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Abstract

Mate choice through direct assortment on heritable traits, assortative mating (AM), is predicted in 

theory to inflate the genetic variance in a population and the correlation between relatives. Here, 

we revisit the theory of AM, first established in the landmark 1918 paper from RA Fisher, and 

provide new theory and analytical results. In particular, we shed light on inconsistencies in the 

literature regarding the correlation between double first cousins under AM and provide a solution. 

We derive new theory for AM due to X-chromosome loci. We show in the latter case that the 

inflation of genetic variance induced under AM is twice as large in females compared to males. 

These two theoretical contributions are verified and illustrated through simulations. We also 

provide a more general unified framework for the correlation between relatives in a non-inbred 

population.
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Assortative mating (AM), that is preference for mates with similar phenotypes, is commonly 

observed in multiple sexually reproducing species [8]. Seminal works from [5] and [19] have 

laid the theoretical foundation of the genetic consequences of AM. Despite using different 

analytical approaches, [5] and [19] established that AM on a particular trait, compared to 

random mating (RM), modifies the genetic variance of that trait in the population as well as 

the resemblance between relatives with respect to that particular trait. [19] also highlighted 

that AM induces an increase in homozygosity at causal loci of the trait driving the 

assortment. However, the magnitude of homozygosity thus induced decreases with the 

number of causal loci, and is almost negligible if the number of causal loci is large.

Results on the effect of AM from [5] were sometimes given without rigorous theoretical 

proofs. For example, [5] predicted that the correlation between parents and offspring or 
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between siblings would not be affected by linkage. The proof of this result was only 

established 60 years later by [11], although [4] had previously generalized the change in 

genetic variance due to AM to an arbitrary number of loci and an arbitrary genetic map. The 

generalization to an arbitrary number of loci and an arbitrary genetic map proposed in [4] 

was achieved by the introduction of an effective number of loci Me (Eq. 4.8.13 in [4]), which 

equals the actual number M of causal loci when there is free recombination and when all 

causal variants contribute equally to the genetic variance; otherwise Me < M. Similar to [19], 

[4] predict the increase of homozygosity at causal loci of the trait driving the assortment to 

be inversely proportional to Me and therefore conclusions from [4] are consistent with [19] 

in that homozygosity is negligible when the (effective) number of loci is large. [7, 6] made a 

substantial contribution in formalizing the consequences of AM on the correlation between 

relatives for a broader class of pedigree relationships (including non-traditional relationships 

such as step sibs, and including inbred individuals) than considered by its predecessors. 

Other contributions are from [2], who considered AM on traits controlled by infinitely many 

loci in the presence of dominance; and [9], who present a comprehensive overview and 

synthesis of all these results.

Despite these outstanding contributions, a number of areas of the theory of the genetic 

consequences of AM remain unclear. First, although predictions from [5] to [9] are 

consistent for most common pedigree relationships, no consensus can be found on the 

consequence of AM on the resemblance between double first cousins (DFC), for which there 

are a number of different results reported in the literature ([5, 7]). Secondly, despite evidence 

of mate preference being controlled by sex-linked variants ([16, 13], most theoretical 

predictions of the consequence of AM on the genetic variance in the population mostly 

concentrate on autosomal variants. An exception is [14], who predicted, following the same 

analytical framework as [11], the correlation between relatives when mates assort on a trait 

controlled by autosomal and X-linked loci.

Here, we address these two questions through theory and simulations. In particular, we 

assess through simulations the accuracy of different theoretical predictions of the correlation 

between DFC under AM. In addition, we extend existing theory for infinitesimal and finite 

locus models in the case when the trait on which AM occurs is wholly caused by genes on 

the sex chromosomes rather than on autosomes. In this study we assume that assortment is 

primarily on phenotype, that there is no sexual selection (i.e. both sexes have equal 

opportunity to reproduce), that all covariance between relatives is genetic, that all genetic 

variation is additive and that there is no inbreeding.

Review of consensus results

Variance under equilibrium

We assume that AM occurs on a trait controlled by a large number (n) of variants and thus 

additive (breeding) genetic values can be assumed normally distributed. The assumption of a 

large number of variants is supported by overwhelming evidence that complex traits in 

humans (and other species) are highly polygenic ([18]). We therefore follow the derivations 

of [2], which are a based on normal distribution assumptions. At generation t, we denote At 

as the additive genetic value and E as the environmental value. We allow the variance of At 
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to vary over time but that of E to be constant over time. We define 

ht
2 = var At / var At + var(E) , with var(E) the environmental variance. When not using any 

subscript, h2 simply denotes the heritability in the base population, i.e. under RM. For 

notation, we use AM and AF to denote autosomal male and female breeding values of mates 

and YM and YF the phenotypic value of males and females respectively. From [2],

AF(t) = ht
2YF(t) + rF(t)

AM(t) = ht
2YM(t) + rM(t).3

(1)

In equation (1), rF(t) and rM(t) are normally distributed residual errors with mean 0 and 

variances var rF(t) = var AF(t) 1 − ht
2  and var rM(t) = var AM(t) 1 − ht

2 .

Per definition, var(Yt) = var(At)+var(E), and assuming that male and female phenotypic 

variances are the same, it follows that cov (YF(t), YM(t)) = ρvar(YF(t)) = ρvar(YM(t)), where ρ 
is the phenotypic correlation between mates, which is assumed to be constant over 

generations.

Using equation (1),

cov AF(t), AM(t) = ρht
4var Y t = ρht

2var At , (2)

so that the correlation between the additive genetic values of the mates is the well-known 

result ρht
2 ([19]).

The recurrence equation for the additive genetic variance is derived from the infinitesimal 

model ([5, 1]) as,

At + 1 = 1
2 AF(t) + 1

2 AM(t) + m, (3)

with m a segregation term that has constant variance var(m) = var(A0)/2, where var(A0) is 

the additive genetic variance in the base population, i.e. the additive genetic variance under 

random mating. From equation (1) to (3),

var At + 1 = 1
2var At 1 + ρht

2 + 1
2var A0 . (4)

At equilibrium, which is generally reached within few generations (Figure 2), this gives the 

well-known result ([19, 2, 9]) of
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var Aeq
var A0

= 1
1 − ρheq

2 , (5)

where var(Aeq) and heq
2  respectively denote the additive genetic variance and heritability in 

the equilibrium population. Equation (5) can also be expressed (as in [9], eq. 7.19b) in terms 

of base population parameters, i.e.

var Aeq /var A0 =
2 + 1 − 4ρh2 1 − h2 − 1 /h2

2(1 − ρ) = RA, (6)

which to first order approximation, when |ρh2| ≪ 1, becomes

var Aeq /var A0 ≈ 1 + ρh2/(1 − ρ) . (7)

Finally, ratio of heritabilities, as previously reported by [12], can be expressed as

heq
2 /h2 = 1

1 − ρheq
2 1 − h2 =

RA

1 + h2 RA − 1
. (8)

Resemblance between relatives

As shown in Table 3 from [3], results from [5] and [19] regarding the correlation between 

relatives are consistent for unilineal relatives and for descendants of half- and full-sibs. They 

assume, for a large number of loci, multivariate normality of phenotypes and breeding 

values between pairs of relatives and large effective population size so that inbreeding can be 

ignored. In addition, they assume homogeneity of variance, in that the variance in breeding 

values is the same in different families.

If ρ is the phenotypic correlation between mates and ρa = ρheq
2  is the correlation of breeding 

values between mates at equilibrium, then the results from [5], [19], [2], [6] and [11] can be 

summarised as follows.

Unilineal relatives—Let k be the number of meioses between individuals i and j, when i 
and j have a single common ancestor. The numerator relationship Rij between i and j, i.e. 

twice their coancestry coefficient, equals (1/2)k. Using these notations, we can write the 

known formula ([5, 11]) for the phenotypic correlation between i and j:

corr Y i, Y j = Ri jheq
2 (1 + ρ) 1 + ρa

k − 1 = (1/2)kheq
2 (1 + ρ) 1 + ρa

k − 1 . (9)
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In particular, if i is j’s great grandfather, then k = 3 and corr Y i, Y j = 1
8heq

2 (1 + ρ) 1 + ρa
2 as 

previously reported in [3] for example.

Descendants of fullsibs—From [5], the correlation between fullsibs i and j can be 

expressed as

corr Y i, Y j = 1
2heq

2 1 + ρa . (10)

We now propose to extend this relationship to the case of descendants of fullsibs. [6] 

introduced a general linear model for the covariance between relatives, that predicts the 

correlation between descendants of fullsbibs to be attenuated by a factor (1 + ρa) at each 

generation. Consequently, if individual i is k1 generations from the first fullsib and 

individual j is k2 generations from the second fullsib, then Rij = (1/2)k, with k = k1 + k2 + 1 

and

corr(Y i, Y j) = (1/2)kheq
2 (1 + ρa)k . (11)

Note that when k1 = k2 = 0, we find the same result as in equation (10). Also when k1 = 0 

and k2 = 1, which corresponds to avuncular relationships (niece/nephew versus aunt/uncle), 

we find the known relationship from [5] and [3]: corr Y i, Y j = 1
4heq

2 1 + ρa
2.

Descendants of halfsibs—This relation was not studied by [5]. Starting from the 

correlation between halfsibs i and j ([11]),

corr Y i, Y j = 1
4heq

2 1 + 2ρa + ρρa , (12)

and applying the same linearity principle ([6]) as before, we can extend equation (12) to the 

case of descendants of halfsibs. Let us assume that individual i is k1 generations from the 

first halfsib and individual j is k2 generations from the second halfsib. The numerator 

relationship between i and j is in this case is Rij = (1/2)k, with k = k1 +k2 +2. For example, 

for halfsibs themselves, k1 = k2 = 0. We then derive the extended formula:

corr Y i, Y j = (1/2)kheq
2 1 + 2ρa + ρρa 1 + ρa

k − 2 (13)

Generalization—All expressions above have a similar form, with a term depending on one 

or two matings in the pedigree of individuals i and j, and a term depending on the number of 

generations since those matings. A general equation for the aforementioned relationships 

therefore has the form,
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corr Y i, Y j = (1/2)kheq
2 Ci j 1 + ρa

k (14)

with the constant Cij equal to (1+ρ)/(1+ρa) for unilineal relatives, (1+2ρa+ρρa)/(1+ρa)2 for 

descendants of halfsibs and 1 for descendants of fullsibs. For large heritabilities, all these 3 

ratios are approximately unity and the most general form is

corr Y i, Y j ≈ (1/2)kheq
2 1 + ρa

k (15)

Hence, for this approximation an estimate of heq
2  from corr(Yi,Yj)/(1/2)k is biased upwards 

by (1+ρa)k ≈ exp(kρa).

We represent in Figure 1 how AM inflates the correlation between relatives for the three 

types of relationships described above. Importantly, we illustrate that AM disproportionately 

inflates the correlation between distant relatives.

Double first cousins—The case of double first cousins (DFC) is particularly interesting 

as different formulas are proposed in the literature. [5] first predicted the phenotypic 

correlation between DFC under AM to be

rDFC
(Fisher) = 1

4heq
2 1 + 3ρa . (16)

Following [5], [11] introduced a new analytical framework to predict a wide range of 

correlations between relatives under AM but failed to extend his approach to DFC. He 

wrote : “...the proper enforcement of phenotypic assortative mating at the level of analysis 

employed here is not obvious, and the additive special case of Fisher’s (1918) result, was not 

derived”. [7] revisited the question using a different approach which models the 4-

dimensional distribution of breeding values of males sibs mating with females sibs. One key 

insight of [7] was to prove that AM could modify the frequency of certain mating types in 

the population, like for example those giving rise to DFC. He showed however that AM does 

not uniformly affect all types of mating in the population. For example, for what he terms as 

Type 1 relatives, i.e. those connected through only one of their parents (half-sibs, first 

cousins, etc.), Gimelfarb showed that their frequency in an assortatively mating population is 

not altered relative to a randomly mating population. For Type 2 relatives, i.e. if both parents 

of one of them are connected to only one of the parents of the other (e.g. avuncular 

relationship), Gimelfarb showed that the frequency could be increased in a population 

undergoing assortative mating. However, he also noted that avuncular was an exception to 

other Type 2 relationships. DFCs fall in Gimelfarbs third type of relatives (Type 3), where 

members of the pair of relatives are connected through both their parents. He showed in this 

case that the probability of observing DFC is larger under AM than under RM. Along with 

that result, he also demonstrates that the genetic variance in (the population of) DFC is 
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larger under AM than that of the general population. These two conclusions lead to the 

following formula for the correlation between DFC:

rDFC
(Gimel f arb =

1
4heq

2 1 + ρa
3

1 − 1
4 1 + ρa

2ρa
2 , (17)

As highlighted in [7], when |ρa| ≪ 1 both inflations in the frequency of DFC and in the 

genetic variance among DFC are negligible, leading thus to Fisher’s result in equation (16). 

This is illustrated on Figure 4, which shows plots of the mathematical functions of ρa 

described in equations (16) and (17). [7] underlined the discrepancy between equation (17) 

and a prediction from [2]. In Bulmer’s 1980 edition, the correlation between DFC was given 

as rDFC
(Bulmer) = 0.25 1 + ρa

2 but this was removed in the 1985 edition and no explicit equation 

was given therein. Also, the acknowledgement section of [11] refers to Bulmer’s formula 

from [2] (1980 edition) as not agreeing with Fisher’s: “With the exception of double first 

cousins, Dr Bulmers’s correlations agree with Fisher’s”.

Another difference between [5] and [7] is that Fisher’s reasoning implies exchangeability 

between male or female sibs. In other words, each of the female sibs (from one family) is 

equally likely to mate with each of the male sibs (from another family). Under this 

assumption, Fisher’s modelling therefore does not account for Mendelian sampling creating 

differences in breeding values (and phenotypes) between sibs. In contrast, Gimelfarb’s 

modelling, which does not rely on this assumption, allows asymmetrical correlation between 

actual mates versus potential mates. In practice, the exchangeability assumption may be too 

restrictive. For example, if there is AM in the population for a trait like human height 

therefore, then we can reasonably expect the taller member of a female sib-pair to be more 

likely to partner with the taller member of a male sib-pair.

We present later a simulation study comparing the predictions from equations (16) and (17) 

for different values of ρa (Figure 4).

Assortative mating on traits of the X-chromosome

We assume a large number of loci so that additive genetic (breeding) values are normally 

distributed. For notation, we use AMX and AFX to denote additive genetic values from the X-

chromosomes in males and females, respectively. For male and female offspring we can 

write their breeding values as functions of their parents’ breeding values:

AMX(t + 1) = c
2 AFX(t) + mM (18)

AFX(t + 1) = 1
2 AFX(t) + 1

c 2 AMX(t) + mF (19)
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In equations 18 and 19, c is a constant scaling factor, defined in base population terms, to 

reflect the difference in male and female genetic variance on the X-chromosome:

c =
var AMX(0)
var AFX(0)

. (20)

Parameter c also reflects the effect of dosage compensation ([9]).

The Mendelian sampling terms mM and mF have variances var mM = 1
2var AMX(0)  and and 

var mF = 1
4var AFX(0) . At any generation, the covariance in breeding values between male 

and female parents is ρ var AMX(t) var AFX(t)
1/2

.

Recurrence equations are,

var AMX(t + 1) = c2

2 var AFX(t) + 1
2var AMX(0) (21)

var AFX(t + 1) = 1
4var AFX(t) + 1

2c2var AMX(t) +
ρ var AMX(t) var AFX(t)

1/2

c 2

+ 1
4var AFX(0)

(22)

If we denote RM and RF as the ratios between equilibrium genetic variances over RM 

genetic variances in males and females respectively, then these equations can be simplified 

to,

RM = 1
2 1 + RF and RF = 1 + ρ RF 1 + RF , (23)

which has the solution

RM = 1 +
ρ 3ρ + 8 + ρ2

4 1 − ρ2 and RF = 1 +
2ρ 3ρ + 8 + ρ2

4 1 − ρ2 . (24)

We now add the effect of environmental variance, and assume that environmental variance is 

the same for males and females. We define X-chromosome heritabilities in males and 

females as
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hMX(t)
2 = var AMX(t) / var AMX(t) + var(E) , (25)

hFX(t)
2 = var AFX(t) / var AFX(t) + var(E) . (26)

Following the same logic as for autosomal breeding values, the covariance in X-

chromosome breeding values for male and female parents is,

cov AMX(t), AFX(t) = ρ hMX(t)
2 hFX(t)

2 var AMX(t) var AFX(t)
1/2 .

This is the only change from equation (22), which was for heritabilities of 1. Therefore, at 

equilibrium,

RM = 1
2 1 + RF as before and RF = 1 + ρ hMX

2 hFX
2 RF 1 + RF , (27)

which has as solution

RM = 1 +
ρ 3ρhMX

2 hFX
2 + hMX

2 hFX
2 8 + ρ2hMX

2 hFX
2

4 1 − ρ2hMX
2 hFX

2 = 1 + λ, (28)

and

RF = 1 +
2ρ 3ρhMX

2 hFX
2 + hMX

2 hFX
2 8 + ρ2hMX

2 hFX
2

4 1 − ρ2hMX
2 hFX

2 = 1 + 2λ . (29)

We can therefore see from equations (18) and (19) that the inflation of genetic variance is 

twice as large in females compared to males. One direct consequence of this result is that 

positive AM is expected to reduce the effect of dosage compensation (parameter c2) in the 

equilibrium population, by a factor equal to 1−λ/(1+2λ) ≤ 1. For example, under full dosage 

compensation, the ratio of genetic variance between males and females is c2 = 2 in a base 

population undergoing random mating. This ratio would therefore decrease to ∼ 1.64 (i.e. ∼ 
17.8% decrease) under AM if for instance ρ = 0.25, var[AMX(0)] = 0.5 and var[AFX(0)] = 

0.25.

At equilibrium, equations for the male and female heritability inflation can be written as
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hMX
2

hMX(0)
2 =

RM

1 + hMX(0)
2 RM − 1

and
hFX

2

hFX(0)
2 =

RF

1 + hFX(0)
2 RF − 1

. (30)

As for genetic variance, AM also reduces the ratio of heritability between males and females 

in the equilibrium population as compared to the base population. We express below that 

reduction factor as

hMX
2

hFX
2

hMX(0)
2

hFX(0)
2 = 1 + λ

1 + 2λ
1 + 2λhFX(0)

2

1 + λhMX(0)
2 . (31)

Using numerical values from our example above, we predict that the ratio of heritability 

would similarly decrease from 2 in the base population, down to ∼ 1.64 in the equilibrium 

population. We emphasize here that the factor of 2 in the base population is under the 

assumption of full dosage compensation. In general, the ratio of male and female heritability 

in the base population can differ for reasons other than dosage compensation.

Simulations

Inflation in genetic variance and heritability

General description of the simulation—We performed two simulations to verify the 

predicted inflation in genetic variance derived in equations (6), (29) and (28). The first 

simulation illustrates the predictions for traits controlled by autosomal variants while the 

second focuses on traits controlled by X-chromosome variants. In both simulations we 

assumed independence between causal variants and, without loss of generality, that the 

frequency of causal alleles equals p = 0.5. For each simulation replicate, we start by 

generating a base population consisting of N = 5,000 unrelated individuals (2,500 males and 

2,500 females). We used a relatively large population size to minimize the effect of genetic 

drift on our simulations. Then, to simulate the next generations, we sample with replacement 

N/2 sex-discordant pairs from the current generation to engender new male offspring and 

N/2 sex-discordant pairs to engender new female offspring. We detail in the Appendix 

section how pairs are sampled to ensure a phenotypic correlation between mates ρ = 0.25 

and how genotypes of offspring are obtained from that of their parents. This sampling 

process generates genotypes of N individuals in the next generation. These genotypes are 

then combined with alleles effect sizes to simulate corresponding phenotypes. AM was 

simulated for 30 generations.

Autosome-controlled traits—For traits controlled by autosomal loci, phenotypes (YA) 

were simulated in males and females using the following equation:
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Y A = ∑
j = 1

M X j − 2p
2p(1 − p) β j + eA, (32)

where, M is the number of autosomal causal variants, taken here to be M = 1,000; Xj (Xj ∈ 
{0,1,2}) the number of causal alleles at the j-th causal variant, βj the allelic effect size 

sampled from a normal distribution: β j ∼ 𝒩 0, h2/M ; h2 the heritability of the trait and eA a 

residual term capturing non-genetic effects, which we also assumed to be normally 

distributed: eA ∼ 𝒩 0, 1 − h2 . In equation (32), we assume all causal allele to have the same 

minor allele frequency p. We also assume genetic drift to be negligible and therefore p to be 

constant over the generations. Equation (32) predicts the genetic and phenotypic variances to 

be respectively var(A0) = h2 and var(YA) = 1 in the base population.

We considered 2 scenarios corresponding to different values of the heritability under random 

mating: h2 = 0.25 (scenario A1) and 0.5 (scenario A2). On average, we observed that 10 

generations (iterations) were sufficient to reach equilibrium. We found in both scenarios, a 

perfect consistency between theoretical and empirical inflation in genetic variance as 

illustrated in Figure 2. Indeed, equation (6) predicts an inflation of the genetic variance ∼ 
7% and ∼ 15% in scenario A1 and A2 respectively; while we found over 1,000 simulation 

replicates that the average genetic variance estimated in our first simulation was 6.7% in 

scenario A1 and 14.9% in scenario A2. In the two simulations standard errors across 1,000 

simulation replicates of the mean inflation of genetic variance is ∼ 0.2%.

X-chromosome-controlled traits—For X-chromosome-controlled traits, phenotypes 

were simulated in males (YM) and females (YF ) using the following equations:

YM = ∑
j = 1

MX X j
(m) − p

p(1 − p) β j
(m) + eM and YF = ∑

j = 1

MX X j
( f ) − 2p

2p(1 − p) β j
( f ) + eF, (33)

where, MX is the number of X-chromosome causal variants, taken here to be 

MX = 50; X j
(m) X j

(m) ∈ 0, 1  and X j
( f ) X j

( f ) ∈ 0, 1, 2  the number of causal alleles at the j-th 

causal variant in males and females respectively; β j
( f ) and β j

(m) = β j
( f ) hMX

2 /hFX
2  the allelic 

effect size in females and males respectively, with β j
( f ) ∼ 𝒩 0, hFX

2 /MX ; hFX
2  and hMX

2  the 

heritability of the trait in females and males respectively; and eF and eM residual terms 

capturing non-genetic effects in females and males respectively, and assumed to be normally 

distributed: eF ∼ 𝒩 0, 1 − hFX
2  and eM ∼ 𝒩 0, 1 − hMX

2 . Similar to equation (32), equation 

(33) predicts the phenotypic variance to be 1 in the base population of males and females 

and that var AMX(0) = hMX
2  and var AFX(0) = hFX

2 .
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For X-chromosome loci, we also considered two scenarios. These scenarios are 

characterized by values of the base population heritability in males hMX
2  and females hFX

2 : 

scenario X1 where hMX
2 = 0.5 and hFX

2 = 0.5 and scenario X2 where hMX
2 = 0.5 and 

hFX
2 = 0.25. We found in both scenarios a good agreement between observed inflation in 

genetic variance and predictions assuming normality of breeding values (Figure 3). 

However, we also observed a slight overestimation from our theoretical predictions, which is 

explained by the deviation from the normal distribution assumption resulting from the 

relatively small number of causal loci (MX = 50 = M/20). More specifically, our averaged 

estimates over 1,000 simulation replicates are ∼ 10.2% and ∼ 21.5% in males and females 

respectively in scenario X1 and ∼ 6.9% and ∼ 14.4% in males and females respectively in 

scenario X2. These estimates are yet consistent with predictions from equations (29) and 

(28), i.e. (RM − 1 = 11.07%,RF − 1 = 22.1%) in scenario X1 and (RM − 1 = 7.4%,RF − 1 = 

14.9%) in scenario X2. In the latter simulation standard errors of the mean inflation of 

genetic variance are ∼ 0.8%. These standard errors are larger than reported in the 

simulations based on autosomal loci since variances were calculated separately for males 

and females.

Overall these two simulations (autosome and X-controlled traits) validate the theoretical 

predictions derived in equations (6), (29) and (28).

Linkage—[2] previously showed, in the absence of selection (which we also assumed 

here), that linkage has no effect on the inflation of genetic variance under assortative mating. 

We wished to confirm this result through simulations. We therefore re-did the same 

simulations described above with the only exception that causal variants were linked within 

families. We detail how linked loci were simulated in the Appendix section. Overall, we 

confirmed Bulmer’s result and also show that linkage slows down the speed of convergence 

towards equilibrium (Figures 5 and 6).

Validity of equations (18) and (19)—We used the same simulation framework 

described above to test the validity of equations (18) and (19). Equation (18) predicts that 

the regression of males breeding values onto their mothers’ yields an unbiased estimate of 

the scaling parameter c defined above in equation (20) and also that the residual variance of 

that regression is an estimate of the constant segregation variance in males. Similarly, 

equation (19) predicts that the regression of females breeding values onto their mothers’ 

(AFX) and their fathers’ (AMX) yields an unbiased estimate of 1/c and that the residual 

variance of the latter regression is an unbiased estimator of the constant segregation variance 

in females. We performed these regressions at each generation (t > 1) of our simulation 

study (scenarios X1 and X2) and monitored the estimates of c, 1/c, var(mM) and var(mF ). 

We show in Figure 7 that all estimators are unbiased, i.e. not significantly different from 

their expected value under normality assumptions. Therefore, equations (18) and (19) are 

good approximations of how breeding values in the next generations are determined, even 

for traits controlled by finite numbers of loci.
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Correlation of double first cousins—We ran a simulation to compare predictions of 

the phenotypic correlation between DFC from equation (16) (from [5]) and equation (17) 

(from [7]). Since both equations are functions of the product of heritability h2 and mates 

correlation ρ, we fixed in this simulation the heritability to be h2 = 1 and varied the mates 

correlation between ρ = 0, 0.1, 0.2,...,0.9. For each value of ρ, we simulated one population 

composed of 1,000 males and 1,000 females and simulated AM for 10,000 generations. In 

this simulation, each sampled mates pairs engendered two offspring. We used such large 

number of iterations to maximize to chances of observing DFC under simple AM. Once 

equilibrium reached (after > 10 iterations), we identified all DFC pairs of and calculated 

their sampling phenotypic correlation.

We found a good consistency between [5] and [7] predictions when ρ < 0.2. For large values 

of ρ, we found that Fisher’s formula underestimates the correlation between DFC while 

Gimelfarb’s prediction follows closely the empirical correlation (Figure 4). Note that we 

have not used in this simulation any of the models proposed by [7] and that DFC in our 

simulation occurred completely at random (see Appendix).

Discussion

This study reviews some of the most important results of the theory of AM: (i) the increase 

of genetic variance in the population and (ii) the increase of correlation between relatives, 

especially for distant relatives. For the former, we proposed beyond existing results, an 

extension of [2] theory for traits controlled by X-chromosome loci. In particular, we have 

shown when equilibrium is reached, that the inflation of genetic variance, also referred to as 

disequilibrium variance, is twice as large in females compared to males. This result is 

important as it gives insights into reasons why heritability of certain traits may differ 

between males and females, in particular if these traits are correlated between spouses and 

controlled by variants on the X-chromosome. Another consequence of our results is that the 

ratio of genetic variance between males and females is reduced in the equilibrium population 

as compared to the base population. Regarding the correlation between relatives, we shed the 

light on inconsistent results regarding DFC and demonstrated through simulations that [5] 

results are only valid for moderate strength of assortment, and that [7] formula perfectly 

matches our simulations. As mathemetically demonstrated in [7], the reason of this 

discrepancy is that [5] ignored that AM modifies the frequency of DFCs in a assortatively 

mating population relative to a randomly mating population. Our simulations, which do not 

rely on the assumption of unchanged frequency of DFCs in the population over multiple 

generations of AM, therefore expose the limitations of [5] formula.

The results presented in this study have some limitations. First, our analyses are restricted to 

cases where the covariance between relatives is purely genetic and where genetic variation is 

solely additive. We therefore ignored here the contribution of shared environments and non-

additive genetic contributions such as dominance effects. In addition, our extension of [2] to 

X-chromosome loci was proposed under the normal distribution theory, i.e. assuming a large 

number of loci contributing to the genetic architecture of the traits. Although, this 

assumption seems reasonable even for limited number of loci (∼ 10 if allele frequency > 

0.1), our theory does not properly cover all examples with finite number of loci. 
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Nevertheless, we show under simplifying assumptions (Appendix section) that our results 

from equations (6), (29) and (28), hold in a finite locus model.

As large collections of SNP genotyped samples are increasingly accessible, it is now 

possible to quantify empirically some the consequences of AM. Recent works as those as 

[17], [15] or [20] exemplify how SNP data can be used to gain insights into the genomic 

signature of AM, that is the correlation induced by AM between trait-increasing alleles at 

unlinked loci. This genomic signature was recently quantified in [20] as the correlation 

between weighted counts of trait-associated alleles (e.g. identified in large genome-wide 

associations studies) from odd- versus even-numbered chromosomes. Despite progress 

based on autosomal variants, we still do not have at present sufficiently large numbers of 

genetic variants on the X-chromosome that are robustly associated with traits driving AM 

such as height or educational attainment. In the near future however, given the ever constant 

increase in the size of genome-wide association studies ([10]), such data are likely to 

become available. We underline also that the theory developed in this study for the X-

chromosome has ignored possible effects of sexual selection, which might therefore limit its 

applicability to real data sets where such selection may be present. Other questions are left 

unanswered. For example, how large is the gametic phase disequilibrium induced by AM? 

Or its companion question, how much of the disequibrium variance can we quantify from 

SNP data? Do empirical observations match with theoretical predictions from [4], and 

others? In the near future, with the availability of large datasets from genome-wide 

association studies, these questions can be addressed empirically.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Theoretical ratio of the phenotypic correlation between relatives in a population undergoing 

assortative mating (AM) relative to a randomly mating (RM) population. Two types of 

pedigree relationships are considered: unilineal (equation 9) in panel a and descendants of 

fullsbibs (equation (11) in panel b. Four cases are considered: (ρ = 0.5,h2 = 0.3), (ρ = 0.5,h2 

= 0.2), (ρ = 0.2,h2 = 0.3) and (ρ = 0.2,h2 = 0.2).
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Figure 2: 
Simulation results showing the inflation of the genetic variance (with 95% confidence 

interval - light band around each dot) induced by assortative mating (AM) on a quantitative 

trait controlled by unlinked autosomal variants. Data were simulated assuming that the trait 

driving assortment is controlled by 1,000 independent bi-allelic variants with allele 

frequency p = 0.5. Two scenarios were considered with either a heritability (1) h2 = 0.25 or 

(2) h2 = 0.5. Each simulation replicate generates a population of 2,500 males and 2,500 

females undergoing AM for 30 generations with a mate correlation ρ = 0.25. The empirical 

genetic variance is calculated at each iteration as the sampling variance (over the 5,000 

generated individuals) of the simulated breeding value. The ratio of the empirical genetic 

variance over the genetic variance in the base population was averaged over 1,000 

simulation replicates (i.e. each dot is the average over 1,000 simulated populations) and 

compared with theoretical expectation RA from equation (6). In the first scenario (h2 = 0.25, 

lower dotted curve) RA ∼ 1.07 and in the second scenario (h2 = 0.5, upper plain curve), RA 

∼ 1.15.
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Figure 3: 
Simulation results showing the inflation of the genetic variance (with 95% confidence 

interval - light band around each dot) induced by assortative mating (AM) on a quantitative 

trait controlled by unlinked X-chromosome variants. Data were simulated assuming that the 

trait driving assortment is controlled by 50 bi-allelic variants with allele frequency p = 0.5. 

Each simulation replicate generates a population of 2,500 males and 2,500 females 

undergoing AM for 30 generations with a mate correlation ρ = 0.25. The heritability in 

males was fixed to hMX
2 = 0.5 and two scenarios were considered corresponding to a 

heritability in females (1) hFX
2 = 0.5 or (2) hFX

2 = 0.25. The empirical genetic variance is 
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calculated at each iteration as the sampling variance (in males and females separately) of the 

simulated breeding value from the X-chromosome. The ratio of the empirical genetic 

variance over the genetic variance in the base population was averaged over 1,000 

simulation replicates (each dot corresponds the average over 1,000 simulated populations) 

and compared with theoretical expectations RM and RF from equation (28).
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Figure 4: 
Phenotypic correlation of simulated double first cousins (DFC) as a function of the mate 

correlation ρ. Each simulation replicate (black dot) corresponds to a simulated population of 

1,000 males and 1,000 females undergoing AM for 10,000 generations with a given value of 

ρ. The heritability is fixed in this simulation to h2 = 1. For each value of ρ, the empirical 

correlation between DFC was calculated across the 10,000 generations and compared to 

theoretical expectations from Fisher (1918) (equation 16) and Gimelfarb (1981a) (equation 

17). CI stands for Confidence Interval.
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Figure 5: 
Simulation results showing the inflation of the genetic variance (with 95% confidence 

interval - light band around each dot) induced by assortative mating (AM) on a quantitative 

trait controlled by linked autosomal variants. Data were simulated assuming that the trait 

driving assortment is controlled by 1,000 linked bi-allelic variants with allele frequency p = 

0.5. Details on the simulation of linked loci are given the Appendix section. Two scenarios 

were considered with either a heritability (1) h2 = 0.25 or (2) h2 = 0.5. Each simulation 

replicate generates a population of 2,500 males and 2,500 females undergoing AM for 30 

generations with a mate correlation ρ = 0.25. The empirical genetic variance is calculated at 

each iteration as the sampling variance (over the 5,000 generated individuals) of the 

simulated breeding value. The ratio of the empirical genetic variance over the genetic 

variance in the base population was averaged over 1,000 simulation replicates (i.e. 1,000 

simulated populations) and compared with theoretical expectation RA from equation (6). In 

the first scenario (h2 = 0.25, lower dotted curve) RA ∼ 1.07 and in the second scenario (h2 = 

0.5, upper plain curve), RA ∼ 1.15.
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Figure 6: 
Simulation results showing the inflation of the genetic variance (with 95% confidence 

interval - light band around each dot) induced by assortative mating (AM) on a quantitative 

trait controlled by linked X-chromosome variants. Data were simulated assuming that the 

trait driving assortment is controlled by 50 bi-allelic variants with allele frequency p = 0.5. 

Details on the simulation of linked loci are given the Appendix section. Each simulation 

replicate generates a population of 2,500 males and 2,500 females undergoing AM for 30 

generations with a mate correlation ρ = 0.25. The heritabily in males was fixed to hMX
2 = 0.5

and two scenarios were considered corresponding to a heritability in females (1) hFX
2 = 0.5 or 

(2) hFX
2 = 0.25. The empirical genetic variance is calculated at each iteration as the sampling 
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variance (in males and females separately) of the simulated breeding value from the X-

chromosome. The ratio of the empirical genetic variance over the genetic variance in the 

base population was averaged over 1,000 simulation replicates and compared with 

theoretical expectations RM and RF from equation (28).
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Figure 7: 
Estimate of dosage compensation (scaling parameter c) and segregation variances in males 

(var[mM]) amd females (var[mF]). These estimates are obtained from the linear regression 

defined in equations (18) and (19), i.e. from the regression of male and female breeding 

values onto that of their parents. These regressions are performed at each generation of 

1,000 simulated populations undorgoing assortative mating for 30 generations as described 

in the simulation study (scenarios X1 and X2). Panel a represents estimates of c, expected to 

be c = 1 and c = 2 ≈ 1.414 in scenarios X1 and X2 respectively. Panel b represents 

estimates of 1/c. Panel c represents estimates of var[mM], expected to equal 0.5 in both 

scenarios X1 and X2. Panel d represents estimates of var[mF] expected to be var[mF] = 0.5 

and var(mF) = 0.25 in scenarios X1 and X2 respectively.
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