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Abstract

Tumor heterogeneity has been identified at various -omic levels. The tumor genome, 

transcriptome, proteome, and phenome can vary widely across cells in patient tumors, and are 

influenced by tumor cell interactions with heterogeneous physical conditions and cellular 

components of the tumor microenvironment. Here, we explore the concept that while variation 

exists at multiple -omic levels, changes at each of these levels converge on the same pathways and 

lead to convergent phenotypes in tumors that can provide common drug targets. These phenotypes 

include cellular growth and proliferation, sustained oncogenic signaling, and immune avoidance, 

among others. Tumor heterogeneity complicates treatment of patient cancers as it leads to varied 

response to therapies. Identification of convergent cellular phenotypes arising in patient cancers 

and targeted therapies that reverse them has the potential to transform the way clinicians treat 

these cancers and to improve patient outcome.
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“The demonstration that tumor heterogeneity is a common phenomenon could 

easily create an air of pessimism among clinical oncologists. After all, it appears 

that tumors are infinitely adaptable, possessing the ability to metastasize widely 

prior to clinical detection and rapidly evolve new antigenic properties, hormone 

receptor levels, and patterns of drug resistance. Tumors, it seems are always one 

step ahead of the treating physician. The alternative view, however, is that the 

recognition and understanding of tumor cell heterogeneity may in fact provide the 

foundation upon which successful new treatment strategies can be developed.” -

Schilsky, Modern Trends in Human Leukemia, Vol. 7, 

1987

Introduction

Tumor heterogeneity reflects a state in which cancer cells within the same tumor are 

fundamentally different from each other. The use of modern sequencing technologies to 

analyze heterogeneity in patient tumors has confirmed hypotheses formed decades ago 

regarding different subclonal cell populations within a tumor [1–3]. Further, recent studies 

have also shown that these subclone populations differ at levels other than merely the 

genetic, including epigenetic, transcriptomic, proteomic, and, as will be the focus of this 

review, cellular phenotype [4–8]. Not only have differences at these -omic levels been 

detected as a cancer progresses through time (temporal heterogeneity), but differences have 

also been detected across space (spatial heterogeneity) [9–11]. Spatial heterogeneity can be 

both intratumoral, i.e., within a single primary or metastatic tumor, and intrapatient, i.e, 

between different tumors within the same person [12, 13]. Thus, as a patient’s cancer 

progresses, subclones, defined as genetically distinct groups of tumor cells descending from 

a common ancestor, can be identified, and their evolutionary trajectory can be followed as 

each subclone responds to or resists treatment.

While cancers have long been considered heterogeneous at the chromosomal level [14, 15], 

it was not until 1976 that Peter Nowell first theorized that because cancers mostly arise from 

a single neoplastic cell, they must undergo a stepwise genetic evolution unique to each 

tumor that gives rise to multiple heterogeneous subclones [1]. This hypothesis formed an 

early rationale for individualized cancer treatment. This stepwise genetic evolution Nowell 

attributed to genomic instability inherent to neoplastic cells. Nowell further applied ideas 

from population biology to tumor cells, positing that some of these acquired mutations 

would impart selective advantages, allowing certain subclones to expand and proliferate, 

while other, less fit subclones, would proliferate more slowly and eventually die off due to 

competition with more dominant subclones. Interestingly, Nowell also posited that as tumors 

progress, their genetic evolution converges on similar biological characteristics, i.e. 

phenotypes, a concept we will explore below.

The understanding that genetic variation exists amongst tumor cells engendered Nowell’s 

notion that these cells may differ in their response to various therapeutic regimens, an idea 

seconded by Schilsky, who proposed that oncologists adopt treatment strategies capable of 

eradicating not one homogenous cancer, but various tumor subpopulations [16]. However, 

little advancement has been made in the clinical realm towards achieving this goal. 
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Currently, the histopathology of tumor biopsies is assessed at the bulk level--biopsies are not 

dissociated into single cells to identify the subclones before performing laboratory tests or 

diagnostics. Similarly, clinicians do not routinely re-biopsy tumors or metastases as the 

disease progresses, steps which could be taken to make changes in treatment based on a 

tumor’s temporal and spatial heterogeneity and its likely unique evolutionary trajectory. 

Thus, despite our longstanding awareness of tumor heterogeneity, research efforts in this 

field have led to little impact on clinical decision making.

In this review, we will discuss the progress that has been made in understanding tumor 

heterogeneity at various -omic levels, including cellular phenotype. We will also discuss 

how the field can move closer to incorporating concepts of tumor heterogeneity into the 

clinic in order to impact patient care.

Tumor Heterogeneity Exists at Multiple -Omic Levels

Tumor -omics vary greatly across cancer cells through time and space. Clinicians use 

profiling of tumor mutations and gene expression to diagnose, treat, and make prognostic 

decisions regarding a patient’s cancer [17–19]. Response to targeted therapies requires 

presence of specific -omic events throughout a patient’s tumor as well as robust methods of 

detecting these events. Therefore, a full understanding of tumor heterogeneity in primary 

tumors and metastases and in early versus late stage disease is necessary for determination 

of efficacious therapeutic regimens and prognostication for patients.

Genomic heterogeneity

Studies of tumor heterogeneity at the genomic level indicate tumor cells are extremely 

diverse, spatially and temporally. Tumor diversity through space is a phenomenon that has 

been well-studied by research groups comparing mutations identified in multiple regions 

sampled from primary tumors or by comparing primary tumor mutations to those identified 

in metastases [20–23]. For example, whole exome sequencing of 23 regions of a single 

hepatocellular carcinoma (HC) tumor identified presence of 20 unique subclones, and by 

extrapolation to the entire volume of the HC tumor, an estimated 100 million somatic coding 
mutations across all subclones. This finding demonstrates the extreme spatial heterogeneity 

of a clinically unexceptional tumor, and suggests multiple biopsies may be necessary to 

capture all clinically-actionable mutations and to accurately determine which mutations are 

truly clonal and which are actually subclonal [24]. Indeed, in a study of spatial heterogeneity 

of medulloblastoma, high-grade glioma, and renal cell carcinoma (RCC), Morrissy and 

colleagues calculated no fewer than 5 biopsies are necessary for an 80% chance of detecting 

at least 80% of the somatic variants [25]. Similarly, Werner and colleagues calculated that 8 

biopsy samples must be taken from clear cell RCC tumors to determine which mutations are 

truly clonal with a probability of 99% [26]. Other studies have profiled more patients, but 

fewer regions per tumor to also demonstrate wide spatial heterogeneity throughout a single 

tumor. Through profiling 4 to 5 regions of primary tumors from 11 patients with HC, Lin 

and colleagues determined that, on average, 39% of somatic mutations varied across the 

spatial samples studied from each patient’s tumor [27]. This is similar to the 36% seen 

across 3 to 4 samplings each from 13 patients with esophageal squamous cell carcinoma 
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(ESCC) [10] and 43% seen in 4 patients with oligodendroglioma [28]. However, this 

difference in spatial somatic mutation varied widely per patient, ranging from 5–92% in HC, 

8–61% in ESCC, and 10–64% in oligodendroglioma, demonstrating the unique evolutionary 

trajectory inherent to different cancer types and to each individual patient.

Studies of spatial heterogeneity have also shed light on the biology of metastasis. By 

comparing whole exome sequencing in samples taken from primary FFPE samples and 5–12 

metastatic sites during rapid autopsy of 4 patients with metastatic breast cancer, Savas and 

colleagues demonstrated that metastatic cells are likely capable of cross-seeding sites, and 

that metastases can be seeded by polyclonal groups of cells [29]. Further, Ng and colleagues 

found the metastatic breast tumor exome can differ from that of the primary tumor, even in 

the absence of selection by drug treatment, in patients presenting with untreated metastatic 

breast cancer [30]. Thus, the tumor genome demonstrates spatial heterogeneity amongst 

samples from differing regions of the same tumor as well as between primary and metastatic 

tumor samples.

In contrast to spatial heterogeneity, tracking temporal heterogeneity of the tumor genome 

has proven to be a greater challenge, as clinical standard of care generally precludes 

obtaining biopsies throughout the course of patient disease. However, Castellarin and 

colleagues used cancer cells collected from ascites fluid of patients with high grade serous 

ovarian carcinoma (HGSOC) to demonstrate that ~90% of mutations found in relapse 

samples from these patients were detectable in the primary tumor, suggesting temporal 

evolution in response to drug treatment may be a function of selection of existing cells more 

than it is a driver of evolution of new mutations [31]. Interestingly, Patch and colleagues also 

used cells from ascites fluid of patients with HGSOC to confirm increased mutational 

burden in relapse compared to that seen in primary tumors, and also found that the majority 

of SNVs and indels identified in relapse samples were identifiable in the primary tumor [32]. 

This study took findings one step further, however, by identifying recurrent molecular 

alterations seen in relapse, including reversion mutations in BRCA1 and BRCA2 and 

translocation of the ABCB1 gene such that it becomes fused to a strong promoter. 

Interestingly, Aihara and colleagues employed exome sequencing of 12 paired primary and 

recurrent oligodendrogliomas resected from patients as part of routine clinical care to 

demonstrate that approximately one-third of mutations from the primary tumor are retained 

in the recurrent tumor [28]. Thus, despite limited access to sequential samples, several 

groups identified temporal heterogeneity in various cancers as evidenced by changes in 

subclonal dynamics and in overall mutational burden over time.

Aside from collection of cancer cells from standard of care methods such as draining of 

ascites fluid, various studies have employed serial sampling of circulating tumor DNA 

(ctDNA) to examine temporal heterogeneity. For example, De Mattos-Arruda and colleagues 

identified all somatic nonsynonymous mutations arising in a primary tumor and liver 

metastasis of a patient breast cancer over the time course of ipatasertib treatment via 

massively parallel sequencing of the patient’s ctDNA [33]. Similarly, Frenel and colleagues 

used identification of somatic mutations in ctDNA to assign patients to clinical trials of 

therapies targeting these mutations, and tracked response to therapy by measuring changes 

in variant allele frequency of the mutation over time in ctDNA [34]. Remarkably, clonal 
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hierarchy inferred from SNVs detected in serial ctDNA samples recapitulates the clonal 

evolution of metastatic lesions and reflects therapy response in a ER+/HER2+ breast cancer 

patient, confirmed by mutations later identified in samples taken from metastatic sites upon 

autopsy [35]. The ability to track clonal evolution via serial ctDNA samples has also been 

demonstrated in non-small cell lung cancer, in which detection of patient-specific somatic 

variants in post-operative ctDNA samples predates progression detected by more traditional 

CT imaging by an average of 70 days [36]. Thus, the emergence of technologies capable of 

capturing and analyzing ctDNA from simple blood draws shows promise in furthering our 

understanding of temporal heterogeneity in an easily accessible, less invasive manner [37–

39].

Recently, technological improvements have allowed for the study of tumor heterogeneity at 

the single cell level [40]. Thus, rather than disentangling bulk level events by 

computationally assigning them to specific subclones, co-occurrence of mutations can also 

be identified in single cells to better map evolutionary and mutational trajectory [41]. An 

early single-cell study utilized flow sorting of single cell nuclei followed by whole genome 

amplification to identify copy number differences between single triple negative breast 

cancer (TNBC) cells [42]. However, these single cell genomes were sequenced at a low 

depth of 6X and thus recovered only copy number/ploidy data for each cell. Nevertheless, 

this low-depth data was sensitive enough to identify which subclone from the primary tumor 

seeded the liver metastasis in the patient studied. Similarly, Wang and colleagues performed 

whole genome and whole exome sequencing on single cells from one TNBC and one ER+ 

patient breast tumor, finding that copy number variation was largely similar in all cells 

studied and thus likely occurs early in cancer initiation, whereas private mutations were 

more likely to be point mutations than copy number variations [43]. Further, the study found 

the TNBC cancer had a mutation rate approximately 13 times that of the ER+ cancer. More 

recently, Li and colleagues demonstrated that nearly twice the number of somatic mutations 

could be detected by single cell exome sequencing of 20 tumor cells from a patient with 

RCC than by exome sequencing of bulk tumor tissue, and identified LOC440040 and 

LOC440563 as potential novel driver genes of RCC stem cells [44]. Thus, study of the 

tumor genome and/or exome at the single cell level demonstrates utility in identifying and 

establishing order of mutational events.

Single cell studies have also engendered the confirmation of the bulk sequencing finding that 

solid tumors are more heterogeneous and possess more subclones than hematologic 

malignancies [45, 46]. Xu and colleagues examined the exome of 20 tumor and 5 normal 

cells from a patient with clear cell RCC [47]. Principal components analysis of somatic 

mutations showed that, instead of being monoclonal, likely many subclones were present in 

this stage IV patient tumor, as evidenced by detection of multiple somatic mutations unique 

to single cells. This is to be contrasted with the single cell exome study of 90 cells of a 

myeloproliferative neoplasm that demonstrated monoclonality of the cancer [48].

Examination of spatial and temporal heterogeneity at the genomic level demonstrates the 

remarkable diversity of cancer cells and the unique mutational trajectories each cancer type 

and each individual cancer takes as it evolves through space and over time. Increased spatial 

sampling of tumors and technological improvements in capturing and analyzing single 
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tumor cells as well as ctDNA will better shape our understanding of spatial and temporal 

changes in the tumor genome. Thus, a complete understanding of genomic heterogeneity 

may help guide the use of targeted therapies and improve outcomes in patients.

Transcriptional heterogeneity

Tumor cells demonstrate heterogeneity not only at the genomic level, but also at the 

transcriptome level. As bulk tumor transcriptome may also reflect signal from normal cells, 

we discuss here studies of RNA at the single cell level, which have uncovered fascinating 

findings in the transcriptomes of various cancers [13]. Through the development and 

application of various computational algorithms, such as spanning-tree progression analysis 

of density-normalized events (SPADE), data from these single-cell experiments can be used 

to group cells based on phenotype and to infer hierarchy of subclones [49–51].

Studies of single cell transcriptomics across multiple cancer types support the idea that 

cellular expression of particular pathways is much more varied than can be concluded by 

bulk pathway assessment. For example, single cell RNA-sequencing of over 400 primary 

glioblastoma cells from 5 patients showed these cells vary widely in their expression of cell 

cycle, hypoxia, and immune/complement gene expression programs [52]. Further, rather 

than occupying discrete stem and non-stem spaces, these glioblastoma cells are positioned 

across a stemness gene expression spectrum. Similar variation across the stemness spectrum 

was identified in a study of over 4,000 cells from 6 patients with oligodendroglioma [53]. In 

a study of transcriptomic heterogeneity amongst 75 cells from one primary squamous cell 

carcinoma bladder tumor, Zhang and colleagues identified significant variation in expression 

of genes of the MAPK signaling pathway in each cell [54]. Further, by identifying genes that 

were most often co-expressed, the authors identified several “hub” genes coordinating the 

most common gene expression profiles identified in the cells, including genes such as 

SCN2A, CENPH, TUBGCP2, LINC00189, and ARHGAP15, encompassing genes both 

known and previously unknown to have cancer involvement. Chung and colleagues 

performed single cell RNA-sequencing of cells from 11 patients with various breast cancer 

subtypes to identify heterogeneity of subtypes even among cells from the same patient tumor 

and to pinpoint subtype-specific differences in gene expression [55]. Specifically, the group 

found that TNBC cells have increased expression of epithelial-to-mesenchymal transition 

(EMT) genes than luminal and HER2+ cells, and that gene expression varies widely in cells 

of the TNBC subtype. Given the wide variation in expression of pathways discussed above, 

variable response to therapies, even in tumors within the same patient, is not surprising.

Proteomic heterogeneity

Some evidence suggests proteomic heterogeneity, while detectable in patient cancer 

samples, may be less pronounced than that seen at the genetic, epigenetic, and 

transcriptomic levels. For example, by studying patient colorectal cancer liver metastases, 

Turtoi and colleagues found that distribution of proteins throughout the metastatic lesions 

was similar from patient to patient [5]. Peritumoral areas consisting of normal tissue 

adjacent to the tumor, “rim” tissue consisting of cancerous cells at the outside of the tumor, 

and inner tumor cells all demonstrated differing proteomes, however, a similar stratification 

was seen across patients, suggesting the liver microenvironment may impose constraints on 
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cellular phenotype. In terms of temporal heterogeneity, by profiling matched chemo-naive 

and chemo-resistant cells obtained from ascites fluid of patients with advanced-stage ovarian 

carcinomas, Ahmed and colleagues identified increases in proteins related to energy 

metabolism and DNA mismatch repair in chemo-resistant samples [56].

Kim and colleagues demonstrated that proteomic heterogeneity warrants the use of targeted 

therapies unique to each metastatic organ by identifying site-specific spatial heterogeneity in 

one pancreatic cancer patient’s lung, liver, and peritoneum metastases [57]. Receptor activity 

and signal transduction activity were identified as two top classes of proteins most 

differentially expressed between these metastatic sites. The group further found tyrosine 

phosphorylation of proteins was highly variable, having greater than 2-fold difference 

between any of the two metastatic sites, for 84% of the specific phosphorylation sites 

studied. However, one drawback of this study was that the metastatic cells were cultured 

prior to proteomic analysis. Exposure to two-dimensional culture may alter gene and protein 

expression in cancer cells due to adaptation to growth conditions dissimilar to that of the 

human body [58].

As with the genomic and transcriptomic levels, study of proteomic heterogeneity has also 

benefitted from single-cell studies. For example, Giesen and colleagues used mass cytometry 

of single cells laser-ablated from 21 breast cancer FFPE samples to examine proteomic 

heterogeneity [59]. Interestingly, the group applied SPADE to define subpopulations in these 

tumors, and found high variability in cytokeratin 8/18, cytokeratin 7, and E-cadherin 

expression amongst subpopulations of the same tumor. Similarly, Sood and colleagues 

examined heterogeneity of 27 proteins in single tumor cells from 26 breast cancer FFPE 

samples via sequential cycles of fluorescence microscopy [60]. Proteins studied, including 

HER2, ER, PR, PTEN, c-MYC, EGFR, et al., were grouped into 8 coexpression clusters as 

seen in single patient cells via K-medians clustering. Interestingly, 9 of 26 patient samples 

expressed a single coexpression cluster in 95% or greater of the cells examined, whereas the 

remaining patient samples showed multiple coexpression clusters, each present at a lower 

prevalence. Due to the low number of coexpression clusters detected, the authors of this 

study concluded that proteomic heterogeneity is less complex than genetic and epigenetic 

heterogeneity suggests; supporting the idea that tumor cells converge on similar phenotypes.

As evidenced by the above studies, proteomic heterogeneity of cancer cells is a budding 

field ripe for future discovery. Studies have established that indeed tumors demonstrate 

proteomic heterogeneity, but the functional links to sources of this heterogeneity require 

further investigation. Financial and technical challenges of performing whole proteome 

analysis on single cells have limited progress in this field; a full understanding of proteomic 

heterogeneity in patients will require both increased patient sample size and increased 

number of proteins assessed per study.
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Despite variation at various -omic levels, tumors converge on recurrent 

phenotypes

Evidence for evolution of phenotypic convergence

As described above, changes in the tumor genome occur over space and time, and can be 

monitored at the single cell level. However, it is important to note that while studying 

heterogeneity allows for the identification of subclones present in a tumor, phenotypic 

plasticity can occur due to non-genetic factors. Isogenic cancer cells may demonstrate 

differing phenotypes due to various causes such as stochastic events occurring during 

transcription and translation or differing interactions with heterogeneous normal cells in the 

microenvironment (Figure 1) [61]. Despite the pervasive notion that nonsynonymous 

changes in genotype lead directly to production of a novel phenotype, it has been 

hypothesized rather that changes in genotype lead to differing frequencies of phenotypes 

already present in the population [62]. Indeed, the link from tumor cell genotype to output 

phenotype has yet to be fully elucidated, and microenvironmental impacts on this process 

have yet to be disentangled. Therefore, the output of heterogeneity at all -omic levels, 

cellular phenotype, is an important level of data for impacting treatment decision making.

Identification of common pathways instead of uncommon mutations on which individual 

subclones rely for survival may be an alternate strategy for targeting with drugs. As notably 

discussed by Hanahan and Weinberg, as cancers progress, they converge on several unifying 

hallmarks, or phenotypes [63]. These phenotypes include sustained proliferation, invasion 

and metastasis, and anti-apoptosis signaling, among others, many of which are targetable 

with drugs currently either in clinical trials or that are FDA-approved. Indeed, targeting 

common tumor cell phenotypes, rather than the heterogeneous genetic, epigenetic, or tumor 

microenvironmental (TME) factors underlying them, may prove a more viable strategy in 

effectively treating cancers.

Several groups have elucidated the specific pathways on which cancers converge to produce 

hallmark phenotypes. For example, Chen and He found that when measuring gene 

expression in 3,000 tumors spanning 18 different types of solid cancers, cells evolved 

towards functional resemblance of embryonic stem cells (ESCs) and away from resemblance 

of the tissue-of-origin as the cancers progressed [64]. Further, rather than reliance on a 

specific set of genes, random sampling of 500 genes in the genome used to compare 

expression profiles of the cancer to ESCs showed equivalent results in prognostic 

capabilities, suggesting that rather than a set gene expression program, cells converge on a 

specific ESC functional state or phenotype. This work supports the previous findings by 

Chen and colleagues that showed that as a cancer evolves, it loses expression of genes 

required of multicellular organisms and shifts to expressing those of unicellular organisms, 

thus placing chief importance on self-renewal [65]. One notable limitation of the Chen and 

colleagues study is that it was performed in only one xenograft tumor--study of more in situ 
patient tumors is required to further support the notion of devolving from multicellular to 

unicellular gene expression programs. However, taken together, these two studies indicate 

that as cancers progress, they converge on gene expression programs of self-renewal that 

most resembles ESCs rather than tissue of origin, and indicates that therapies reversing the 
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stemness state may lead to lesser self-renewal of advanced cancers and increased sensitivity 

to chemotherapies.

The studies discussed above examined cancer cell phenotypes at primary sites of disease. 

Other studies have analyzed phenotypes of metastatic cells. To estimate the impact of 

cellular phenotypes on metastatic success, Cunningham and colleagues employed a 

computational approach based on evolutionary game theory and the Lotka-Volterra 

competition model (typically used to model the dynamics between predator and prey 

populations in ecology), to represent dynamics of cancer cell and normal cell populations at 

primary and metastatic sites [66]. This model demonstrates that circulating tumor cells 

attempting to seed a metastatic site whose environment is very different from their tissue of 

origin cannot compete with normal cells for nutrients and space, and eventually they die. 

However, cells that seed a metastatic site similar to the tissue type of origin are more likely 

to express phenotypes that will be successful and expand and proliferate in that environment. 

Cells that develop successfully into metastatic tumors must adapt to the novel landscape of 

the metastatic tissue; therefore cells surviving in a specific metastatic site express convergent 

phenotypes specific to that site, even if their origins are different. Further, circulating tumor 

cells must strike a balance between employing multiple phenotypic strategies that increase 

the probability of survival in more metastatic sites and convergence on a mesenchymal 

phenotype to promote survival in circulation. This in silico model proposed by Cunningham 

and colleagues requires further testing and validation in vivo, however, initial conclusions 

from these models indicate that patients should be given targeted therapies specific to the 

phenotypes employed by cancer cells at each metastatic site. This is often not a reality for 

patients in the clinic, whose metastases are frequently treated based on characteristics from 

biopsy of the primary tumor and not the metastatic site.

Convergent phenotypes of metastatic cells have also been identified in patients. In a study of 

primary and metastatic biopsies from a patient with RCC, Gerlinger and colleagues 

identified mutation of the same genes involved in histone methylation, SETD2 and KDM5C, 

in different genomic sites in clones of various lineages, pointing to chromatin modification 

as an early altered event in this disease [67]. Other studies of metastatic RCC identified 

convergent evolution towards activation of the mTOR pathway, as evidenced by mutations 

arising in mTOR pathway members in spatially distinct parts of patient tumors [68, 69]. 

Additionally, Chen and colleagues identified glucose-independent metabolism pathways, 

such as gluconeogenesis, as a convergent phenotype in brain metastatic breast cancer cells 

[70]. Thus, as cancers progress, cells arrive at convergent phenotypes, although these 

phenotypes may be specific to cancer type.

Further, convergent evolution has been identified in response to therapy. For example, 10 of 

14 metastatic lesions from a breast cancer patient harboring an activating mutation in 

PIK3CA and who was treated with the PI3Kα inhibitor BYL719 showed PTEN loss via 

mutation or deletion at different sites in each metastatic lesion [71]. Similarly, 5 independent 

BRCA2 reversion mutations were identified in the metastases of a HGSOC patient with 

germline BRCA2 mutation treated with platinum-based therapy and the PARP inhibitor 

olaparib [32]. Interestingly, stochastic transcriptional events have also been linked to 

establishment of a stable drug-resistance phenotype [72]. Indeed, random fluctuations in 
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gene expression observed in melanoma cell lines demonstrate existence of rare cells in a 

population that express high levels of resistance markers before ever coming into contact 

with a drug. Further, after treating these pre-resistant cells with drug, they become stably 

resistant via chromatin remodeling, leading to differential chromatin accessibility by 

transcription factors, dedifferentiation, and downstream signaling in new pathways. A 

similar phenomenon has also been identified in non-small cell lung cancer cell lines, in 

which initial resistance to the EGFR inhibitor gefitinib is caused by selection of innately 

resistant clones bearing the EGFRT790M mutation, whereas late-emerging resistance evolves 

from slow-growing, drug-tolerant clones that initially lack the EGFRT790M mutation, but 

that evolve this mutation over months of treatment [73]. Therefore, drug treatment shapes 

evolution of cancer cells towards treatment resistance, either by selection of rare innately 

resistant cells driven by mutational or stochastic transcriptional changes, or by acquisition of 

resistant phenotypes.

Research indicates that in the absence of selective pressure, cancers evolve in a neutral 

fashion [74]. The mutations arising during neutral evolution may produce heterogeneity at 

various -omic levels within a tumor, but this heterogeneity may not be functionally relevant. 

Approximately one-third of tumors from 14 different cancer types studied showed evidence 

of neutral evolution [74]. Therefore, in environments lacking selective pressures, evolution 

of convergent tumor phenotypes may not occur. Despite evidence supporting Darwinian 

evolution concepts as applied to tumor ecology and evolution, tumor cell population 

dynamics between subclones and with normal cells in the microenvironment remain 

incompletely understood. Eventually, tumor cell populations kill their hosts, and themselves 

with it, thereby highlighting the difference in modeling cancer versus populations whose end 

goal is survival of the ‘species’. Further work is required to understand more completely the 

role of tumor cell interactions between themselves and with the host before tumor 

heterogeneity and tumor cell behavior can be completely understood.

Mechanisms driving phenotypic convergence

Tumor cells converge on phenotypes promoting tumor growth and survival. Mechanisms 

driving phenotypic convergence are not completely understood, but are considered to 

include stochastic evolution and adaptation. Interestingly, stochastic evolution has been 

shown to lead to convergence. Indeed, convergence driven by random mutation is not a rare 

event [75]. As discussed above, another mechanism of convergent evolution seen in 

metastatic tumor cells is adaptation to a novel microenvironment, driving cells away from 

phenotypes inherent to the primary tumor and towards expression of phenotypes specific to 

cells native to the metastatic tissue. One way this occurs is through epigenetic remodeling. 

For example, gene expression profiles of 4 various human cancer cell lines orthotopically 

transplanted into mouse brain more closely resembled that of mouse brain tissue than the 

original cell-line specific gene expression profile [76]. Changes in transcriptional profile in 

these cell lines were attributed to changes in methylation at brain-specific transcription 

factors. Besides epigenetic changes, direct genetic changes leading to convergent evolution 

have been observed, as discussed above in RCC subclones developing mutations in genes 

from the same pathways [67–69], and as evidenced by amplification of similar driver genes 

occurring in different non-small cell lung cancer clones from the same patients [77].
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Treatment of convergent phenotypes

Identification of convergent phenotypes allows for targeting phenotypic dependencies with 

drugs. While there are effective therapeutic regimens that target specific mutations in 

tumors, such as EGFR, HER2, and ALK inhibitors, there are few common mutations in 

progressive resistant cancer, necessitating approaches that are independent of mutations. 

Therapies targeting the hallmarks of cancer and other more specific phenotypes discussed 

above are already used in the clinic and could be implemented upon clinical detection of 

these phenotypes in the patient’s cancer [63]. Therapies targeting convergent phenotypes 

may prove effective for treatment of various cancer types, given that similar phenotypes are 

seen across different cancers.

It is necessary to note the limitations of a phenotype-based drug treatment. Even the best 

therapies targeting convergent phenotypes may not elicit complete response in patients. 

Zimmer and colleagues demonstrated that drug response, even in clonal cell lines, is subject 

to stochastic cellular events, whereby the widely differing protein expression in clonal cells 

leads to populations of both responders and non-responders to drug [78]. Similarly, Sharma 

and colleagues demonstrated that cancer cells use chromatin remodeling to transiently 

generate a drug tolerant state [79]. Further, identification of the most appropriate time point 

to implement candidate therapies may prove challenging. For example, a specific “window 

of opportunity” may need to be identified in which the tumor has manifested identifiable 

convergent phenotypes, but before the cancer has metastasized [69]. Further, implementation 

of phenotype-targeted therapies requires development of a quick and comprehensive method 

for assaying phenotype. While the cost and high-throughput capabilities of RNA sequencing 

are improving, this data requires both a good deal of time and expertise to interpret. Other 

viable options in addition to those discussed may include development of quick phenotypic 

assays requiring less expertise to interpret, such as high-throughput interrogation of cellular 

morphology and organization via automated fluorescence microscopy [80].

Extrinsic factors impact tumor heterogeneity

Selective pressures on an evolving tumor come not only from the treatment received by the 

patient, but also from the TME. As discussed above, convergent evolution occurs at 

metastatic sites as tumor cells adapt to the microenvironmental conditions at that site [66]. 

Various physical conditions in the TME alter tumor cell phenotype. For example, hypoxia in 

the microenvironment of the primary tumor leads to heterogeneity of dormancy phenotype 

expression in tumor cells disseminating from the primary site [81]. Similarly, regional 

differences in tissue perfusion of non-small cell lung cancers correlated with differences in 

metabolism--areas of high perfusion used both glucose and alternative fuel sources, whereas 

areas of lower perfusion used mainly glucose for fuel [82].

Further, heterogeneous normal cell populations resident to the TME impact tumor cell 

heterogeneity. One way cells of the TME influence cancer cell phenotype is through 

paracrine signaling. For example, McLean and colleagues found that ovarian carcinoma-

associated mesenchymal stem cells (CA-MSCs), a class of non-tumorigenic multipotent 

cells with a normal genome, promote tumor growth and stemness phenotype and have high 

BMP2 and BMP4 expression [83]. High BMP4 expression drives production of hedgehog 
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ligands by ovarian tumor cells, which, when released to the stroma, leads to increased BMP4 

production by CA-MSCs in a paracrine positive feedback loop [84]. Further, this increased 

hedgehog signaling activity correlated with chemotherapy resistance, which was reversed by 

blocking hedgehog signaling with an inhibitor of the hedgehog receptor, smoothened. 

Similarly, paracrine signaling from cancer associated fibroblast secretion of the ligand IGF-

II, which binds to the receptor IGF-1R on cancer stem cells from non-small cell lung 

cancers, has been shown to induce and maintain stemness phenotype [85]. An analogous 

event has been identified in colon adenocarcinoma whereby the secretion of hepatocyte 

growth factor (HGF) by stromal myofibroblasts promotes stemness in colon cancer stem 

cells and in more differentiated tumor cells alike [86]. Similarly, stromal cell secretion of 

HGF and subsequent activation of signaling downstream of its receptor, MET, correlates 

with RAF inhibitor resistance in melanoma [87]. Thus, varying proximity of tumor cells to 

stromal cells such as fibroblasts and mesenchymal cells leads to phenotypic diversity in drug 

response and stemness.

Tumor heterogeneity is also shaped by interactions with immune cells in the TME. Immune 

cells release cytokines which are known to expand cancer stem cell populations [88, 89]. 

One such cytokine, TGF-β, is secreted by epithelial, immune, and/or tumor cells, and 

downstream signaling in this pathway can lead to inhibition of cytolytic gene expression and 

therefore crippling of cytotoxic T cells and immune evasion of tumor cells [90, 91]. Further, 

differences in tumor cell antigens shape heterogeneity as immune cells kill tumor cells 

bearing neoantigens, while those cells with lower immunogenicity escape immune 

surveillance and survive [92]. One mechanism by which this occurs is down-regulation of 

MHC class I, and therefore decreased antigen presentation, leading to presence of fewer 

tumor cell antigens on the cell surface [93]. Ability to evade immune surveillance thus 

selects for presence of low immunogenic cancer cells in patient tumors.

Given the above factors, effective therapeutic strategies targeting tumor heterogeneity must 

consider not only targeting of the tumor itself, but also of the microenvironment. Indeed, 

heterogeneity in the microenvironment impacts drug delivery and drug response. For 

example, Song and colleagues found that heterogeneity of the tumor microenvironment 

impacted delivery of nanoparticle-bound doxorubicin to tumor cells [94]. Further, physical 

conditions in the microenvironment impact response to drug and cellular proliferation rates 

[95]. Changes in glucose, oxygen, and erlotinib concentrations affected proliferation rates of 

parental HCC827 non-small cell lung cancer cells sensitive to erlotinib and of two different 

HCC827 erlotinib-resistant lines (one with EGFR mutation, one with MET amplification) in 

different manners. Compared to erlotinib-resistant cells, erlotinib-sensitive cells have a 

proliferative advantage in the absence of drug in high glucose and high oxygen 

environments. However, under nutrient-stressed conditions, resistant cells maintain the 

growth advantage, even in the absence of drug. While further research is necessary to 

determine which physical conditions best facilitate drug response for each drug in each 

cancer type, strategies to target microenvironmental conditions may be a viable option for 

altering drug response in cancer cells.
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Targeting tumor heterogeneity in the clinic

Tumor heterogeneity associates with poor outcome and complicates cancer treatment. 

Patients from the Cancer Genome Atlas head and neck cancer cohort who had a high 

mutant-allele tumor heterogeneity (MATH) score, a measure of intratumor heterogeneity 

based on whole exome sequencing data, had decreased overall survival [96]. Similarly, 

response to immune checkpoint inhibitors in non-small cell lung cancer correlates with 

clonality of neoantigens [97]. In the clinic, intrapatient heterogeneity manifests as mixed 

responses to treatment, where some tumors shrink and others grow when given the same 

systemic therapy. For example, 21% of patients with non-small cell lung cancer who receive 

first line therapy with either chemotherapy or tyrosine kinase inhibitors have a mixed 

response [98]. Because of the presence of growing tumors, oncologists consider these 

patients to have progressive disease, which often leads to changes in therapy. Indeed, in 

some settings, mixed response is more common than progression at all sites of cancer in 

patients with progression [99].

Historically, oncologists would obtain one biopsy of a tumor when a patient presented with 

metastatic cancer in order to support the diagnosis and to determine the type of cancer. After 

the initial biopsy was taken, patients were followed clinically with no need to rebiopsy 

[100]. With the FDA approval of an increased number of targeted treatments, it is becoming 

more common to biopsy tumor tissue not just at the time of diagnosis but also serially, to 

guide treatment. Alternatively, “liquid biopsies” of ctDNA are also being used more often 

[101]. However, without an understanding of intrapatient heterogeneity, we cannot know 

how useful these biopsies will truly be for guiding treatment. Oncologists now do not know 

if the biopsy of one site is sufficient; and, if not, how many sites would be needed. Another 

decision impacted by intrapatient heterogeneity is retreatment. Traditionally, oncologists 

have thought that once a patient progresses on a treatment, that treatment should not be used 

again because the cancer cells are now resistant to it. However, if the cancer is made of 

heterogeneous populations of subclones, sequential cycling between different treatments 

could be an effective strategy.

Due to the unique evolutionary trajectory of each patient’s cancer, adaptable n-of-1 clinical 

trials may prove the best model to determine the impact of knowing a patient’s tumor 

heterogeneity in real time [2, 102, 103]. These trials may employ biopsy of multiple regions 

to assess spatial heterogeneity and serial liquid biopsies to assess temporal heterogeneity 

[104, 105]. Unfortunately, lab tests and their interpretation can take a long time and there 

may be no FDA-approved therapies targeting phenotypes or pathways identified by these 

tests. However, for those patients with alterations in targetable pathways, identification of 

intrapatient tumor heterogeneity will promote the use of pathway-targeting drugs to re-

sensitize patients to chemotherapy. As targetable mutations are not always clonal, to treat 

patients effectively, it is likely that therapies must target truncal mutations or pathways 

shared across subclones [106, 107]. In the absence of these targets, given that each tumor is 

almost certainly unique, driven by an inimitable combination of genetic alterations spread 

across a diversity of subclonal populations, it is likely that future clinical regimens will need 

to account for the distinctive genotypes and phenotypes seen across the genomic profiles of 

each subclone in a tumor. A full understanding of the causes and the extent of intrapatient 
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heterogeneity may lead to more rational strategies for sequencing of patient biopsies and 

implementation of a combinatorial treatment approach to target various subclones. Future 

work will need to assess how to determine which subclones and pathways to target and how 

to incorporate subclone prevalence into treatment, with targeting of the most dominant 

subclone(s) a likely starting point. In light of interactions of tumor cells with normal cells in 

the microenvironment, drugs to target normal cell signaling that promotes cancer cell growth 

may be a viable option, as seen above with hedgehog signaling in ovarian cancer. Blocking 

other tumor-stromal and tumor-immune signaling may also prove efficacious.

Conclusion

Tumor heterogeneity has been identified at various -omic levels. Recurrent tumor cell 

phenotypes emerge despite spatial and temporal diversity at the genomic, transcriptomic, 

and proteomic levels. Assessment of intrapatient tumor heterogeneity and cellular 

phenotypes has the potential to redefine cancer care. As next generation sequencing costs 

decrease, patients will have increased access to the molecular profiling of their primary 

tumors, and potentially even of their metastatic tumors and/or ctDNA. The interpretation of 

data accrued from these sources and how it can best shape implementation of therapies must 

be explored further through clinical trials. Future clinical trials must follow patients over 

time and incorporate adaptable measures and outcomes unique to each patient’s cancer. 

Assessment of cellular phenotypes is crucial to targeting cancer cell weaknesses, and 

development of routine assays that determine these phenotypes is necessary before 

phenotypic targeting can be fully implemented in the clinic.

Acknowledgments

This work was supported by funding from the National Institutes of Health (U54CA209978). The authors wish to 
thank Dr. Samuel W. Brady for manuscript editing.

References

1. Nowell PC. 1976; The Clonal Evolution of Tumor Cell Populations. Science. 194:23–28. [PubMed: 
959840] 

2. Bedard PL, Hansen AR, Ratain MJ, Siu LL. 2013; Tumour heterogeneity in the clinic. Nature. 
501:355–364. [PubMed: 24048068] 

3. Jamal-Hanjani M, Quezada SA, Larkin J, Swanton C. 2015; Translational Implications of Tumor 
Heterogeneity. Clinical cancer research : an official journal of the American Association for Cancer 
Research. 21:1258–1266. [PubMed: 25770293] 

4. Sottoriva A, Spiteri I, Piccirillo SGM, Touloumis A, Collins VP, Marioni JC, Curtis C, Watts C, 
Tavaré S. 2013; Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary 
dynamics. Proceedings of the National Academy of Sciences. 110:4009–4014.

5. Turtoi A, Blomme A, Debois D, Somja J, Delvaux D, Patsos G, Di Valentin E, Peulen O, Mutijima 
EN, De Pauw E, et al. 2014; Organized proteomic heterogeneity in colorectal cancer liver 
metastases and implications for therapies. Hepatology. 59:924–934. [PubMed: 23832580] 

6. Brocks D, Assenov Y, Minner S, Bogatyrova O, Simon R, Koop C, Oakes C, Zucknick M, Lipka 
Daniel B, Weischenfeldt J, et al. 2014; Intratumor DNA Methylation Heterogeneity Reflects Clonal 
Evolution in Aggressive Prostate Cancer. Cell Reports. 8:798–806. [PubMed: 25066126] 

7. Gorges TM, Kuske A, Röck K, Mauermann O, Müller V, Peine S, Verpoort K, Novosadova V, 
Kubista M, Riethdorf S, et al. 2016; Accession of Tumor Heterogeneity by Multiplex Transcriptome 
Profiling of Single Circulating Tumor Cells. Clinical Chemistry. 62:1504. [PubMed: 27630154] 

McQuerry et al. Page 14

J Mol Med (Berl). Author manuscript; available in PMC 2018 December 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



8. Li S, Garrett-Bakelman FE, Chung SS, Sanders MA, Hricik T, Rapaport F, Patel J, Dillon R, Vijay P, 
Brown AL, et al. 2016; Distinct evolution and dynamics of epigenetic and genetic heterogeneity in 
acute myeloid leukemia. Nature medicine. 22:792–799.

9. Schwarz RF, Ng CKY, Cooke SL, Newman S, Temple J, Piskorz AM, Gale D, Sayal K, Murtaza M, 
Baldwin PJ, et al. 2015; Spatial and Temporal Heterogeneity in High-Grade Serous Ovarian Cancer: 
A Phylogenetic Analysis. PLOS Medicine. 12:e1001789. [PubMed: 25710373] 

10. Hao J-J, Lin D-C, Dinh HQ, Mayakonda A, Jiang Y-Y, Chang C, Jiang Y, Lu C-C, Shi Z-Z, Xu X, 
et al. 2016; Spatial intratumor heterogeneity of genetic, epigenetic alterations and temporal clonal 
evolution in esophageal squamous cell carcinoma. Nature genetics. 48:1500–1507. [PubMed: 
27749841] 

11. Swanton C. 2012; Intratumour Heterogeneity: Evolution through Space and Time. Cancer research. 
72:4875–4882. [PubMed: 23002210] 

12. Sveen A, Løes IM, Alagaratnam S, Nilsen G, Høland M, Lingjærde OC, Sorbye H, Berg KCG, 
Horn A, Angelsen J-H, et al. 2016; Intra-patient Inter-metastatic Genetic Heterogeneity in 
Colorectal Cancer as a Key Determinant of Survival after Curative Liver Resection. PLOS 
Genetics. 12:e1006225. [PubMed: 27472274] 

13. Tellez-Gabriel M, Ory B, Lamoureux F, Heymann M-F, Heymann D. 2016; Tumour Heterogeneity: 
The Key Advantages of Single-Cell Analysis. International Journal of Molecular Sciences. 
17:2142.

14. Winge Ö. 1930; Zytologische Untersuchungen über die Natur maligner Tumoren. Zeitschrift für 
Zellforschung und Mikroskopische Anatomie. 10:683–735.

15. Levan A. 1956; CHROMOSOMES IN CANCER TISSUE. Annals of the New York Academy of 
Sciences. 63:774–792. [PubMed: 13314434] 

16. Schilsky, RL. Clinical Implications of Tumor Heterogeneity. In: Neth, R, Gallo, RC, Greaves, MF, 
Kabisch, H, editorsModern Trends in Human Leukemia VII: New Results in Clinical and 
Biological Research Including Pediatric Oncology. Springer Berlin Heidelberg; Berlin, 
Heidelberg: 1987. 278–282. 

17. Trainer AH, Lewis CR, Tucker K, Meiser B, Friedlander M, Ward RL. 2010; The role of BRCA 
mutation testing in determining breast cancer therapy. Nat Rev Clin Oncol. 7:708–717. [PubMed: 
21060331] 

18. Cagle PT, Allen TC. 2012; Lung Cancer Genotype-Based Therapy and Predictive Biomarkers: 
Present and Future. Archives of Pathology & Laboratory Medicine. 136:1482–1491. [PubMed: 
23194040] 

19. Jekunen A. 2014; Clinicians’ Expectations for Gene-Driven Cancer Therapy. Clinical Medicine 
Insights Oncology. 8:159–164. [PubMed: 25574148] 

20. Campbell PJ, Pleasance ED, Stephens PJ, Dicks E, Rance R, Goodhead I, Follows GA, Green AR, 
Futreal PA, Stratton MR. 2008; Subclonal phylogenetic structures in cancer revealed by ultra-deep 
sequencing. Proceedings of the National Academy of Sciences of the United States of America. 
105:13081–13086. [PubMed: 18723673] 

21. Shah SP, Morin RD, Khattra J, Prentice L, Pugh T, Burleigh A, Delaney A, Gelmon K, Guliany R, 
Senz J, et al. 2009; Mutational evolution in a lobular breast tumour profiled at single nucleotide 
resolution. Nature. 461:809–813. [PubMed: 19812674] 

22. Boutros PC, Fraser M, Harding NJ, de Borja R, Trudel D, Lalonde E, Meng A, Hennings-Yeomans 
PH, McPherson A, Sabelnykova VY, et al. 2015; Spatial genomic heterogeneity within localized, 
multifocal prostate cancer. Nat Genet. 47:736–745. [PubMed: 26005866] 

23. Hardiman KM, Ulintz PJ, Kuick RD, Hovelson DH, Gates CM, Bhasi A, Rodrigues Grant A, Liu 
J, Cani AK, Greenson JK, et al. 2016; Intra-tumor genetic heterogeneity in rectal cancer. Lab 
Invest. 96:4–15.

24. Ling S, Hu Z, Yang Z, Yang F, Li Y, Lin P, Chen K, Dong L, Cao L, Tao Y, et al. 2015; Extremely 
high genetic diversity in a single tumor points to prevalence of non-Darwinian cell evolution. 
Proceedings of the National Academy of Sciences of the United States of America. 112:E6496–
E6505. [PubMed: 26561581] 

McQuerry et al. Page 15

J Mol Med (Berl). Author manuscript; available in PMC 2018 December 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



25. Morrissy AS, Cavalli FMG, Remke M, Ramaswamy V, Shih DJH, Holgado BL, Farooq H, 
Donovan LK, Garzia L, Agnihotri S, et al. 2017; Spatial heterogeneity in medulloblastoma. Nat 
Genet. 49:780–788. [PubMed: 28394352] 

26. Werner B, Traulsen A, Sottoriva A, Dingli D. 2017; Detecting truly clonal alterations from multi-
region profiling of tumours. Scientific Reports. 7:44991. [PubMed: 28344344] 

27. Lin D-C, Mayakonda A, Dinh HQ, Huang P, Lin L, Liu X, Ding L-w, Wang J, Berman BP, Song E-
W, et al. 2017; Genomic and Epigenomic Heterogeneity of Hepatocellular Carcinoma. Cancer 
Research. 77:2255–2265. [PubMed: 28302680] 

28. Aihara K, Mukasa A, Nagae G, Nomura M, Yamamoto S, Ueda H, Tatsuno K, Shibahara J, 
Takahashi M, Momose T, et al. 2017; Genetic and epigenetic stability of oligodendrogliomas at 
recurrence. Acta Neuropathologica Communications. 5:18. [PubMed: 28270234] 

29. Savas P, Teo ZL, Lefevre C, Flensburg C, Caramia F, Alsop K, Mansour M, Francis PA, Thorne 
HA, Silva MJ, et al. 2016; The Subclonal Architecture of Metastatic Breast Cancer: Results from a 
Prospective Community-Based Rapid Autopsy Program “CASCADE”. PLoS Medicine. 
13:e1002204. [PubMed: 28027312] 

30. Ng CKY, Bidard F-C, Piscuoglio S, Geyer FC, Lim RS, de Bruijn I, Shen R, Pareja F, Berman SH, 
Wang L, et al. 2017; Genetic Heterogeneity in Therapy-Naïve Synchronous Primary Breast 
Cancers and Their Metastases. Clinical Cancer Research. doi: 10.1158/1078-0432.ccr-16-3115

31. Castellarin M, Milne K, Zeng T, Tse K, Mayo M, Zhao Y, Webb JR, Watson PH, Nelson BH, Holt 
RA. 2013; Clonal evolution of high-grade serous ovarian carcinoma from primary to recurrent 
disease. The Journal of Pathology. 229:515–524. [PubMed: 22996961] 

32. Patch A-M, Christie EL, Etemadmoghadam D, Garsed DW, George J, Fereday S, Nones K, Cowin 
P, Alsop K, Bailey PJ, et al. 2015; Whole–genome characterization of chemoresistant ovarian 
cancer. Nature. 521:489–494. [PubMed: 26017449] 

33. De Mattos-Arruda L, Weigelt B, Cortes J, Won HH, Ng CKY, Nuciforo P, Bidard FC, Aura C, 
Saura C, Peg V, et al. 2014; Capturing intra-tumor genetic heterogeneity by de novo mutation 
profiling of circulating cell-free tumor DNA: a proof-of-principle. Annals of Oncology. 25:1729–
1735. [PubMed: 25009010] 

34. Frenel JS, Carreira S, Goodall J, Roda D, Perez-Lopez R, Tunariu N, Riisnaes R, Miranda S, 
Figueiredo I, NavaRodrigues D, et al. 2015; Serial Next Generation Sequencing of Circulating Cell 
Free DNA Evaluating Tumour Clone Response To Molecularly Targeted Drug Administration. 
Clinical cancer research : an official journal of the American Association for Cancer Research. 
21:4586–4596. [PubMed: 26085511] 

35. Murtaza M, Dawson S-J, Pogrebniak K, Rueda OM, Provenzano E, Grant J, Chin S-F, Tsui DWY, 
Marass F, Gale D, et al. 2015; Multifocal clonal evolution characterized using circulating tumour 
DNA in a case of metastatic breast cancer. 6:8760.

36. Abbosh C, Birkbak NJ, Wilson GA, Jamal-Hanjani M, Constantin T, Salari R, Le Quesne J, Moore 
DA, Veeriah S, Rosenthal R, et al. 2017; Phylogenetic ctDNA analysis depicts early-stage lung 
cancer evolution. Nature. 545:446–451. [PubMed: 28445469] 

37. Bulfoni M, Turetta M, Del Ben F, Di Loreto C, Beltrami AP, Cesselli D. 2016; Dissecting the 
Heterogeneity of Circulating Tumor Cells in Metastatic Breast Cancer: Going Far Beyond the 
Needle in the Haystack. International Journal of Molecular Sciences. 17:1775.

38. Chabon JJ, Simmons AD, Lovejoy AF, Esfahani MS, Newman AM, Haringsma HJ, Kurtz DM, 
Stehr H, Scherer F, Karlovich CA, et al. 2016; Circulating tumour DNA profiling reveals 
heterogeneity of EGFR inhibitor resistance mechanisms in lung cancer patients. 7:11815.

39. Han X, Wang J, Sun Y. 2017; Circulating Tumor DNA as Biomarkers for Cancer Detection. 
Genomics, Proteomics & Bioinformatics. 15:59–72.

40. Navin NE. 2015; The first five years of single-cell cancer genomics and beyond. Genome 
Research. 25:1499–1507. [PubMed: 26430160] 

41. Ross EM, Markowetz F. 2016; OncoNEM: inferring tumor evolution from single-cell sequencing 
data. Genome Biology. 17:69. [PubMed: 27083415] 

42. Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J. 2011Tumour evolution inferred by 
single-cell sequencing. Nature. :472.

McQuerry et al. Page 16

J Mol Med (Berl). Author manuscript; available in PMC 2018 December 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



43. Wang Y, Waters J, Leung ML, Unruh A, Roh W, Shi X. 2014Clonal evolution in breast cancer 
revealed by single nucleus genome sequencing. Nature. :512.

44. Li C, Wu S, Yang Z, Zhang X, Zheng Q, Lin L, Niu Z, Li R, Cai Z, Li L. 2017; Single-cell exome 
sequencing identifies mutations in KCP, LOC440040, and LOC440563 as drivers in renal cell 
carcinoma stem cells. Cell Res. 27:590–593. [PubMed: 27981968] 

45. Welch JS, Ley TJ, Link DC, Miller CA, Larson DE, Koboldt DC, Wartman LD, Lamprecht TL, 
Liu F, Xia J, et al. 2012; The origin and evolution of mutations in Acute Myeloid Leukemia. Cell. 
150:264–278. [PubMed: 22817890] 

46. Watson IR, Takahashi K, Futreal PA, Chin L. 2013; Emerging patterns of somatic mutations in 
cancer. Nature reviews Genetics. 14:703–718.

47. Xu X, Hou Y, Yin X, Bao L, Tang A, Song L. 2012Single-cell exome sequencing reveals single-
nucleotide mutation characteristics of a kidney tumor. Cell. :148.

48. Hou Y, Song L, Zhu P, Zhang B, Tao Y, Xu X. 2012Single-cell exome sequencing and monoclonal 
evolution of a JAK2-negative myeloproliferative neoplasm. Cell. :148.

49. Qiu P, Simonds EF, Bendall SC, Gibbs KD Jr, Bruggner RV, Linderman MD, Sachs K, Nolan GP, 
Plevritis SK. 2011; Extracting a cellular hierarchy from high-dimensional cytometry data with 
SPADE. Nat Biotech. 29:886–891.

50. Anchang B, Hart TDP, Bendall SC, Qiu P, Bjornson Z, Linderman M, Nolan GP, Plevritis SK. 
2016; Visualization and cellular hierarchy inference of single-cell data using SPADE. Nat 
Protocols. 11:1264–1279. [PubMed: 27310265] 

51. Saadatpour A, Lai S, Guo G, Yuan G-C. 2015; Single-cell analysis in cancer genomics. Trends in 
genetics : TIG. 31:576–586. [PubMed: 26450340] 

52. Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, Cahill DP, Nahed BV, 
Curry WT, Martuza RL, et al. 2014; Single-cell RNA-seq highlights intratumoral heterogeneity in 
primary glioblastoma. Science. 344:1396–1401. [PubMed: 24925914] 

53. Tirosh I, Venteicher AS, Hebert C, Escalante LE, Patel AP, Yizhak K, Fisher JM, Rodman C, 
Mount C, Filbin MG, et al. 2016; Single-cell RNA-seq supports a developmental hierarchy in 
human oligodendroglioma. Nature. 539:309–313. [PubMed: 27806376] 

54. Zhang X, Zhang M, Hou Y, Xu L, Li W, Zou Z, Liu C, Xu A, Wu S. 2016; Single-cell analyses of 
transcriptional heterogeneity in squamous cell carcinoma of urinary bladder. Oncotarget. 7:66069–
66076. [PubMed: 27602771] 

55. Chung W, Eum HH, Lee H-O, Lee K-M, Lee H-B, Kim K-T, Ryu HS, Kim S, Lee JE, Park YH, et 
al. 2017; Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in 
primary breast cancer. Nature Communications. 8:15081.

56. Ahmed N, Greening D, Samardzija C, Escalona RM, Chen M, Findlay JK, Kannourakis G. 2016; 
Unique proteome signature of post-chemotherapy ovarian cancer ascites-derived tumor cells. 
6:30061.

57. Kim M-S, Zhong Y, Yachida S, Rajeshkumar NV, Abel ML, Marimuthu A, Mudgal K, Hruban RH, 
Poling JS, Tyner JW, et al. 2014; Heterogeneity of Pancreatic Cancer Metastases in a Single 
Patient Revealed by Quantitative Proteomics. Molecular & Cellular Proteomics : MCP. 13:2803–
2811. [PubMed: 24895378] 

58. Edmondson R, Broglie JJ, Adcock AF, Yang L. 2014; Three-Dimensional Cell Culture Systems 
and Their Applications in Drug Discovery and Cell-Based Biosensors. Assay and Drug 
Development Technologies. 12:207–218. [PubMed: 24831787] 

59. Giesen C, Wang HAO, Schapiro D, Zivanovic N, Jacobs A, Hattendorf B, Schuffler PJ, Grolimund 
D, Buhmann JM, Brandt S, et al. 2014; Highly multiplexed imaging of tumor tissues with 
subcellular resolution by mass cytometry. Nat Meth. 11:417–422.

60. Sood A, Miller AM, Brogi E, Sui Y, Armenia J, McDonough E, Santamaria-Pang A, Carlin S, 
Stamper A, Campos C, et al. 2016; Multiplexed immunofluorescence delineates proteomic cancer 
cell states associated with metabolism. JCI Insight. 1:e87030. [PubMed: 27182557] 

61. Gupta Piyush B, Fillmore Christine M, Jiang G, Shapira Sagi D, Tao K, Kuperwasser C, Lander 
Eric S. 2011; Stochastic State Transitions Give Rise to Phenotypic Equilibrium in Populations of 
Cancer Cells. Cell. 146:633–644. [PubMed: 21854987] 

McQuerry et al. Page 17

J Mol Med (Berl). Author manuscript; available in PMC 2018 December 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



62. Nichol D, Robertson-Tessi M, Jeavons P, Anderson ARA. 2016; Stochasticity in the Genotype-
Phenotype Map: Implications for the Robustness and Persistence of Bet-Hedging. Genetics. 
204:1523–1539. [PubMed: 27770034] 

63. Hanahan D, Weinberg Robert A. 2011; Hallmarks of Cancer: The Next Generation. Cell. 144:646–
674. [PubMed: 21376230] 

64. Chen H, He X. 2016; The Convergent Cancer Evolution toward a Single Cellular Destination. 
Molecular Biology and Evolution. 33:4–12. [PubMed: 26464125] 

65. Chen H, Lin F, Xing K, He X. 2015; The reverse evolution from multicellularity to unicellularity 
during carcinogenesis. 6:6367.

66. Cunningham JJ, Brown JS, Vincent TL, Gatenby RA. 2015; Divergent and convergent evolution in 
metastases suggest treatment strategies based on specific metastatic sites. Evolution, Medicine, and 
Public Health. 2015:76–87.

67. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, Martinez P, Matthews 
N, Stewart A, Tarpey P, et al. 2012; Intratumor Heterogeneity and Branched Evolution Revealed 
by Multiregion Sequencing. New England Journal of Medicine. 366:883–892. [PubMed: 
22397650] 

68. Voss MH, Hakimi AA, Pham CG, Brannon AR, Chen Y-B, Cunha LF, Akin O, Liu H, Takeda S, 
Scott SN, et al. 2014; Tumor Genetic Analyses of Patients with Metastatic Renal Cell Carcinoma 
and Extended Benefit from mTOR Inhibitor Therapy. Clinical Cancer Research. 20:1955–1964. 
[PubMed: 24622468] 

69. Wei EY, Hsieh JJ. 2015; A river model to map convergent cancer evolution and guide therapy in 
RCC. Nat Rev Urol. 12:706–712. [PubMed: 26526752] 

70. Chen J, Lee H-J, Wu X, Huo L, Kim S-J, Xu L, Wang Y, He J, Bollu LR, Gao G, et al. 2015; Gain 
of glucose-independent growth upon metastasis of breast cancer cells to the brain. Cancer research. 
75:554–565. [PubMed: 25511375] 

71. Juric D, Castel P, Griffith M, Griffith OL, Won HH, Ellis H, Ebbesen SH, Ainscough BJ, Ramu A, 
Iyer G, et al. 2015; Convergent loss of PTEN leads to clinical resistance to a PI(3)K[agr] inhibitor. 
Nature. 518:240–244. [PubMed: 25409150] 

72. Shaffer SM, Dunagin MC, Torborg SR, Torre EA, Emert B, Krepler C, Beqiri M, Sproesser K, 
Brafford PA, Xiao M, et al. 2017; Rare cell variability and drug-induced reprogramming as a mode 
of cancer drug resistance. Nature. 546:431–435. [PubMed: 28607484] 

73. Hata AN, Niederst MJ, Archibald HL, Gomez-Caraballo M, Siddiqui FM, Mulvey HE, Maruvka 
YE, Ji F, Bhang H-eC, Krishnamurthy Radhakrishna V, et al. 2016; Tumor cells can follow distinct 
evolutionary paths to become resistant to epidermal growth factor receptor inhibition. Nat Med. 
22:262–269. [PubMed: 26828195] 

74. Williams MJ, Werner B, Barnes CP, Graham TA, Sottoriva A. 2016; Identification of neutral tumor 
evolution across cancer types. Nat Genet. 48:238–244. [PubMed: 26780609] 

75. Stayton CT. 2008; Is convergence surprising? An examination of the frequency of convergence in 
simulated datasets. Journal of Theoretical Biology. 252:1–14. [PubMed: 18321532] 

76. Park ES, Kim SJ, Kim SW, Yoon S-L, Leem S-H, Kim S-B, Kim SM, Park Y-Y, Cheong J-H, Woo 
HG, et al. 2011; Cross-species hybridization of microarrays for studying tumor transcriptome of 
brain metastasis. Proceedings of the National Academy of Sciences. 108:17456–17461.

77. Jamal-Hanjani M, Wilson GA, McGranahan N, Birkbak NJ, Watkins TBK, Veeriah S, Shafi S, 
Johnson DH, Mitter R, Rosenthal R, et al. 2017; Tracking the Evolution of Non–Small-Cell Lung 
Cancer. New England Journal of Medicine. 376:2109–2121. [PubMed: 28445112] 

78. Zimmer A, Amar-Farkash S, Danon T, Alon U. 2017; Dynamic proteomics reveals bimodal protein 
dynamics of cancer cells in response to HSP90 inhibitor. BMC Systems Biology. 11:33. [PubMed: 
28270142] 

79. Sharma SV, Lee DY, Li B, Quinlan MP, Takahashi F, Maheswaran S, McDermott U, Azizian N, 
Zou L, Fischbach MA, et al. 2010; A chromatin-mediated reversible drug tolerant state in cancer 
cell subpopulations. Cell. 141:69–80. [PubMed: 20371346] 

80. Wu P-H, Phillip JM, Khatau SB, Chen W-C, Stirman J, Rosseel S, Tschudi K, Van Patten J, Wong 
M, Gupta S, et al. 2015; Evolution of cellular morpho-phenotypes in cancer metastasis. Scientific 
Reports. 5:18437. [PubMed: 26675084] 

McQuerry et al. Page 18

J Mol Med (Berl). Author manuscript; available in PMC 2018 December 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



81. Fluegen G, Avivar-Valderas A, Wang Y, Padgen MR, Williams JK, Nobre AR, Calvo V, Cheung JF, 
Bravo-Cordero JJ, Entenberg D, et al. 2017; Phenotypic heterogeneity of disseminated tumour 
cells is preset by primary tumour hypoxic microenvironments. Nat Cell Biol. 19:120–132. 
[PubMed: 28114271] 

82. Hensley CT, Faubert B, Yuan Q, Lev-Cohain N, Jin E, Kim J, Jiang L, Ko B, Skelton R, Loudat L, 
et al. 2016; Metabolic heterogeneity in human lung tumors. Cell. 164:681–694. [PubMed: 
26853473] 

83. McLean K, Gong Y, Choi Y, Deng N, Yang K, Bai S, Cabrera L, Keller E, McCauley L, Cho KR, 
et al. 2011; Human ovarian carcinoma-associated mesenchymal stem cells regulate cancer stem 
cells and tumorigenesis via altered BMP production. J Clin Invest. 121:3206–3219. [PubMed: 
21737876] 

84. Coffman LG, Choi Y-J, McLean K, Allen BL, di Magliano MP, Buckanovich RJ. 2016Human 
carcinoma-associated mesenchymal stem cells promote ovarian cancer chemotherapy resistance 
via a BMP4/HH signaling loop. Oncotarget. :3. [PubMed: 26700964] 

85. Chen W-J, Ho C-C, Chang Y-L, Chen H-Y, Lin C-A, Ling T-Y, Yu S-L, Yuan S-S, Louisa Chen Y-
J, Lin C-Y, et al. 2014; Cancer-associated fibroblasts regulate the plasticity of lung cancer 
stemness via paracrine signalling. 5:3472.

86. Vermeulen L, De Sousa E, Melo F, van der Heijden M, Cameron K, de Jong JH, Borovski T, 
Tuynman JB, Todaro M, Merz C, Rodermond H, et al. 2010; Wnt activity defines colon cancer 
stem cells and is regulated by the microenvironment. Nat Cell Biol. 12:468–476. [PubMed: 
20418870] 

87. Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR, Du J, Davis A, Mongare MM, 
Gould J, Frederick DT, et al. 2012; Tumour micro-environment elicits innate resistance to RAF 
inhibitors through HGF secretion. Nature. 487:500–504. [PubMed: 22763439] 

88. Sansone P, Storci G, Tavolari S, Guarnieri T, Giovannini C, Taffurelli M, Ceccarelli C, Santini D, 
Paterini P, Marcu KB, et al. 2007; IL-6 triggers malignant features in mammospheres from human 
ductal breast carcinoma and normal mammary gland. The Journal of Clinical Investigation. 
117:3988–4002. [PubMed: 18060036] 

89. Liu S, Ginestier C, Ou SJ, Clouthier SG, Patel SH, Monville F, Korkaya H, Heath A, Dutcher J, 
Kleer CG, et al. 2011; Breast cancer stem cells are regulated by mesenchymal stem cells through 
cytokine networks. Cancer Res. 71:614–624. [PubMed: 21224357] 

90. Thomas DA, Massagué J. TGF-β directly targets cytotoxic T cell functions during tumor evasion of 
immune surveillance. Cancer Cell. 8:369–380. [PubMed: 16286245] 

91. Vinay DS, Ryan EP, Pawelec G, Talib WH, Stagg J, Elkord E, Lichtor T, Decker WK, Whelan RL, 
Kumara HMCS, et al. 2015; Immune evasion in cancer: Mechanistic basis and therapeutic 
strategies. Seminars in Cancer Biology. 35:S185–S198. [PubMed: 25818339] 

92. de Charette M, Marabelle A, Houot R. 2016; Turning tumour cells into antigen presenting cells: 
The next step to improve cancer immunotherapy? European Journal of Cancer. 68:134–147. 
[PubMed: 27755997] 

93. Haworth KB, Leddon JL, Chen C-Y, Horwitz EM, Mackall CL, Cripe TP. 2015; Going Back to 
Class I: MHC and Immunotherapies for Childhood Cancer. Pediatric blood & cancer. 62:571–576. 
[PubMed: 25524394] 

94. Song G, Darr DB, Santos CM, Ross M, Valdivia A, Jordan JL, Midkiff BR, Cohen S, Feinberg NN, 
Miller CR, et al. 2014; Effects of Tumor Microenvironment Heterogeneity on Nanoparticle 
Disposition and Efficacy in Breast Cancer Tumor Models. Clinical cancer research : an official 
journal of the American Association for Cancer Research. 20:6083–6095. [PubMed: 25231403] 

95. Mumenthaler SM, Foo J, Choi NC, Heise N, Leder K, Agus DB, Pao W, Michor F, Mallick P. 
2015; The Impact of Microenvironmental Heterogeneity on the Evolution of Drug Resistance in 
Cancer Cells. Cancer Informatics. 14:19–31. [PubMed: 26244007] 

96. Mroz EA, Tward AM, Hammon RJ, Ren Y, Rocco JW. 2015; Intra-tumor Genetic Heterogeneity 
and Mortality in Head and Neck Cancer: Analysis of Data from The Cancer Genome Atlas. PLOS 
Medicine. 12:e1001786. [PubMed: 25668320] 

McQuerry et al. Page 19

J Mol Med (Berl). Author manuscript; available in PMC 2018 December 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



97. McGranahan N, Furness AJS, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, Jamal-Hanjani M, 
Wilson GA, Birkbak NJ, Hiley CT, et al. 2016; Clonal neoantigens elicit T cell immunoreactivity 
and sensitivity to immune checkpoint blockade. Science. doi: 10.1126/science.aaf1490

98. Dong ZY, Zhai HR, Hou QY, Su J, Liu SY, Yan HH, Li YS, Chen ZY, Zhong WZ, Wu YL. 2017; 
Mixed Responses to Systemic Therapy Revealed Potential Genetic Heterogeneity and Poor 
Survival in Patients with Non-Small Cell Lung Cancer. The Oncologist. 22:61–69. [PubMed: 
28126915] 

99. Lee Y, Kim HY, Lee S-H, Lim KY, Lee GK, Yun T, Han J-Y, Kim HT, Lee JS. 2014; Clinical 
Significance of Heterogeneity in Response to Retreatment With Epidermal Growth Factor 
Receptor Tyrosine Kinase Inhibitors in Patients With Lung Cancer Acquiring Secondary 
Resistance to the Drug. Clinical Lung Cancer. 15:145–151. [PubMed: 24342626] 

100. Connolly, JLSS, Wang, HH, Longtine, JA, Dvorak, A, Dvorak, HF. Role of the Surgical 
Pathologist in the Diagnosis and Management of the Cancer Patient. In: Kufe, DWPR, 
Weichselbaum, RR. , et al., editorsHolland-Frei Cancer Medicine. BC Decker; Hamilton (ON): 
2003. 

101. Wan JCM, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, Pacey S, Baird R, 
Rosenfeld N. 2017; Liquid biopsies come of age: towards implementation of circulating tumour 
DNA. Nat Rev Cancer. 17:223–238. [PubMed: 28233803] 

102. Lillie EO, Patay B, Diamant J, Issell B, Topol EJ, Schork NJ. 2011; The n-of-1 clinical trial: the 
ultimate strategy for individualizing medicine? Personalized medicine. 8:161–173. [PubMed: 
21695041] 

103. Catenacci DVT. 2015; Next-generation clinical trials: Novel strategies to address the challenge of 
tumor molecular heterogeneity. Molecular Oncology. 9:967–996. [PubMed: 25557400] 

104. Joung J-G, Bae JS, Kim SC, Jung H, Park W-Y, Song S-Y. 2016; Genomic Characterization and 
Comparison of Multi-Regional and Pooled Tumor Biopsy Specimens. PLOS ONE. 11:e0152574. 
[PubMed: 27010638] 

105. Lennon NJ, Adalsteinsson VA, Gabriel SB. 2016; Technological considerations for genome-
guided diagnosis and management of cancer. Genome Medicine. 8:112. [PubMed: 27784341] 

106. Lohr Jens G, Stojanov P, Carter Scott L, Cruz-Gordillo P, Lawrence Michael S, Auclair D, 
Sougnez C, Knoechel B, Gould J, Saksena G, et al. 2014; Widespread Genetic Heterogeneity in 
Multiple Myeloma: Implications for Targeted Therapy. Cancer Cell. 25:91–101. [PubMed: 
24434212] 

107. McGranahan N, Favero F, de Bruin EC, Birkbak NJ, Szallasi Z, Swanton C. 2015; Clonal status 
of actionable driver events and the timing of mutational processes in cancer evolution. Science 
translational medicine. 7:283ra254–283ra254.

McQuerry et al. Page 20

J Mol Med (Berl). Author manuscript; available in PMC 2018 December 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Tumor heterogeneity converges on recurrent cellular phenotypes. a Variations at the 

genomic, transcriptomic, epigenetic, and proteomic levels influence cellular phenotype b 
Tumor subclones vary widely in terms of mutational status, epigenetic changes, stochastic 

transcriptional and translational events, etc. c Changes converge on pathways that output 

recurrent phenotypes A and B
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