammation could help to explain

some of the effects of drugs, including toxicity, deleterious cognitive effects [17, 19, 20, 21] and

reward modulation, particularly taking into account that the immune signal significantly mod-

ulates the mesolimbic dopamine system [18, 22].

Both clinical and preclinical studies have shown that psychostimulants such as cocaine or

methamphetamine activate the central and peripheral components of the innate immune sys-

tem [12, 23, 24, 25, 26]. Repeated consumption of psychostimulants promotes a neuroinflam-

matory pattern characterized by an enhanced activation of glial and microglial cells [12] and

increased release of glial cytokines with potential neurotoxic effects [27]. Moreover, plasmatic

cytokines levels are under consideration by some researchers as possible biomarkers for

cocaine users [24, 28].

Another cornerstone of our understanding of drug addiction is stress, with emotional

stressors representing the main source of stress in humans [29]. Life-threatening situations

induce a physiological response to stress which is adaptive and crucial for survival, and a fail-

ure to end that response may induce deleterious effects [30, 31]. In pre-clinical research, social

defeat in an agonistic encounter is a rodent model with ecological validity that mimics real-life

situations of social stress [32, 33, 34]. It has repeatedly been reported that different models of

social defeat stress enhance the unconditioned and conditioned rewarding response to psy-

chostimulant drugs and precipitate the reinstatement of drug seeking in the self-administra-

tion and conditioned place preference (CPP) paradigms [29, 34, 35, 36]. Alterations in the

corticotrophin-releasing factor (CRF) neurotransmission system [35, 37, 38], epigenetic forms

of plasticity [39] or inflammatory processes appear to be central to stress-induced vulnerability

[4, 40, 41].

Recent basic research shows that stress induces activation of the immune system, thereby

promoting the stimulation of microglia and leukocytes, altering the levels of peripheral and

brain cytokines and leading to monocytes trafficking into the brain [40, 42]. Moreover, pro-

inflammatory markers alter the permeability of the blood brain barrier (BBB) [43], which is

also affected by social stress procedures [44]. When the BBB is compromised, peripheral

immune cells can penetrate the central nervous system (CNS), thus causing or enhancing

existing neuro-inflammation [45]. In this way, inflammatory processes are being posited as a

link between stress and disease, by altering behavioral and neuroendocrine functions and lead-

ing to the vulnerability and enhanced sensibility to drugs that is reported after social stress

procedures.

In response to this link between immune response, vulnerability to addiction and stress,

some researchers have employed anti-inflammatory agents such as non-steroidal anti-inflam-

matory drugs (NSAIDs) as a therapeutic approach. For instance, the inflammatory potential of

ethanol is well established [18, 20, 21, 46, 47]; it produces an inflammatory response via activa-

tion of microglia and astrocytes, contributing to neurodegeneration and the deleterious effects

reported in alcoholics [48, 49] and in animal studies [20, 21, 50]. Pascual and coworkers [46]

found that administration of indomethacin prior to ethanol binge-drinking prevented etha-

nol-induced brain damage in adolescent rats, as it blocked neural cell death and also attenu-

ated short and long-term detrimental effects on cognitive and motor processes. Other

researchers found that anti-inflammatory treatments also reverse cognitive impairments

induced by social stress in animal models [42, 51].

Based on the above-mentioned observations, we hypothesize that the long-term sensitiza-

tion to the rewarding properties of cocaine, constantly reported in experimental animals after
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social defeat stress, is mediated by a pro-inflammatory state. Likewise, we hypothesize that this

inflammatory mechanism is also underlying the long-term anxiety-like behavior displayed by

social defeated animals. In order to test these hypotheses, we first determined whether there is

an increase in peripheral and brain inflammatory response after social stress by measuring

plasmatic and brain levels of interleukin 6 (IL-6). We then determined if anti-inflammatory

treatment with indomethacin before each stress episode blocks the inflammatory response

induced by social stress, and therefore the enhanced cocaine response and anxiety-like behav-

ior expected after social stress experiences.

Material and methods

Animals

A total number of 148 OF1 adult mice (Charles River, France) were used in this study. The

animals were housed as previously described in detail [35] in groups of four in plastic cages

(27 × 27 × 14 cm) during the entire experimental procedure. To reduce their stress levels in

response to experimental manipulations, mice were handled for 5 minutes per day on each of

the 3 days prior to initiation of social defeat experiences. Aggressive opponents were individu-

ally housed in plastic cages (21 × 32 × 20 cm) for a month prior to initiation of the experiments

in order to heighten aggression [52]. All mice were housed under the following conditions:

constant temperature; a reversed light schedule (white light on 8:00–20:00 hours); and food

and water available ad libitum, except during behavioral tests. The experimental protocol has

been approved by an Institutional Review Committee for the use of animal subjects (Comité

d’Ètica d’Experimentació i Benestar Animal, number A1426847710979). Procedures involving

mice and their care were conducted according to national, regional and local laws and regula-

tions, which are in compliance with the Directive 2010/63/EU. All efforts were made to mini-

mize animal suffering and to reduce the number of animals used.

Drugs

The anti-inflammatory indomethacin (Sigma-Aldrich, Spain) was dissolved in 5% DMSO

(dimethyl sulfoxide) and injected intraperitoneally (i.p.) at a dose of 5 or 10 mg/kg 30 minutes

before each social defeat. For CPP, a dose of 1 mg/kg of cocaine hydrochloride (Alcaliber labo-

ratory, Spain) was employed. This dose of cocaine was selected on the basis of previous CPP

studies showing 1 mg/kg to be a sub-threshold dose [53, 54, 55]. All the treatments were

adjusted to a volume of 0.01 ml/g of weight. Control groups were injected with physiological

saline (NaCl 0.9%), which was also used to dissolve the drugs.

Experimental design

The experimental design is depicted in Table 1. We studied whether social stress could induce

an inflammatory response and if the anti-inflammatory indomethacin could modulate the

effects of social defeat on the conditioned rewarding effects of cocaine (1 mg/kg). Mice

received physiological saline, or a 5 or 10 mg/kg dose of indomethacin prior to each social

defeat (RSD) (RSD-SAL, RSD-INDO5, RSD-INDO10) or exploration (EXP) (EXP-SAL,

EXP-INDO10). Subsequently, 19 days after the last social defeat, anxiety was evaluated in the

elevated plus maze (EPM) test. One day afterwards, the CPP procedure was initiated.

Biological samples were taken four hours after the first and fourth social defeats, 3 weeks

after the last social defeat, and following the CPP procedure. In the case of the control group

(EXP), samples were also taken four hours after the first exploration session and after the CPP

procedure.
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Apparatus and procedures

Procedure of social defeat. The social defeat protocol performed in this study was vali-

dated and described in detail in previous research papers from our research group [35, 36, 44].

Each of the social defeat episodes consisted of three phases, each of which began by introduc-

ing the “intruder” (the experimental animal) into the home cage of the “resident” (the aggres-

sive opponent) for 10 minutes [56]. During this initial phase, the intruder was protected from

attack, but the wire mesh walls of the cage allowed for social interactions and species-typical

threats from the male aggressive resident, thus leading to instigation and provocation [57].

The wire mesh was then removed from the cage to allow confrontation between the two ani-

mals for a 5-minute period. In the third phase, the wire mesh was returned to the cage to

separate the two animals once again for another 10 minutes to allow for social threats by the

resident. Intruder mice were exposed to a different aggressor during each episode of social

defeat. The criterion used to define an animal as defeated was the adoption of a specific posture

signifying defeat, characterized by an upright submissive position, limp forepaws, upwardly

angled head, and retracted ears [52]. In order to minimize the physical wounding during social

defeats, the 5-minute direct encounters were finished earlier in the intruder displayed submis-

sive supine posture for more than 8 seconds or if it was bitten by the aggressor more than 12

times. All agonistic encounters were videotaped to confirm social defeat.

Conditioned place preference-CPP. Place conditioning consisted of three phases and

took place during the dark cycle [58], following an unbiased procedure in initial spontaneous

preference terms as previously described in detail [35, 59]. For place conditioning, twelve iden-

tical Plexiglas boxes with black and white equal-sized compartments (30.7 × 31.5 × 34.5 cm)

separated by a gray central area (13.8 × 31.5 × 34.5 cm) were used. The CPP protocol consists

of three phases, the first one being the pre-conditioning (Pre-C). In Pre-C phase, mice were

given access to both compartments of the CPP box for 15 min (900 s) for 3 consecutive days.

For the evaluation of the initial/natural preference, we use the data for the time spent by the

animal in each compartment registered during the third (last) day of the pretest. Animals

showing a strong, unconditioned aversion (less than 33% of the session time, i.e., 300 s) or

preference (more than 67%, i.e., 600 s) for any compartment were excluded for the experiment.

After this initial analysis of the natural preferences, a CPP box compartment (black or white)

was chosen to be paired with the drug and the other one with the vehicle, taking into account

that, in each group, half the animals received the treatment in the most preferred compartment

and the other half in the least preferred one. Additionally, we statistically confirmed that there

were no significant differences between the time spent in the drug-paired and the saline-paired

compartments to avoid any preference bias before conditioning.

In the second phase (conditioning), animals underwent two pairings per day. First, they

received an injection of physiological saline before being confined to the vehicle-paired com-

partment for 30 minutes. After a 4-hour interval, they received cocaine immediately before

Table 1. Experimental design.

RSD / Exploration

1st 2nd 3rd 4th

1st set of mice SAL/ INDO5 / INDO

10

SAL/ INDO5 /

INDO 10

SAL/ INDO5 /

INDO 10

SAL/ INDO5 / INDO

10

EPM 1 mg/kg

cocaine CPP

Brain extraction and

Blood samples

2nd set of mice Brain extraction and

Blood samples

Brain extraction and

Blood samples

Brain extraction and

Blood samples

Experimental

day

1 4 7 10 29 31–40 60–70

https://doi.org/10.1371/journal.pone.0209291.t001
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being confined to the drug-paired compartment for 30 minutes. In the third phase or post-

conditioning (Post-C), the time spent by the untreated mice in each compartment during a

15-minute observation period was recorded. The difference in seconds between the time spent

in the drug-paired compartment in the Post-C test and that spent in the Pre-C test is a measure

of the degree of conditioning induced by the drug. If this difference is positive, then the drug is

considered to have induced a preference for the drug-paired compartment, whereas the oppo-

site indicates the induction of an aversion.

All groups in which a preference for the drug-paired compartment was established under-

went an extinction session every 72 hours, which consisted of placing the mice in the apparatus

for 15 minutes. This was repeated until the time spent in the drug-paired compartment by

each group was similar to that of the Pre-C.

The effects of non-contingent administration of a priming dose of cocaine were evaluated

24 hours after the confirmation of extinction. Reinstatement tests were the same as those for

the Post-C (free ambulation for 15 minutes), except for the fact that mice were tested 15 min-

utes after administration of the drug (half of the dose used for conditioning). This procedure

was repeated with progressively lower priming doses until a non-effective priming injection

was determined.

Elevated plus maze-EPM. The elevated plus maze (EPM) test was carried out essentially

following the procedure previously described by Daza-Losada and coworkers [59]. The maze

consisted of two open arms (30 × 5 × 0.25 cm) and two enclosed arms (30 × 5 × 15 cm), and

the junction of the four arms formed a central platform (5 × 5 cm). The floor of the maze was

made of black Plexiglas and the walls of the enclosed arms were made of clear Plexiglas. The

open arms had a small edge (0.25 cm) to provide the animals with additional grip. The entire

apparatus was elevated 45 cm above floor level. In order to facilitate adaptation, mice were

transported to the dimly illuminated laboratory 1 hour prior to testing. At the beginning of

each trial, subjects were placed on the central platform so that they were facing an open arm

and were allowed to explore for 5 minutes. The maze was thoroughly cleaned with a damp

cloth after each trial. The measurements recorded during the test period were number of

entries and time and percentage of time spent in each section of the apparatus (open arms,

closed arms, central platform). An arm was considered to have been visited when the animal

placed all four paws on it. The time and percentage of time spent in the open arms and the

number of open arm entries are generally used to characterize the anxiolytic effects of drugs.

In addition, the number of closed and total entries indicates motor activity.

Tissue sampling

To obtain blood and tissue samples, unperfused mice were sacrificed by cervical dislocation

and then decapitated. Blood was collected from the neck into a Microvette CB 300 capillary

tube (Sarstedt, Germany). Blood samples were kept on ice, and plasma was separated from

whole blood by centrifugation (5 minutes, 5000G) and transferred to sterile 0.2 ml microcen-

trifugue tubes. Plasma samples were stored at -80˚C until IL-6 concentration determination.

Brains were rapidly removed and the prefrontal cortex (PFC), striatum (STR) and hippo-

campus (HIP) were dissected following the procedure described by Heffner and coworkers

[60] and kept on dry ice until storage at -80˚C. Prior to IL-6 determination, brains were

homogenized and prepared following the procedure described by Alfonso-Loeches and

coworkers [61]. Frozen brain cortices were homogenized in 250 mg of tissue/0.5 ml of cold

lysis buffer (1% NP-40, 20 mM Tris-HCl pH 8, 130 mM NaCl, 10 mM NaF, 10 μg/ml aproti-

nin, 10 μg/ml leupeptin, 40 mM DTT, 1 mM Na3VO4, and 10 mM PMSF). Brain homogenates

were kept on ice for 30 minutes and centrifuged at maximum speed for 15 minutes, after
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which the supernatant was collected and protein levels were determined by the Bradford assay

from ThermoFisher (Ref: 23227).

IL-6 ELISA assay

To determine IL-6 concentration in plasma and tissues, we used a Mouse IL-6 ELISA Kit

obtained from Abcam (Ref: ab100712) following the manufacturer’s instructions. To deter-

mine absorbance, we employed an iMark microplate reader (Bio-RAD) controlled by Micro-

plate Manager 6.2 software. The optical density was read at 450nm and the final results

were calculated using a standard curve following the manufacturer’s instructions, and were

expressed as pg/ml for plasma, and pg/mg for tissue samples.

Statistical analyses

For the CPP data, the time spent in the drug-paired compartment during Pre-C and Post-C

tests was analyzed with a mixed three-way ANOVA, with two between-subjects variables—

Pre-treatment, with three levels (Saline, Indomethacin 5 or 10 mg/kg), and Stress, with two

levels (RSD and EXP)—and a within-subjects variable—Days, with two levels (Pre-C and Post-

C). For the EPM data, a two-way ANOVA, with two between-subjects variables—Pre-treat-

ment, with two levels (Saline or Indomethacin 10), and Stress, with two levels (RSD and EXP)

—was employed. In all cases, post-hoc comparisons were performed with Bonferroni tests. In

addition, the groups showing CPP, extinction and reinstatement values were analyzed by a

Student’s t-test.

Data concerning IL-6 concentration were analyzed using a single factor analysis ANOVA,

with a between-subjects variable: Stress, with 4 levels (Exploration, first social defeat, fourth

social defeat and 3 weeks after the last social defeat). For the IL-6 levels measure performed

after the CPP procedure, we used an ANOVA with a between-subjects variable: Stress, with 3

levels (Exploration, RSD and RSD plus Indomethacin). Data are presented as mean ± SEM. A

p-value < 0.05 was considered statistically significant. Analyses were performed using SPSS

v22.

Results

Indomethacin blocks the increase in the conditioned rewarding effects of

cocaine (1 mg/kg) induced by social defeat stress

ANOVA of the CPP data (Fig 1) showed a significant effect of the variable Days F(1,68) =

10.905, p<0.01 and the interactions Days x Pre-treatment F(2,68) = 4.657, p<0.05 and Days x

Pre-treatment x Stress F(1,68) = 3.862, p<0.05. As expected, socially defeated animals pre-

treated with saline (RSD-SAL) developed CPP, since they spent more time in the drug-paired

compartment in the Post-C than in the Pre-C test (p<0.05), a preference that was not

observed in defeated mice treated with the highest dose of indomethacin (RSD-INDO10), in

contrast with the CPP developed in defeated mice treated with the lowest dose of indometha-

cin (RSD-INDO5 p<0.001). Neither of the groups that developed preference for the drug-

paired compartment showed reinstatement after a priming dose of 0.5 mg/kg cocaine.

Indomethacin fails to prevent the long-term anxiogenic effects of social defeat. The

data of the EPM test are presented in Table 2. ANOVA for the time spent in the open arms

F(1,59) = 18.360, p<0.001, the percentage of time spent in the open arms F(1,59) = 15.751,

p<0.001, the number of entries into the open arms F(1,59) = 4.594, p<0.05, the percentage

of entries into the open arms F(1,59) = 15.793, p<0.001, the time spent in the closed arms

F(1,59) = 5.267, p<0.05, the number of entries into the closed arms F(1,59) = 19.641,
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p<0.001 and the total number of entries F(1,59) = 19.887, p<0.001 revealed a significant

effect of the variable Stress. Post-hoc analyses showed that socially defeated animals spent

less time, a lower percentage of time and a lower percentage of entries into the open arms

(p<0.001 in all cases), while they spent more time in the closed arms (p <0.05), made more

total entries (p<0.001), and more entries into the open (p<0.05) and closed arms (p<0.001)

than control non-stressed animals.

Social defeat increases brain and peripheral IL-6 levels

Regarding plasmatic circulating IL-6 levels (Fig 2a), the ANOVAF F(3,37) = 10.321, p<0.001

showed that levels were significantly increased in defeated mice after the first (p<0.001) and

the fourth (p<0.01) social defeat compared with non-stressed animals. However, no differ-

ences were detected in plasma three weeks after the final exposure to stress.

Fig 1. Administration of the highest indomethacin dose before each social defeat blocked acquisition of the CPP

induced by 1 mg/kg of cocaine in defeated mice. Before the social stress protocol animals were randomly assigned to

the following groups according to the pre-treatment they received: saline (EXP-SAL n = 13; RSD-SAL n = 14); 5

(RSD-INDO5 n = 16) or 10 mg/kg (EXP-INDO10 n = 13; RSD-INDO10 n = 17) of indomethacin. Bars represent the

time (s) spent in the drug-paired compartment before conditioning sessions in the PRE-C test (white bars), after

conditioning sessions in the POST-C test (dark grey bars), in the last extinction (EXTINCT) session (light gray bars),

and in the reinstatement (REINST 0.5) test (black bars). Data presented as mean values ± SEM �p<0.05, ���p<0.001

significant difference in the time spent in the drug-paired compartment versus PRE-C.

https://doi.org/10.1371/journal.pone.0209291.g001

Table 2. Administration of indomethacin before each SD fails to prevent the long-lasting anxiogenic effect of stress in the EPM.

EXP RSD

SAL INDO10 SAL INDO5 INDO10

Time OA (s) 88 ± 9 96 ± 13 60 ± 7 � 56 ± 12 � 47 ± 7 �

% time OA 38 ± 3 37 ± 5 25 ± 3 � 24 ± 5 � 20 ± 3 �

Open entries 17 ± 4 23 ± 4 33 ± 6 ��� 31.3 ± 6 ��� 26 ± 4 ���

% entries OA 39 ± 4 45 ± 2 29 ± 4 � 28 ± 5 � 26 ± 4 �

Time in CA (s) 146 ± 10 172 ± 18 181 ± 9 ��� 186 ± 17 ��� 193 ± 10 ���

Closed entries 28 ± 6 25 ± 2 86 ± 17 � 89 ± 21 � 80 ± 14 �

Total entries 45 ± 9 48 ± 5 119 ± 20 � 120 ± 24 � 105 ± 16 �

Data are presented as mean values ±S.E.M.

�p <0.05;

���p <0.001 significant difference with the exploration groups.

https://doi.org/10.1371/journal.pone.0209291.t002
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Similar results were observed in the three brain areas studied. The ANOVA revealed a sig-

nificant increase in IL-6 protein levels in the STR F(3,40) = 7.878, p<0.001 (Fig 2b); PFC

F(3,24) = 2.991, p<0.05 (Fig 2c) and hippocampus F(3,28) = 2.891, p<0.05 (Fig 2d) after the

first social defeat (ps <0.05), in the STR (p<0.001) and the PFC (p<0.05) after the fourth

defeat, and only in the hippocampus three weeks after the last social defeat (p<0.05).

Indomethacin blocks the increase induced by social defeat in IL-6 levels

The ANOVA F(3,27) = 2.971, p<0.05 of plasmatic IL-6 levels in animals pretreated with indo-

methacin before social stress (Fig 3) showed that plasmatic IL-6 protein levels were

Fig 2. Social defeat increases IL-6 levels in the plasma, STR, PFC and hippocampus. Groups defined by stress condition and social defeat episode: (a) Plasma (EXP

n = 11, 1RSD n = 11, 4RSD n = 11, 3WEEKS n = 8); (b) Striatum (EXP n = 12, 1RSD n = 12, 4RSD n = 12; 3WEEKS n = 8); (c) PFC (EXP n = 7, 1RSD n = 7, 4RSD

n = 7; 3WEEKS n = 7); (d) Hippocampus (EXP n = 8, 1RSD n = 8, 4RSD n = 8; 3WEEKS n = 8). Data are presented as mean values ± SEM (pg/ml in plasma and pg/mg

in brain tissue) �p<0.05; ��p<0.01; ���p< 0.001 vs. exploration (EXP) group.

https://doi.org/10.1371/journal.pone.0209291.g002

Indomethacin blocks social defeat effects on cocaine reward

PLOS ONE | https://doi.org/10.1371/journal.pone.0209291 December 17, 2018 8 / 18

https://doi.org/10.1371/journal.pone.0209291.g002
https://doi.org/10.1371/journal.pone.0209291


significantly increased with respect to controls in defeated mice only after the first social defeat

(p<0.05). No differences were detected in the STR F(3,25) = 1.969, p>0.05.

Increased plasma and brain IL-6 levels after cocaine-induced CPP in

defeated mice

The ANOVA F(2,21) = 19.279, p<0.001 of plasmatic IL-6 levels after cocaine CPP (Fig 4)

revealed significantly increased IL-6 protein levels in defeated mice compared to the

Fig 3. Indomethacin decreases plasma and striatum (STR) IL-6 levels in defeated mice. Groups defined by stress condition and social defeat episode, all pretreated

with indomethacin 10 mg/kg: (a) Plasma (EXP n = 7, 1RSD n = 8, 4RSD n = 8, 3WEEKS = 8); (b) Striatum (EXP n = 6, 1RSD n = 7, 4RSD n = 8, 3WEEKS n = 8). Data

are presented as mean values ± SEM (pg/mg) �p<0.05 vs. exploration (EXP) group.

https://doi.org/10.1371/journal.pone.0209291.g003

Fig 4. Social defeat increases plasma and striatal IL-6 levels after cocaine-induced CPP. Groups defined by stress condition and pre-treatment: (a) Plasma

(EXP-SAL n = 8, RSD-SAL n = 8, RSD-INDO10 n = 8); (b) Striatum (EXP-SAL n = 6, RSD-SAL n = 6, RSD-INDO10 n = 10). Data are presented as mean

values ± SEM (pg/mg); ���p< 0.001 vs. exploration (EXP) group.; +++p< 0.001; +p<0.05 vs. pretreated defeated (RSD-INDO10) group.

https://doi.org/10.1371/journal.pone.0209291.g004
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exploration group (p<0.001). Pre-treatment with indomethacin before each social stress epi-

sode prevented this increase, as no significant differences were detected in plasmatic levels of

socially defeated animals pretreated with indomethacin versus non-stressed controls, while a

significant difference was observed when compared to socially defeated animals without anti-

inflammatory treatment (p< 0.001).

Similar results were obtained in the STR, as ANOVA F(2,19) = 5.644, p<0.01 showed

increases in IL-6 protein levels in defeated animals after CPP when compared with stressed

mice previously treated with indomethacin (p<0.05).

Discussion

In the current study, we explored the role of the immune system in the long-term effects of

social stress on anxiety-like behavior and the conditioned rewarding effects of cocaine in mice.

Social defeat induced a long-term increase in anxiety when evaluated with the EPM test and

produced a significant increase in the conditioned reinforcing effect of cocaine in the CPP par-

adigm. With the aim of determining a possible role of the immune response in the genesis of

these stress effects, we first verified that social defeat increased levels of the proinflammatory

cytokine IL-6. Pre-treatment with the anti-inflammatory drug indomethacin before each stress

episode prevented this enhancement of IL-6 levels and reversed the increase in the rewarding

effects of cocaine in defeated mice. Conversely, this protective effect was not observed with

respect to the anxiogenic consequences of social stress.

It has been widely demonstrated, in humans and animal models, that stressful experiences

have a modulatory effect on the behavioral and physiological response to drugs [62]. In gen-

eral, social stress induces a sensitization of the reward system that makes mice more sensitive

to the effects of drugs [63]. In this regard, the CPP paradigm is a useful tool to study how stress

can modify sensitivity to the secondary motivational properties and hedonic valence of drugs

[64, 65]. In the present experiments, we observed that socially defeated animals developed CPP

with a sub-threshold dose of cocaine (1 mg/kg), while this conditioned preference was not

observed in animals under the exploration condition (non-stressed). These results are in agree-

ment with previous data reported by our group for cocaine [35, 36, 44] and other substances

such as alcohol or MDMA [66]. We also found that defeated animals displayed a long-term

increase in anxiety-like behavior, spending less time and a lower percentage of time, and per-

forming fewer entries and a lower percentage of entries into the open arms of the EPM than

their non-stressed counterparts. This result has also been consistently replicated in the litera-

ture [66, 67, 68, 69, 70, 71].

We hypothesized that these behavioral consequences of social stress are somehow mediated

by a neuroinflammatory immune response. To validate this hypothesis, we first determined if

social stress could trigger an inflammatory response. We observed increased levels of the cyto-

kine IL-6 in defeated mice four hours after social defeat episodes. Socially defeated animals dis-

played significantly higher plasmatic and brain (STR, PFC and hippocampus) IL-6 levels after

the first and fourth social defeat when compared with exploration mice. This is not surprising,

as other researchers have also reported increased levels of proinflammatory cytokines in

response to social stressors [40, 68, 72]. For example, Hodes and coworkers [40] found that the

higher responsiveness of the immune system to stress—characterized by higher levels of pro-

inflammatory cytokines—was correlated with a higher vulnerability of mice to a stress-induced

depressive-like phenotype.

However, most of these previous reports only dealt with the acute inflammatory conse-

quences of social stress. We have focused on long term-effects in the present study by extend-

ing the timeframe of the IL-6 profile and determining its levels three weeks after the stress
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episode, immediately before performing the behavioral tests. Three weeks after the last social

defeat encounter a significant increase in IL-6 levels was registered only in the hippocampus of

socially defeated mice, which is considered a central structure in CPP establishment [73, 74].

After continuous exposure to the aggressor stimulus for 10 days, other researchers have

reported an up-regulated plasmatic IL-6 levels up to 35 days after the last defeat episode [40].

We believe that these discrepancies may be a result of our shorter and intermittent social stress

protocol, while the other model can be considered chronic. It should be stressed that social

defeat involves physical contact during the aggressive encounter and can sometimes incur

physical wounding as a consequence, which can confound the interpretation of the inflamma-

tory measures in the brain or the blood. While some researchers did not report alterations in

inflammatory markers after RSD when physical wounding is completely suppressed [75],

other investigators find alterations in cytokines and in the immune response after non-physi-

cal social stress models, such as social threat exposure in juvenile mice [76] or vicarious social

defeat in adults [40, 77], findings that corroborate the immune response to social stressors. We

are aware of the possible interference of physical injuring in the immune response and, there-

fore, our protocol of RSD has been designed to minimize the physical wounding following the

indications of Burke and co-workers [78].

Once we confirmed the existence of an acute immune reaction triggered by social stress epi-

sodes, we aimed to determine if the increased sensitivity to the rewarding properties of cocaine

and anxiety-like behavior is somehow modulated by this pro-inflammatory response. Consid-

ering that cytokine IL-6 levels were generally similar in stressed and non-stressed mice (with

the exception of the hippocampus) when they performed the anxiety and CPP tests, the differ-

ent behavior of defeated mice can be explained by an initial role of the pro-inflammatory

response by which long-term adaptations are promoted. For this reason, we decided to block

the development of an inflammatory response by administering the anti-inflammatory indo-

methacin before each social stress episode. At the highest dose of indomethacin (10 mg/kg),

we registered a general assuaging of the increase in IL-6 levels after the first and fourth social

defeat compared with levels displayed in non-treated animals, although significantly higher

levels of IL-6 in plasma continued to be measured after the first defeat when compared with

the exploration group.

We also detected increased levels of IL-6 after the CPP procedure. Administration of four

daily low doses of cocaine (1mg/kg) induced an enhancement of plasmatic IL-6 cytokine levels

in all animals. This enhanced immune signaling was more pronounced in animals under the

stress condition. Socially defeated animals presented increased IL-6 levels in plasma, with

these levels proving to be statistically higher than in non-stressed animals. Again, pretreatment

with indomethacin reversed this enhancement in the effect of stress, and socially defeated ani-

mals pretreated with the anti-inflammatory displayed similar IL-6 levels to the exploration

group after cocaine CPP. The potential of cocaine as a xenobiotic that can activate proinflam-

matory central immune signaling is well documented [See revisions 17, 19]. We have found

that the inflammatory potential of cocaine is exacerbated by previous stress experience,

whereas an anti-inflammatory pre-treatment before stress can reverse it. It is known that pre-

vious stress experiences can sensitize peripheral and central components of the immune sys-

tem [68, 69, 70]. We hypothesized that our social stress paradigm would induce long-term

changes in the immune response of our experimental mice, making their immune system

more reactive to insults. Indeed, indomethacin administration before each social defeat

blocked the proinflammatory response induced by social stress and avoided the development

of sensitization of the neuroimmune axis.

Once we had demonstrated that indomethacin was capable of reducing the release of

cytokine induced by social defeat, we set out to evaluate if this decrease was related to the
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behavioral consequences of stress. Administration of the higher dose of indomethacin (10 mg/

kg) before each social defeat completely reversed the stress-induced increase in the rewarding

properties of cocaine, since defeated mice treated with this anti-inflammatory did not develop

CPP induced by cocaine. One possible mechanism by which neuroinflammation can enhance

the rewarding properties of cocaine is the activation of the hypothalamus hypothalamic-pitui-

tary-adrenal (HPA) axis. It had been demonstrated that IL-6 promotes the activation the HPA

axis at the hypothalamic level [79, 80], leading to the release of CRF. CRF modulates dopamine

function due to its interaction within the ventral tegmental area, a key structure for drug

reward effects [81, 82]. Elevated CRF levels would alter the function of the dopaminergic neu-

rons, causing long-term neuroadaptations along this pathway [83, 84]. In this sense, increased

levels of CRF in the ventral tegmental area have recently been related to increased rewarding

properties of cocaine in the self-administration paradigm [85, 86].

Conversely, the anti-inflammatory treatment failed to prevent anxiety-like behavior in our

socially defeated animals. While there is general agreement in the literature about the link

between an enhancement of IL-6 levels and the induction of anxiety (See revision on [87]), the

decrease of IL-6 levels was not effective in blocking the anxiogenic consequences of social defeat

in our study. Hodes and collaborators [40] reported similar results in an experiment carried out

with socially stressed mice pretreated with an IL-6 monoclonal antibody (mAbs), a pharmaco-

logical intervention that neutralizes circulating IL-6 cytokine, thereby preventing it from bind-

ing to IL-6 receptors in cell membranes. The authors found that chronic administration of IL-6

mAb prevented the development of social avoidance, which they considered a marker of sus-

ceptibility to stress consequences, while it failed to reduce anxiety-like behavior induced by

stress in the EPM. One possible explanation of this discrepancy between the depressive and

anxiogenic consequences of social stress may be different mechanisms for their genesis. Regard-

ing this, Wohleb and collaborators [68, 69, 70] proposed a neuroinflammatory mechanism for

the genesis of anxiety that is in line with our present results. They theorized that the pro-inflam-

matory profile induced by stress alters the function of vascular endothelial cells in the BBB,

allowing peripheral monocytes to traffic into the brain, leading to the development of anxiety.

They confirmed this hypothesis using transgenic knockdown mice for the proinflammatory

interleukin-1 receptor (IL-1R1) in endothelial cells. These transgenic mice are protected from

increased permeability of the inflammatory signals between brain resident microglia and

peripheral blood monocytes, and, as a result, have a decreased central inflammation and did

not develop anxiety-like behavior after social stress when compared with wild type mice [70].

Additionally, Wohleb and collaborators reported that this monocyte infiltration into the brain

occurs in regions specifically associated with fear, anxiety and threat appraisal such as the pre-

frontal cortex, the hippocampus, or the amygdala while it is not registered in other regions such

as the motor or somatosensory cortex, and the STR [88]. This region specificity of monocyte

infiltration could explain why indomethacin failed to block the genesis of anxiety while it was

effective in blocking the stress-induced increase in the rewarding properties of cocaine. As the

indomethacin treatment attenuated but did not completely block the increase of peripheral IL-

6 after the first RSD, we hypothesize that this increase was enough to start the mechanism that

led to increases in the permeability to BBB. The decreased integrity of the BBB let monocytes

traffic into the more permeable brain regions, while other regions less susceptible for this

peripheral infiltration, such as the striatum (key in reward drug response), were not affected.

Conclusions

The results of this research surpass current basic knowledge and take on a clear translational

relevance, since IL-6 levels have been found to be altered in humans under conditions of social
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stress [83], and even more so in those with cocaine use disorders [17]. The confirmation of the

contribution of inflammation to stress-induced vulnerability to mental-disorders provides

new research opportunities, especially in the field of drug abuse disorders; from considering

inflammatory parameters as a possible biomarker for diagnosis, to developing anti-inflamma-

tory strategies as preventive or therapeutic interventions.

Supporting information

S1 File. CPP experimental data.

(XLSX)

S2 File. EPM experimental data.

(XLSX)

S3 File. IL-6 concentration data.

(XLSX)

Author Contributions
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Software: Carmen Ferrer-Pérez, Marina D. Reguilón.
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