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Abstract

Recent progress in coarse-grained (CG) molecular modeling and simulation has facilitated an 

influx of computational studies on biological macromolecules and their complexes. Given the 

large separation of length- and time-scales that dictate macromolecular biophysics, CG modeling 

and simulation are well-suited to bridge the microscopic and mesoscopic or macroscopic details 

observed from all-atom molecular simulations and experiments, respectively. In this review, we 

first summarize recent innovations in the development of CG models, which broadly include 

structure-based, knowledge-based, and dynamics-based approaches. We then discuss recent 

applications of different classes of CG models to explore various macromolecular complexes. 

Finally, we conclude with an outlook for the future in this ever-growing field of biomolecular 

modeling.

Introduction

Many biological processes rely on macromolecules to serve as building blocks for large-

scale complexes, exemplified by viruses, ribosomes, and cytoskeletal filaments [1–3]. These 

so-called macromolecular complexes often contain many copies of the same macromolecule 

that collectively aggregate through non-covalent interactions into ordered and functional 

suprastructures [4]. Furthermore, the lifecycles of these complexes are inherently dynamic, 

in which configurational transitions act as regulatory signals [5].

Since molecular phenomena at the scale of individual macromolecules translates into 

emergent and collective macroscopic behavior, it is clear that a fundamental understanding 

of these intriguing biophysical complexes requires a hierarchical approach. Recent advances 

in experimental techniques now offer multifaceted insights into these systems. For example, 

ensemble-averaged atomic structures can be resolved at high-resolution using X-ray 

crystallography or cryo-electron microscopy [6,7]. For dynamic information, one may use 

fluorescence techniques [8,9] or nuclear magnetic resonance (NMR) spectroscopy [10,11], 

albeit with lower spatial resolution. To complement these experimental approaches, theorists 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Author Disclosures
The authors declare no conflict of interest.

HHS Public Access
Author manuscript
Curr Opin Struct Biol. Author manuscript; available in PMC 2019 November 30.

Published in final edited form as:
Curr Opin Struct Biol. 2018 October ; 52: 119–126. doi:10.1016/j.sbi.2018.11.005.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



may attempt to leverage all-atom (AA) molecular dynamics (MD) simulations to access 

dynamical phenomena with molecular-scale resolution [12].

Within the space of MD simulation techniques, coarse-grained (CG) modeling and 

simulation are particularly attractive for the study of macromolecular complexes. By design, 

CG models are reduced representations of AA models that aim to retain the essential 

molecular aspects for the biophysical system of interest. As a result, CG simulations have 

three primary benefits in comparison to AA simulations. First, these models enable 

simulations of large, biologically-relevant systems by virtue of the reduced number of 

particles. Second, the removal of highly-fluctuating atomic degrees of freedom facilitates 

faster configurational sampling, as both larger integration time steps can be used while the 

underlying free energy surface is smoother. Hence, the combination of these first two 

benefits may facilitate observation of interesting collective behavior. Finally, the 

construction of useful CG models grants tacit insight into molecular features (i.e., from CG 

mappings) and interactions (i.e., from CG parameterizations) that are essential for 

biophysical function. For these reasons, CG simulations may provide insights and 

perspectives that would otherwise be inaccessible from AA molecular simulations, which 

has indeed driven the continued use and development of CG models and methods.

In this review, we summarize recent advances in the development and application of CG 

models for studying the structure and dynamics of biological macromolecules. In particular, 

we focus on highly CG models for proteins and nucleic acids, i.e., per-residue resolutions or 

coarser, which enable large-scale simulations of CG macromolecular complexes. Interested 

readers may refer to other in-depth reviews that discuss related topics, including higher-

resolution CG models and ultra-low-resolution phenomenological models for proteins, 

membranes, carbohydrates and nucleic acids [13–17]. We first broadly describe the most 

common methodologies for CG modeling that have been developed over the last five years, 

with our intention to expand upon previous reviews on this subject, e.g., references [18,19]. 

We then survey recent uses of these models for macromolecular complexes, for which CG 

models have provided new insights. We conclude with a brief summary and discussion on 

the future outlook of the field.

Coarse-Grained Modeling of Large Biomolecules

As CG models have grown in both popularity and utility, so have the strategies for 

generating CG models of macromolecular complexes. Here, we focus on low-resolution 

models that have been used extensively; specifically, we refer to CG models that resolve 

proteins (nucleic acids) at the per-residue (per-backbone/sidechain) level or coarser. All 

procedures for CG modeling must answer two questions: how do we define the 

correspondence between atomic and CG degrees of freedom (i.e., mapping) and how do we 

define the effective interactions between CG sites (i.e., energetics)? Within our scope, we 

further classify three methodological avenues that have been used to approach these 

questions. We denote these as structure-based, knowledge-based, and dynamics-based 

approaches, which are each described below and schematically shown in Figure 1.
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Structure-based approaches.

As perhaps the most prevalent CG approach in the literature, structure- based methods aim 

to leverage atomic-resolution experimental data on native structures to construct CG models. 

An underlying assumption in these models is that conservation of close contacts between 

residues that are observed in native structures are important for the functional dynamics of 

these biomolecules. Based on this intuition, mapping is typically prescribed such that each 

CG site represents a different residue, which, for example, may be based on C-α positions.

Two broad methods exist to describe the energetics of these CG models, i.e., the effective 

CG interactions. The first strategy is to use so-called network models in which the CG 

molecule is described by a graph of proximal masses that are connected by springs; by 

construction, the ground state predicted by network models yields the experimental 

structure. In the past, several network models have been proposed [20–23], which, when 

combined with spectral graph analysis techniques (e.g., normal mode or principal 

component analysis), provide considerable information on the conformational modes of 

macromolecules. The other strategy is to use so-called (off-lattice) Gō models [24,25], 

which instead describe native contacts using attractive, non-bonded interactions, while all 

other (i.e., non-native) interactions are assumed to be purely repulsive. However, in all of 

these earlier methods, the prescribed energy landscape is funneled such that only states that 

minimally frustrate the experimental topology are allowed [26]. Consequently, both network 

and Gō models have limited usability when large conformational transitions or changes in 

chemical environment (e.g., through mutations or ligand interactions) are of interest.

To address these deficiencies, variants of both network and native-contact models have 

recently been reported. The ability to investigate large-amplitude changes during 

conformational transitions, for example, has been enabled by network models [27,28] and 

Gō models [29–31] that utilize an energy landscape constructed from the mixture of single-

state energetics from two or more different conformational states. However, it remains to be 

seen if physically-relevant transition states and associated pathways can be predicted by 

these methods, which warrants further investigation. Other proposed variants have suggested 

the need to go beyond simple harmonic (Lennard-Jones) interactions that are common in 

network (native-contact) models. For instance, algorithms inspired from graph theory 

[32,33] have been proposed as a means to differentiate network weights based on chemical 

fragments to ultimately improve accuracy. In alternative formulations, network bonds have 

been replaced by local density kernels for flexibility analysis [34]. Native-contact models 

have undergone a similar treatment. To represent implicit anisotropic interactions (e.g., due 

to the presence of side chains), which may only be active in certain configurations, virtual 

binding sites have been introduced [35,36]. The self-organizing polymer (SOP) model has 

also been suggested as a variant of Gō models with softer bonded and repulsive interactions. 

This approach ostensibly improves agreement with force-induced folding and unfolding 

behavior, and has shown empirical success for both proteins and RNA [37–39].

Importantly, many recent CG models have opted to hybridize both network-based and 

native-contact-based approaches [35,36,40–43]; for example, a network model could 

represent different intra-protein conformers, while a native-contact model represents inter-

protein interfaces. Indeed, this type of approach is well-suited for studies of large-scale 
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macromolecular complexes. However, several aspects of structure-based CG modeling 

remain open-ended. Mapping of CG sites, for example, is almost entirely decided by 

chemical intuition, and mostly at the level of C-α atoms. While systematic mapping 

methods for structure-based CG models are not as prevalent, some promising directions have 

recently been reported. For instance, graph decimation methods have been shown to generate 

a hierarchy of network model resolutions, which may be easily extended as a mapping 

operator [33]. In addition, the ability to discriminate phenomena based on physical 

chemistry principles remains a challenge. In the next section, we describe knowledge-based 

CG models which attempt to resolve some of these issues.

Knowledge-based approaches.

Broadly speaking, we define knowledge-based approaches as CG parameterization strategies 

that leverage the growing collection of different macromolecules (and their conformers) with 

solved experimental structures or measured macroscopic properties. Here, the goal is to 

design CG models with greater degrees of transferability and chemical specificity, i.e., a 

generalized model that can be used to independently describe any given macromolecular 

assembly of interest. Knowledge-based approaches have been used in the past to propose 

residue-specific pair interactions, such as in the well-known Miyazama-Jernigan potential 

[44,45]. Recently, there has been a resurgence of knowledge-based approaches, which have 

been timely given advances in macromolecular structure characterization and statistical 

methodologies.

Knowledge-based models that build upon aforementioned structure-based models have been 

proposed for both protein and nucleic acid CG models. The primary distinction between 

these methods is the choice of the target observable. For instance, parameter sets for network 

models have been introduced that delineate different inter-residue coupling forces to 

reproduce experimental Debye-Waller factors [46]. On the basis of statistical distributions of 

residue contacts observed in training sets of experimental structures, it is possible to 

formulate hybrid network/native-contact models that capture pairwise energies [47], 

vibrational entropies [42,43], relative entropies [48,49], and maintained contacts [50]. In the 

case of intrinsically disordered proteins, in which native states are largely unknown, large 

datasets of radius of gyrations were used to parameterize effective CG potentials. Similar 

approaches have been adopted for RNA, although it appears that more complex CG 

interactions are needed to also account for base-pair orientation [51,52].

A prime example of knowledge-based models has been for protein structure prediction and 

homology modeling, e.g., as evaluated by the Critical Assessment of Structure Prediction 

(CASP) experiments [53]. To this end, one consideration that requires further investigation is 

the transferability of current knowledge-based models. In practice, training sets are 

composed of related proteins, and it is unclear if models generated from one set (e.g., 

globular proteins) can be successful applied toward another set (e.g., intrinsically disordered 

proteins).

Another promising direction for knowledge-based models is to leverage Bayesian inference 

techniques, which have previously been applied to calibrate and select optimal force fields 

for MD simulations [54–56]. Within our scope, the question is how can we infer reference 
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atomic distributions from CG data? Recently, an approach was reported that sought to 

determine optimal mappings and energetics of individual proteins by the use of a 

combination of experimental atomic models and low-resolution cryoEM density maps 

[57,58].

Dynamics-based approaches.

While the previous two approaches are largely dependent on experimental data, dynamics-

based approaches instead use systematic algorithms to derive CG mappings and energetics 

based on molecular-level statistics from AA MD simulations. Mapping procedures, for 

instance, may determine the optimal clustering of atoms into CG sites to recapitulate the 

lowest-frequency collective motions [59,60] or to maximize the relative fluctuations between 

sites [61] for a given number of CG particles. Determination of the optimal number of CG 

sites is also possible based on scaling laws for the residual thermal fluctuations obtained 

from CG-mapped AA trajectories [62]. Similarly, methods to parameterize network models 

to recapitulate fluctuations from MD simulations have been reported [63,64], while 

generalized extensions of this model have been trained on ensembles of proteins with 

different force-fields [65,66]. However, while numerous strategies have been developed to 

systematically parameterize CG interactions [67–74], these methods have found limited use 

in CG modeling studies of macromolecular complexes. In part, the difficulty is in capturing 

all of the relevant physics, including many-body effects such as hydrophobicity, in CG 

models (e.g., due to the use of simple pairwise interactions). We note that this is one aspect 

of the general CG representability problem [75]. Recent work has demonstrated both the 

means and utility of increasingly expressive CG interactions, which include CG interactions 

that are based on order parameters [76,77], such as local densities [78,79]. Furthermore, the 

general “Ultra-CG” (UCG) machinery enables the systematic mixing of different CG 

interaction models, which may represent different physical (e.g., conformational changes, 

ligand binding) or chemical (e.g., hydrolysis, protonation) states [41,77,80,81]; these would 

be a natural extension to the aforementioned multi-state structure-based CG models. 

Another general challenge is that CG models based on statistical mechanics formulations 

may preclude transferability, given their inherent dependence on thermodynamic state [75]. 

However, empirical evidence on the utility of state-dependent CG potentials for improved 

transferability has begun to emerge [82,83], and careful analysis on the origins of this 

behavior may provide new insights into this problem. Finally, dynamics-based approaches 

can be augmented with knowledge of experimental observables, which has recently been 

proposed as an integrated framework to generate new classes of CG models [84].

Applications of Coarse-Graining for Macromolecular Complexes

Recent advances in CG models have resulted in new mechanistic insights into large 

macromolecular complexes and their polymeric or aggregated assemblies. For example, 

network models are amenable for the exploration of collective motions with large 

computational efficiency [27,85]. On the other hand, native-contact models have been 

particularly useful in studying dynamical processes during the lifecycle of macromolecular 

complexes [15]. Finally, CG models have found additional utility as part of so-called 

integrative modeling, in which information from different hierarchies of scale (e.g., a 
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continuum from AA to CG descriptions) are leveraged to gain hierarchical insights [86]. 

Below, we highlight a few recent applications of CG models, e.g., as seen in Figure 2, within 

these three broad categories.

Large-scale functional motions.

Conformational transitions within macromolecular complexes have been explored using 

variants of both network and native-contact models. For example, flexibility analysis has 

revealed the collective motions that contribute to catalysis and translocation of RNA 

polymerase [34] (see Figure 2A) and to mechanical phenotypes of amyloid fibrils with 

disease expression [87]. Highly CG multi-state network models have also successfully 

recapitulated transition paths between the large-scale structural transitions in ribosomal 

complexes between the initiation and elongation states [33]. Finally, multi-state native-

contact models have recently revealed the mechanism of action of motor protein motility, 

including kinesin [30] and myosin VI [29].

Dynamic assembly/disassembly pathways.

A key attribute of macromolecular complexes is their dynamic ability to assemble from their 

macromolecular constituents with high fidelity and then disassemble, to recycle, release, or 

replace components based on regulatory signals. Viruses are a quintessential example as 

viral cargo must be packaged and transported from host cells and released into newly 

infected cells. To this end, native-contact models have revealed hierarchical assembly modes 

during the replication cycle of HIV-1 (see Figure 2B) [35,36,88,89]. Similarly, dynamic de-

polymerization responses of microtubules due to either mechanical forces or severing 

enzymes have been explored using native-contact models [90,91]. Most recently, UCG 

models of actin filaments under different hydrolysis states have revealed cooperativity 

effects that regulate polymerization of actin subunits [41].

Role of CG in hierarchical and integrative modeling.

The final aspect of CG modeling that we highlight is its integration in hierarchical modeling 

frameworks, in which a separation of length-and/or time-scales in the biophysical system of 

interest requires multiple resolutions of data that can span AA models to experimental data. 

For instance, CG models can accelerate the sampling of AA statistics. One such example is a 

multi-resolution approach known as the Adaptive Resolution Scheme (AdResS), which 

simultaneously models a region of interest in atomic detail within an environment of CG 

representation. An example would be ligand recognition in lysozymes [92]. An alternative 

approach is to explicitly use distributions from CG simulations to initiate AA simulations 

via back-mapping procedures [93] or to construct biased simulations that enhance AA 

configurational sampling [94]. In the opposite direction, continuum or mesoscopic fields can 

be applied to CG simulations. For instance, hydrodynamic flow fields, which can affect 

macromolecule relaxation and aggregation, have been integrated into CG MD simulations 

using the Lattice Boltzmann technique [95–97].

Pak and Voth Page 6

Curr Opin Struct Biol. Author manuscript; available in PMC 2019 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Conclusions and Future Outlook

Driven by a desire to understand the hierarchical nature of macromolecular complexes and 

their assemblies with molecular fidelity, the field of coarse-grained (CG) modeling and 

simulation continues to rapidly evolve. Here, we present recent advances in methodology 

and application of highly CG models for proteins and nucleic acids. Interestingly, previously 

classified boundaries between CG models, which broadly contain structure-based, 

knowledge-based, and dynamics-based approaches, appear to be melding into a unified 

nexus that blends these various philosophies. Nonetheless, we emphasize two main 

challenges to be considered for future advances. The first is that many aspects of CG 

modeling remain heavily reliant on either intuition or arbitrary modeling decisions. The 

second is that many CG models are inherently prescriptive, thereby limiting their ability to 

predict new phenomena. To address these issues, we anticipate that new methodological 

advances to generate CG mappings and energetics, especially those related to statistical 

inference approaches or based on a deeper understanding of systematic coarse-graining 

theory, will greatly expand the utility of CG modeling and simulation.
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Highlights

• Coarse-grained models are reduced representations of all-atom models that 

aim to retain the essential molecular aspects for the biophysical system of 

interest.

• Coarse-grained simulations may provide insights and perspectives that would 

otherwise be inaccessible from all-atom molecular simulations.

• Coarse-grained simulations bridge insights between microscopic and 

mesoscopic or macroscopic phenomena.

• Coarse-grained modeling strategies are discriminated on the basis of their use 

of experimental structural data, large datasets of experimental observables, or 

molecular simulations.

• Advances in methodology have enabled models to more expressively capture 

conformational changes in macromolecular complexes.

• Coarse-grained simulations have been used to elucidate hierarchical and 

dynamical behavior in complex macromolecular systems.
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Figure 1. 
Different avenues of approach for model development of highly coarse-grained (CG) 

macromolecules, which are broadly classified into structure-based, knowledge-based, and 

dynamics-based strategies. Here, the capsid and spacer peptide 1 (CA-SP1) domains of the 

human immunodeficiency virus (HIV) protein is used as a representative example. (Top) 

Each model class relies on different training datasets and methods; for example, an 

experimental structure (PDB 5L93), an extended dataset of experimental measurements 

(PDB 5L93, 3ZX8, 3J37 and 6BVF), or statistics from an all-atom molecular dynamics 

trajectory (initial structures from PDB 5L93), respectively. (Bottom) Resultant models can 

be classified as network-based and native-contact-based models (or hybrids thereof); bonded 

(nonbonded) interactions are depicted by solid purple (cyan) lines while CG sites (per 

residue) are depicted as spheres.
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Figure 2. 
Two representative applications of coarse-grained modeling. (A) Schematic of the closed 

loop complex of RNA polymerase (colored surface) and RNA (yellow balls) [left] with 

large-scale collective motions indicated by the teal arrows along the bridge helix [right] 

(adapted from Ref. [34]). (B) Self-assembly pathway of the human immunodeficiency virus 

(HIV) CA capsid protein subunits in forming the mature capsid of infectious virions. 

Identified are CA hexamers (green), pentamers (red) and the growing edge of the conical 

capsid (blue) (adapted from Ref. [35]).
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