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Summary

Legionella pneumophila is a ubiquitous environmental bacterium that has evolved to infect and 

proliferate within amoebae and other protists. It is thought that accidental inhalation of 

contaminated water particles by humans is what has enabled this pathogen to proliferate within 

alveolar macrophages and cause pneumonia. However, the highly evolved macrophages are 

equipped more sophisticated innate defense mechanisms than protists, such as the evolution of 

phagotrophic feeding into phagocytosis with more evolved innate defense processes. Not 

surprisingly, the majority of proteins involved in phagosome biogenesis (~80%) have origins in the 

phagotrophy stage of evolution. There are a plethora of highly evolved cellular and innate 

metazoan processes, not represented in Protist biology, that are modulated by L. pneumophila; 

including TLR2 signaling, NF-κB, apoptotic and inflammatory processes, histone modification, 

caspases, and the NLRC-Naip5 inflammasomes. Importantly, L. pneumophila infects hemocytes 

of the invertebrate Galleria mellonella, kill G. mellonella larvae, and proliferate in and kill 

Drosophila adult flies and Caenorhabditis elegans. Although co-evolution with protist hosts has 

provided a substantial blueprint for L. pneumophila to infect macrophages, we discuss the further 

evolutionary aspects of co-evolution of L. pneumophila and its adaptation to modulate various 

highly evolved innate metazoan processes prior to becoming a human pathogen.

Legionella pneumophila is an intriguing environmental organism for its co-evolution with 

various protist hosts in the aquatic environment and its further evolution and ability to cause 

disease in humans upon accidental aerosolization due to recent human history of 

anthropogenic manipulation of water (Boamah, Zhou, Ensminger, & O’Connor, 2017; 

Rowbotham, 1980). Amplification of L. pneumophila upon growth within amoebae in the 

aquatic environment allows for sufficient delivery to alveolar macrophages where L. 
pneumophila replicate intracellularly resulting in pneumonia (Barker & Brown, 1994). 

Protists have long been considered to be primitive macrophages and, therefore, may have 

been capable of providing all the “training” L. pneumophila required to infect human 

macrophages (Molmeret, Horn, Wagner, Santic, & Abu Kwaik, 2005). However, 

macrophages have undergone numerous evolutionary changes into the cells they are today, 
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with vastly superior pathogen sensing and innate defense mechanisms for fighting off 

invading microbes. This indicates some immune evasion functions of L. pneumophila, which 

have allowed it to be successful pathogen in macrophages, have likely been acquired through 

further evolution and selection in metazoan hosts with more advanced innate defense 

mechanisms of protist hosts.

Growth within the environmental amoebae host primes L. pneumophila for infection of 

human alveolar macrophages (M. R. W. Brown & Barker, 1999; Hoppe et al., 2017; 

Molmeret et al., 2005). Intracellular replication of L. pneumophila within any host requires 

the establishment a replicative niche, known as the Legionella-containing vacuole (LCV) 

(Molofsky et al., 2006; Richards, Von Dwingelo, Price, & Abu Kwaik, 2013; Segal & 

Shuman, 1999). Within the LCV, bacterial metabolism and nutrition-based genetic 

regulation based in nutrient availability governs bacterial proliferation and differentiation 

(W. Eisenreich, Heesemann, Rudel, & Goebel, 2013; Wolfgang Eisenreich, Rudel, 

Heesemann, & Goebel, 2017; Fonseca & Swanson, 2014; Grubmuller, Schauer, Goebel, 

Fuchs, & Eisenreich, 2014; Häuslein et al., 2017; Lama, Drennan, Johnson, Rubenstein, & 

Cambronne, 2017; Manske & Hilbi, 2014; Oliva, Sahr, & Buchrieser, 2018; C. T. Price, 

Richards, & Abu Kwaik, 2014). Biogenesis of the LCV depends on the Dot/Icm type IVb 

translocation/secretion system (T4SS) that injects >320 effectors into the host cytosol 

(Burstein et al., 2009; J. Coers et al., 2000; de Felipe et al., 2008; Ghosh & O’Connor, 2017; 

Schroeder, 2018; W. Zhu et al., 2011). Effectors are responsible for preventing lysosome 

fusion, recruitment of ER-derived vesicles to the LCV, evasion of the innate immune 

response, and modulation of a plethora of other host processes to promote intracellular 

survival and replication of L. pneumophila (Allgood et al., 2017; Bärlocher, Welin, & Hilbi, 

2017; Fontana et al., 2011; Horwitz, 1983; Horwitz & Maxfield, 1984; Isberg, O’Connor, & 

Heidtman, 2009; ubori, Bui, Hubber, & Nagai, 2017; Luo, 2011; C. Price et al., 2017; C. T. 

Price, Al-Quadan, Santic, Rosenshine, & Abu Kwaik, 2011; Qiu & Luo, 2017; Swanson & 

Isberg, 1995a, 1995b). A large number of the effectors have been acquired from eukaryotic 

hosts through inter-kingdom horizontal gene transfer (Burstein et al., 2016; Gimenez et al., 

2011; Gomez-Valero et al., 2011; Lurie-Weinberger et al., 2010). Eukaryotic-like effectors 

allow the pathogen to manipulate host processes to establish a replicative niche (de Felipe et 

al., 2008; Lurie-Weinberger et al., 2010; C. T. Price, Al-Khodor, Al-Quadan, & Abu Kwaik, 

2010; C. T. Price, Al-Quadan, Santic, Jones, & Abu Kwaik, 2010). The precise hosts from 

which these genes have been acquired are unknown. It is more likely that the large arsenal of 

L. pneumophila effectors evolved through the long term adaptation to various protist hosts 

(Best and Abu Kwaik, 2018).

Environmental hosts of L. pneumophila

Protists are unlikely be the only natural environmental hosts of L. pneumophila (Fields et al., 

1989, Rowbotham, 1986). When examining natural aquatic biofilms, L. pneumophila has 

been found with diverse Protists and metazoans, possibly as a parasite or as food (Abu 

Khweek & Amer, 2018; Abu Khweek et al., 2013; Rasch et al., 2016). Due to low detection 

of L. pneumophila in situ, infection of metazoans could not be determined (Rasch et al., 

2016). Caenorhabditis elegans, a temperate soil nematode, has been shown to be a possible 

environmental reservoir of L. pneumophila (Brassinga et al., 2010; Rasch et al., 2016). 
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Furthermore, in vitro studies using C. elegans from environmental samples demonstrated the 

ability of L. pneumophila to colonize this metazoan (Rasch et al., 2016), which opens the 

possibility that if other lower metazoans were examined, new environmental hosts or 

reservoirs of L. pneumophila may be identified. Within the environmental sample, L. 
pneumophila was found to not be capable of in vitro infection of rotifera, copepod, or 

nauplius larvae (Rasch et al., 2016). However, the exact species were not determined and 

thus does not exclude other members of those phyla, class, or other naupli.

Additionally, L. pneumophila is capable of killing Galleria mellonella larvae, indicating the 

propensity to infect or persist with metazoans (Harding et al., 2012; Sousa, Silva, Moreira, 

Verissimo, & Costa, 2018). L. pneumophila replicates in the hemocytes, the phagocytes of 

invertebrates, of G. mellonella in a vacuole that resembles an LCV (Harding et al., 2012). In 
vitro, L. pneumophila can infect a wide range of metazoan host cells, including 

Drosophiladerived cells (Table 1). In addition, the adult fruit fly is a model host for L. 
pneumophila proliferation and host lethality. Interestingly, L. pneumophila harbors a 

chitinase, which breaks down the cell wall component of fungi, arthropods, and some 

protists, further suggesting the ability to infect metazoans (DebRoy, Dao, Soderberg, 

Rossier, & Cianciotto, 2006). This relatively unexplored area of L. pneumophila ecology and 

its interaction with multicellular eukaryotes may provide better understanding of further 

evolution that enabled L. pneumophila to be an effective and successful pathogen that 

replicates within human macrophages, which degrade most other bacteria.

The draw-back to understanding how metazoan hosts have contributed to L. pneumophila 
evolution is that the evolutionary biology of the immune response has been studied in only 

two L. pneumophila natural hosts, Dictyostelium discoideum and C. elegans (Buracco, 

Peracino, Andreini, Bracco, & Bozzaro, 2017; Cardenal-Muñoz, Barisch, Lefrançois, 

López-Jiménez, & Soldati, 2018; Dunn et al., 2017; Mori, Mode, & Pieters, 2018; Swart, 

Harrison, Eichinger, Steinert, & Hilbi, 2018; L. Li & Faucher, 2016). Because the biology of 

many environmental organisms remains poorly understood, especially given their great 

diversity, it is reasonable that L. pneumophila would have encountered various innate 

pathogen recognition systems with various degrees of sophistication that would have aided 

in evolution of L. pneumophila to become an effective parasite of macrophages. For now, D. 
discoideum and C. elegans are the primary lower eukaryotic hosts for understanding how L. 
pneumophila has the ability to interact with the primitive hosts but it is not clear how this 

pathogen has evolved further to deal with advanced innate immune processes found in 

human macrophages (see below).

Protist resistant to L. pneumophila have also been identified but their relationship is poorly 

understood (Amaro, Wang, Gilbert, Roger Anderson, & Shuman, 2015). Failure to establish 

a replicative niche in an environmental non-permissive hosts could indicate host defense 

mechanism that L. pneumophila is unable to mitigate and provide more information on the 

pathogenicity of this organism. These protists may contain unique autonomous defense 

mechanism that L. pneumophila has not evolved to counteract. Resistance to Legionella is 

crucial to the protist hosts, as this ubiquitous environmental microbe and other 

environmental bacteria are part of the bacterial nutritional supply for unicellular protists.
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Phagotrophy by protists versus phagocytosis

Phagotrophic feeding is the process by which unicellular eukaryotes acquire nutrients, and 

involves the extension of pseudopodia that envelop the food particle (Boulais et al., 2010). 

For ciliates, a specialized mouth-part, the cytostome, is the site where phagocytosis occurs. 

Bacteria serve as the most common food source for phagotrophic Protists and the nematode 

C. elegans (Arndt, 1988; Félix & Braendle, 2010). Multicellular C. elegans take up bacteria 

or unicellular eukaryotes through the mouth. If L. pneumophila survive through the 

pharyngeal grinders, it can colonize the intestinal lumen and invade into intestinal cells 

(Brassinga et al., 2010; Hellinga et al., 2015). Due to colonization in the gut, C. elegans can 

excrete L. pneumophila in mature intracellular forms (MIFs), which is an infectious cyst-like 

form of L. pneumophila that provides environmental resilience (R. A. Garduno, Garduno, 

Hiltz, & Hoffman, 2002; Hellinga et al., 2015; Robertson, Abdelhady, & Garduño, 2014).

In the laboratory, axenic strains of D. discoideum are used, circumventing the need to grow 

with a bacterial food source. These axenic strains have a null mutation in Ras-mediated 

neurofibromin, resulting in enlarged macropinosomes which allow for sufficient uptake of 

nutrients from the media (Bloomfield et al., 2015). Additionally, these strains are capable of 

phagocytosing larger particles (Bloomfield et al., 2015). This is also true for Acanthamoeba, 

Hartmanella, and other protist species used in research, but the exact mechanism for axenic 

growth is not always known. These axenic strains are used for studies with L. pneumophila. 

How the changes to phagocytic feeding have impacted uptake and intracellular replication of 

L. pneumophila is unknown.

Over a billion years of evolution, phagocytic feeding of unicellular eukaryotes has evolved 

into specialized pathogen-killing cells of multicellular eukaryotes (Boulais et al., 2010). In 

contrast, to phagotrophy by protists, phagocytosis was revealed by Elie Metchnikoff in 1882 

and entails endocytosis and vesicular internalization of large materials such as bacteria, and 

is the mechanism to eradicate pathogens by phagocytic cells. Transitional organisms 

demonstrate this phenomenon; when encountering nutritional stress, D. discoideum will 

aggregate into a motile, multicellular slug (Kessin, 2001). Once nutrient conditions are 

favorable, it will differentiate into a fruiting body and release spores. Surveillance in the D. 
discoideum slug by Sentinel cells (S cells) retain their phagocytic ability to protect the 

multicellular slug and are selfsacrificing (G. Chen, Zhuchenko, & Kuspa, 2007). This 

ancient defense mechanism may have been adapted for defense functions in higher 

eukaryotes, which may have led to a more specialized cells like macrophages (Cosson & 

Soldati, 2008).

In D. discoideum, the phagosome matures into the post-lysosome, which is a process absent 

from macrophages, where the phago-lysosome is a dead-end for the internalized particle 

(Padh, Ha, Lavasa, & Steck, 1993). To finish the digestion process and expel undigested 

particles in D. discoideum, the WASH complex is recruited to the phagosomal membrane as 

the actin- nucleating promoting factor of Arp2/3 (Derivery et al., 2009). The V-ATPase is 

recycled from the post-lysosome and the compartment starts to reach a neutral pH. The actin 

coat fuses with the plasma membrane to release the undigested material (exocytosis). These 

post-lysosomal regulatory components are present in macrophages as well, but the post-
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lysosomal-like stage is absent (Gomez & Billadeau, 2009). Interestingly, L. pneumophila 
Dot/Icm-translocated effector LegK2 contributes to preventing actin and vATPase 

localization to the LCV within D. discoideum (Fig. 1) (Clarke et al., 2002; Michard et al., 

2015). Without V-ATPase at the LCV the vacuole fails to acidify, the lack of a proton 

gradient prevents lysosomal enzymes from functioning and the ability to transport ions for 

metal poisoning, all involved in bacterial killing. The LepA and LepB effectors of L. 
pneumophila are SNARE-like proteins that allow for nonlytic release of L. pneumophila in 

Acanthamoeba castellanii and D. discoideum (Fig. 1) (J. Chen et al., 2004). In Tetrahymena 
infected at high MOI, L. pneumophila has been shown to be released via pellets (Berk et al., 

1998; Gardunow et al., 2008; Denoncourt et al., 2014; Faulkner et al., 2008). Post-lysosomal 

compartments of other protists are formed, but have not been well-studied (Stewart & 

Weisman, 1972).

Within both D. discoideum and human macrophages, Rab5 and Rab7 act as the masterminds 

of governing phagosome maturation (Dunn et al., 2017; Gutierrez, 2013). Rab5 drives 

phagosome maturation by transporting V-ATPases from the trans-Golgi network (Gorvel, 

Chavrier, Zerial, & Gruenberg, 1991; C. Zhang, Li, Zhang, & Xiao, 2011). Not surprisingly, 

the VipD, but not VipA effector of L. pneumophila interacts with activated Rab5 to prevent 

the downstream functions of Rab5, blocking vacuolar acidification (Fig. 1) (Gaspar & 

Machner, 2014; Ku et al., 2012; Prashar et al., 2018). Some of the LCVs will still acquire 

Rab7, a marker of the late endosome (Clemens, Lee, & Horwitz, 2000). While these 

interactions were tested in mammalian cells, Rab functions are well conserved in lower 

eukaryotes and would presumably function similarly in Protists (Boulais et al., 2010; 

Gotthardt et al., 2002). For an extensive review of the development of the LCV see Finsel et 
al. 2015 (Finsel & Hilbi, 2015).

The majority of phagosomal proteins (~80%) have origins in the phagotrophy stage of 

evolution (Boulais et al., 2010; Herweg et al., 2015). Overall, eukaryotic cellular processes 

involved in phagocytosis and trafficking have been well-conserved throughout eukaryotic 

evolution, aiding in the ease of L. pneumophila evolution to replicate in macrophages. 

However, far greater evolution from lower to higher eukaryotes represent in innate immune 

processes represent a larger challenge for evolution of L. pneumophila to adapt to 

macrophages of multicellular eukaryotes.

The primitive versus the sophisticated innate response of protists and 

macrophages

Protists and lower metazoans do not have immune responses, per se, but have aspects of 

defense that have evolved into sophisticated innate responses in higher metazoan through 

gene duplication and evolution (Pujol et al., 2001; Boulais et al., 2010). For L. pneumophila, 

experience with primitive defenses may have prepared the organism to infect higher 

metazoan but not when it comes to metazoan-specific defenses, as outlined below.

Each bacterial meal taken up by phagotrophy presents the opportunity for the protists to 

become infected. Therefore, protists have developed primitive immune responses to 

counteract parasitosis, which have served as the foundation for complex innate immune 
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functions in higher organisms (Desjardins et al., 1994; Desjardins, Houde, & Gagnon, 2005; 

Jutras & Desjardins, 2005). The foundation for the innate immune response came from cell-

autonomous mechanisms in protists, which include lysozymes, ROS, metal poisoning, etc. 

(see (Dunn et al., 2017) for extensive review).

The D. discoideum transitional multicellular state is resistant to L. pneumophila (G. Chen et 

al., 2007). Within the motile slug of D. discoideum, S cells trap invading bacteria and are 

subsequently shed to protect the multicellular structure, functioning as a primitive innate 

immune system (X. Zhang & Soldati, 2016). When D. discoideum undergoing slug 

formation is exposed to L. pneumophila, the bacteria are swept into the slug by adhering to 

amoebae (G. Chen et al., 2007). After few hours, the majority of L. pneumophila could be 

found within the S cells (G. Chen et al., 2007). By 18h, the S cells containing L. 
pneumophila are shed from the slugs and found in the sheaths left behind (G. Chen et al., 

2007). Even if L. pneumophila is directly injected into the slug, the bacteria still follow the 

same fate (G. Chen et al., 2007). Interestingly, L. pneumophila is not visible within the shed 

S cells but appears to be surrounded by cell debris (G. Chen et al., 2007). At the time of 

these studies, it was not known that S cells will release extracellular DNA traps (ETs) of 

mitochondrial DNA involved in NETosis, which could have been the observed “cell debris” 

(Fig. 1) (X. Zhang, Zhuchenko, Kuspa, & Soldati, 2016). ET release by D. discoideum S 

cells requires the NOX enzyme to generate reactive oxygen species (ROS) (Fig. 1) (X. 

Zhang et al., 2016). The emergence of NOX enzymes and multicellularity have been 

proposed to coincide with the origin of DNA-based defense strategies (X. Zhang & Soldati, 

2016). NOX enzymes can also be found in Naegleria gruberi, a Protist host of L. 
pneumophila, which may have lost multicellular traits (Rowbotham, 1980; X. Zhang & 

Soldati, 2016). ETs appear to be an ancient defense mechanism that L. pneumophila would 

likely encounter in the environment. However, how L. pneumophila deals with ETs is 

unknown. There is evidence to suggest that ETs are an effective mechanism for controlling 

L. pneumophila with the motile slug of D. discoideum (G. Chen et al., 2007).

ETs of neutrophils (NETs) are a recent discovery and have been popularized in the field of 

pathogenesis, but they are not the only immune cells capable of extruding DNA. Less 

studied, is the ability of macrophages to produce ETs (METs) (Boe Devin, Curtis Brenda, 

Chen Michael, Ippolito Jill, & Kovacs Elizabeth, 2015; Chow et al., 2010). METs are 

comprised of lysozyme, myeloperoxidase, and nuclear and mitochondrial DNA that are 

released in response to microbes, microbial products, or cytokines (Fig. 1) (Boe Devin et al., 

2015). Mannheimia hemolytica elicit MET formation in bovine alveolar macrophages but 

not in bovine monocyte-derived macrophages, indicating this event may be a pathogen- or 

site-specific event (Aulik, Hellenbrand, & Czuprynski, 2012). Within the population of 

macrophages infected by a pathogen, only a small population (<25%) undergoes METosis 

(Aulik et al., 2012; Chow et al., 2010; Liu et al., 2014). High levels of inflammatory 

cytokines, like TNF-α, induce generation of METs in vitro (Mohanan, Horibata, McElwee, 

Dannenberg, & Coonrod, 2013). L. pneumophila is known to induce TNF-α expression 

during infection, which may contribute to the production of METs (Blanchard, Djeu, Klein, 

Friedman, & Stewart, 1987; Chang, Amemura-Maekawa, Kura, Kawamura, & Watanabe, 

2004). It is currently unknown whether METs are produced in response to L. pneumophila. 

This could be one way to control large numbers of L. pneumophila being released 
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extracellularly during infection. In humans, this may contribute to the alveolar damage seen 

in the lungs during infection (Jäger et al., 2013).

Control of most antimicrobial functions of Drosophila melanogaster, which is a model host 

for Legionella, is under the control of the Immune deficiency (Imd) pathway, responsible for 

activating NF-κB (Dorer, Kirton, Bader, & Isberg, 2006; Myllymäki, Valanne, & Rämet, 

2014). Many proteins within this pathway contain a death domain, which can be found in 

combination with ankyrin repeats, leucine-rich repeats (LRR), TIR domains, and others (L. 

Aravind, Dixit, & Koonin, 1999; Finn et al., 2016; Myllymäki et al., 2014). D. discoideum 
has one death domain containing protein, C. elegans contains 24, while Homo sapiens have 

124 (Cosson & Soldati, 2008; Finn et al., 2016). Interestingly, four Legionella species 

contain death domains: Legionella norrlandica, Legionella sainthelensi, Legionella 
tusonenis, and Legionella longbeachae, but their function is unknown (Finn et al., 2016). To 

note, death domains are not exclusive to eukaryotes, they can be found in many prokaryotes 

and archaea, but have only been studied in eukaryotes.

Modulation of Toll-like receptors signaling, a late evolutionary process, by 

L. pneumophila

It is thought that nematodes diverged before TLRs were co-opted for immune signaling 

(Irazoqui, Urbach, & Ausubel, 2010). The TLRs of higher organism recognize bacterial 

patterns through LRRs and signal through adaptor proteins with Toll/interleukin-1 receptor 

(TIR) domains (Akira, Uematsu, & Takeuchi, 2006; Burch-Smith et al., 2007; Xu et al., 

2000). In mice, TLR4 is unresponsive to L. pneumophila; instead TLR2 is activated in 

response to the atypical LPS of the pathogen with long branched fatty acids in the lipid A 

moiety (Akamine et al., 2005; Girard et al., 2003). In human macrophages but not murine 

macrophages, the type-II secretion system (T2SS) dampens signaling through the MyD88-

TLR2 pathway (Fig. 1) (Mallama, McCoy-Simandle, & Cianciotto, 2017). What 

environmental factors selected for or conserved the ability for L. pneumophila to dampen 

TLR2 signaling is unknown. Additionally, human TLR4 polymorphisms are associated with 

disease resistance (Fig. 1) (Thomas R Hawn et al., 2005). L. pneumophila also interacts with 

TLR5 through recognition of flagellin (T. R. Hawn, Smith, Aderem, & Skerrett, 2006). Two 

TIR domain-containing protein are present in D. discoideum, TirA and TirB (Fig. 1) (Table 

2) (G. Chen et al., 2007). The S cells of tirA-deficient D. discoideum are killed by L. 
pneumophila (G. Chen et al., 2007). However, the exact function of these proteins is 

unknown.

C. elegans does express one TLR, TOL-1, which is most similar to Drosophila Toll-8, that is 

required for protection from Salmonella enterica but not all bacterial species tested (Table 2) 

(Pujol et al., 2001; Tenor & Aballay, 2008). Interestingly, TOL-1 plays a more important 

role in development for C. elegans and it is thought that nematodes diverged before TLRs 

were coopted for immune signaling (Irazoqui et al., 2010). If TOL-1 in C. elegans 
contributes to dampening the ability of L. pneumophila to replicate within the nematode is 

unknown.

Best and Kwaik Page 7

Cell Microbiol. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Along with coding for TOL-1, C. elegans contains homologs of the mammalian downstream 

signal transduction components TRF-1, PIK-1, and IKB-1 (homologs of human TRAF1, 

IRAK, and IκB, respectively) but they do not seem to play a role in pathogen resistance, 

supporting the idea that some genes were coopted for immune functions likely following 

major gene duplication events in Euteleostomi and Bilatera (Table 2) (Boulais et al., 2010; 

Pujol et al., 2001). In contrast to higher metazoans, C. elegans does not contain the 

downstream signaling protein, of TRF-1, PIK-1, and IKB-1 - NF-κB (Pujol et al., 2001).

Modulation of metazoan Caspases, apoptotic/anti-apoptotic pathways, and 

the NLRC4 inflammasome by L. pneumophila

Caspases or caspase-like proteins consist of a conversed group of enzymes involved in 

programmed cell death or cell cycle regulation proteins in eukaryotes and even some 

prokaryotes (Bell & Megeney, 2017). Paracaspases can be found in animals and D. 
discoideum, while metacaspases are present in fungi, plants, and some Protists (L Aravind & 

Koonin, 2002; Trzyna, Legras, & Cordingley, 2008; Anthony G. Uren et al., 2000). 

Metacaspase of Acanthamoeba castellanii stimulates encystation and is over expressed at 

<20°C, contributing to elimination of L. pneumophila (Ohno, Kato, Sakamoto, Kimura, & 

Yamaguchi, 2008).

Within C. elegans CED-3, the only caspase of the nematode, acts as both the initiator and 

executioner but also regulates stem cell-like seam cells (Ellis & Horvitz, 1986; Weaver et al., 

2014). The cell death pathway in C. elegans can be simplified to a four-protein pathway: 

EGL-1 (human equivalent BID, BIM) blocks CED-9 (Bcl2), which in turn blocks CED-4 

(Apaf-1), allowing for CED-3 (caspase 9) to induce apoptosis (Table 2) (for extensive review 

of caspase regulation with human and nematode comparisons see review (Riedl & Shi, 

2004)).

L. pneumophila infection of human macrophages triggers robust caspase-3 activation, the 

executioner of cell death, but L. pneumophila prevents apoptosis (Fig. 1) (Abu-Zant et al., 

2007; Gao & Kwaik, 1999; Molmeret et al., 2004; Wenhan Zhu, Hammad, Hsu, Mao, & 

Luo, 2013). This tug-of-war is conducted by Dot/Icm T4SS effectors (Krause & Amer, 

2016). The effectors VipD, Ceg18, Lem12, LegS2, and Lpg0716 induce caspase-3 activation 

in mammalian cells (Wenhan Zhu et al., 2013). VipD destabilizes the mitochondrial 

membrane, releasing cytochrome c (Fig. 1) (Wenhan Zhu et al., 2013). The mechanism of 

action for the other four effectors is unknown. On the other end of the spectrum, L. 
pneumophila upregulates antiapoptotic genes in macrophages notably ones involved in NF-

κB activation (TRAF5, TNF, Bcl10, etc) or genes whose expression is regulated by NF-κB 

(bcl2 and xiap) (Abu-Zant et al., 2007).

L. pneumophila T4SS effector, SidF, interacts with two pro-apoptotic members of the Bcl2 

family to inhibit their pro-death functions in macrophages (Fig. 1) (Banga et al., 2007). This 

may be possible through conserved domain homology with lower metazoans that this ability 

was developed in a host like the nematode and remains functional within macrophages. D. 
discoideum does undergo programmed cell death but its only paracaspase is not required 

(RoisinBouffay et al., 2004).
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Inhibitor of apoptosis proteins (IAPs) all contain baculoviral IAP repeats (BIR) and are also 

conserved among metazoans (Anthony G. Uren, Coulson, & Vaux, 1998; Verhagen, 

Coulson, & Vaux, 2001). These proteins inhibit apoptosis by acting as direct inhibitors of 

caspases. However, in C. elegans the two IAPs, BIR-1 and BIR2, are unlikely to act as 

general cell death inhibitors, a function that likely evolved later in the metazoan lineage, but 

instead are more similar to human Birc5 (Survivin) which is also involved in the regulation 

of cell division alongside its ability to inhibit caspase activation (Table 2) (Fraser, James, 

Evan, & Hengartner, 1999; Verhagen et al., 2001). Interestingly, through BLAST 

identification, one protein in Legionella steeli contains a BIR domain with conserved 

binding sites. BIR proteins have been characterized in vertebrates, yeast, viruses, and 

nematodes (Anthony G. Uren et al., 1998). BLAST analysis of amoebozoa and ciliphora 

indicate few BIR-containing proteins exist among sequenced species within either of these 

taxonomic groups. Of note, one strain of Tetrahymena thermophila, a natural host of L. 
pneumophila contains a single BIR-containing protein, as determined by BLAST (Kikuhara, 

Ogawa, Miyamoto, Nikaido, & Yoshida, 1994). Whether L. steeli and T. thermophila BIR 

proteins function like metazoan IAPs or C. elegans BIR proteins is unknown nor is their 

contribution to intracellular replication known.

In human macrophages, Xiap and Birc3/Ciap2 are upregulated during infection of L. 
pneumophila, which likely aid in preventing apoptosis (Abu-Zant et al., 2005; Losick & 

Isberg, 2006). The most notable IAP is mouse baculoviral IAP repeating-containing 1 

protein (Birc1 or Naip5) which restricts L. pneumophila replication in mice (Diez et al., 

2003). NLRC4 (also known as Ipaf) interacts with Naip5 and recognizes L. pneumophila 
flagellin, leading to the NLRC4-Naip5 inflammasome, activation of caspase-1, −7 and −11, 

and delivery of L. pneumophila to the lysosome (A. Amer et al., 2006; Appelt & Heuner, 

2017; Casson & Shin, 2013; Jörn Coers, Vance, Fontana, & Dietrich, 2007; Halff et al., 

2012; He & Amer, 2014; M. Lamkanfi et al., 2007; Lamkanfi, Kanneganti, Franchi, & 

Núñez, 2007; Lightfield et al., 2008; Molofsky et al., 2006; Speir et al., 2017). However, in 

human macrophages and the permissive A/J mouse strain, the Naip5 allele is defective in 

detecting L. pneumophila flagellin, thus caspase-1, −7, and −11 are not activated, allowing 

for robust intracellular replication (Fig. 1) (Akhter et al., 2012; Akhter et al., 2009; A. Amer 

et al., 2006; Molmeret et al., 2004; Wright et al., 2003; Yamamoto, Klein, Newton, Widen, 

& Friedman, 1988).

CED-4 in C. elegans is homologue to NLRC4- and Apaf-1-like protein that is involved in 

the cytochrome c-dependent activation of caspase-3 (humans) or CED-3 (C. elegans) (Table 

2) (Geddes et al., 2001; Poyet et al., 2001; Zou, Henzel, Liu, Lutschg, & Wang, 1997). VipD 

membrane destabilization and subsequent release of cytochrome-c would likely function 

similar in the nematode host due to these conserved mechanisms (Wenhan Zhu et al., 2013). 

Ced4/Apaf1 family acts as critical regulators of apoptosis in humans and C. elegans and NF-

κB signaling pathways in humans (Geddes et al., 2001).

Like the tug-of-war with apoptosis, L. pneumophila also interferes with host autophagy 

pathways (Joshi & Swanson, 2011; Khweek et al., 2013). In permissive mice, when Atg5, 

involved in extending the membrane of autophagic vesicles and also acts as a pro-apoptotic 

molecule targeted to the mitochondria, is silenced by RNAi, replication of L. pneumophila is 
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enhanced (Matsuda, Fujii, & Yoshida, 2009). However, when autophagy is induced by 2-

dexy-d-glucose, pathogen replication in permissive mice is inhibited (Matsuda et al., 2009). 

Similar to the progression of autophagosomes, during the early stages of LCV development, 

Atg7 and Atg8/LC3 are acquired on the LCV then lost (A. O. Amer & Swanson, 2005; Choy 

et al., 2012). While these studies were done in mice, Atg proteins are evolutionarily 

conserved and are also described in D. discoideum (Otto, Wu, Kazgan, Anderson, & Kessin, 

2003). Atg9 mutants in D. discoideum are more permissive to intracellular replication by L. 
pneumophila but showed a strong defect in phagocytosis(Tung et al., 2010). Several T4SS 

effectors have are involved in modulation of host autophagy by L. pneumophila. The RavZ 

effector irreversibly deconjugates Atg8 in mammalian cells (Choy et al., 2012); the LpSpI 

effector disrupts sphingolipid metabolism (Monica Rolando et al., 2016); while the Lpg1137 

effector degrades syntaxin 17, blocking starvation-induced autophagy (Arasaki & Tagaya, 

2017). These are highly evolved metazoan processes that are modulated by specific effectors 

of L. pneumophila, indicating selection and adaptation of the pathogen to multi-cellular 

eukaryotic hosts.

There is discrepancy on whether the LCV is diverted to the macroautophagy pathway or the 

LCV is transformed to resemble the rough ER, without the need for macroautophagy (Otto 

et al., 2004). In D. discoideum macroautophagy has been shown to be dispensable for 

intracellular replication of L. pneumophila (Otto et al., 2004; Monica Rolando et al., 2016). 

Differences in trafficking and interaction with host pathways may be related to the evolution 

of the host. Controlling macroautophagy in higher eukaryotes, which acts a defense 

mechanism against intracellular pathogens, may be more important than in lower eukaryotes 

(Deretic, 2006, 2011).

Modulation of metazoan NF-κB by L. pneumophila

Although the evolutionary origin of NF-κB has yet to be determined (Friedman & Hughes, 

2002; Irazoqui et al., 2010), its role in programmed cell death and innate immunity is likely 

only present in vertebrates (L. Aravind et al., 1999). NF-κB is activated and translocated to 

the nucleus of the human and mouse macrophages during infection of L. pneumophila; and a 

functional T4SS is required (Fig. 1) (Abu-Zant et al., 2007; Losick & Isberg, 2006). Early 

NF-κB activation in L. pneumophila-infected macrophages occurs by TLR5 recognition of 

L. pneumophila flagellin (Fig. 1) (Bartfeld et al., 2009; Thomas R. Hawn et al., 2003). 

Prolonged nuclear translocation of NF-κB is necessary for host cell survival after L. 
pneumophila infection but how that is sustained is unknown (Bartfeld et al., 2009; Losick & 

Isberg, 2006). The LnaB T4SS effector of L. pneumophila activates NF-κB and to a degree 

so do the LidA, SidM, SidA, SidE, SidH, VpdA, LegA12 and LegA5 effectors (Cambronne 

& Roy, 2007; Losick, Haenssler, Moy, & Isberg, 2010; Luo & Isberg, 2004; Machner & 

Isberg, 2006; Murata et al., 2006; VanRheenen, Luo, O’Connor, & Isberg, 2006). But none 

are shown to bind NF-κB. So, is NF-κB activation “accidental”, a side-effect of some other 

function of these proteins, or a direct function that was honed in a yet-to-be-identified 

metazoan host of L. pneumophila? LegK1 of L. pneumophila interacts with IκB, which 

sequesters NF-κB, within mammalian host cells, an ability that could have been selected for 

through intracellular replication in C. elegans due to an IκB homolog (Ge et al., 2009; M. D. 

Jacobs & Harrison, 1998; Losick et al., 2010; Pujol et al., 2001). However, the role of NF-
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κB in programmed cell death is likely only present in vertebrates (L. Aravind et al., 1999). 

Control over NF-κB is crucial to intracellular survival of L. pneumophila, which supports 

the notion that other higher eukaryotes in the environment have likely played an important 

part in additional “training” and further evolution of L. pneumophila to modulate highly 

evolved metazoan processes and infect human macrophages.

Modulation of phagocyte chemotaxis and cell migration by L. pneumophila

Leukocytes and D. discoideum move in a manner known as amoeboid migration 

(Artemenko, Lampert, & Devreotes, 2014). To move, cells rapidly protrude and retract 

pseudopods which are driven by actomyosin contractility, weak cell-substrate interactions, 

and lack of matrix degradation (Artemenko et al., 2014; Lämmermann et al., 2008). In D. 
discoideum, a small family of cAMP receptors drive chemotaxis, whereas in leukocytes, a 

much larger family of chemokine receptors govern chemotaxis (Dormann, Vasiev, & Weijer, 

2000; Vasiev & Weijer, 2003). The core components are remarkably conserved either by 

sequence or functional homology between these leukocytes and D. discoideum (Artemenko 

et al., 2014). For a comprehensive review of the common chemotactic mechanisms between 

D. discoideum and leukocytes see Artemenko et al. (Artemenko et al., 2014).

Chemotaxis is an important but understudied function in the context of L. pneumophila 
infection. How intracellular infection alters host cell migration is unknown and if there is an 

altered phenotype, what bacterial factors are contributory? L. pneumophila inhibits 

aggregation and migration of D. discoideum, and migration of murine macrophages and 

human PMNs, in a T4SS-dependent manner (S. Simon, Wagner, Rothmeier, Muller-

Taubenberger, & Hilbi, 2014). T4SS effector, LegG1, a Ran activator, aides in migration of 

D. discoideum and murine macrophages and in intracellular LCV motility (Rothmeier et al., 

2013; S. Simon et al., 2014). Interestingly, a ΔlegG1 mutant of L. pneumophila inhibits 

migration even more so than WT L. pneumophila (S. Simon et al., 2014). LegG1 also alters 

the directionality of these host cells, preventing forward migration (S. Simon et al., 2014).

Autoinducer LAI-1 of L. pneumophila inhibits chemotaxis and cell migration of D. 
discoideum and murine macrophages (Sylvia Simon et al., 2015). In mammalian cells this is 

IQGAP-1- and Cdc42-dependent but not RhoA or Rac1 (Sylvia Simon et al., 2015). Full 

length homologs for IQGAP-1 have been found in C. elegans and partial protein homologs 

have been identified in D. discoideum (containing only the GAP-related domain that 

mediates binding of Cdc42 and Rac1 but not RhoA or Ras, and the RasGAP carboxyl 

terminus) (Table 2) (Briggs & Sacks, 2003; Faix et al., 2001). Additionally, homologs for 

Rho family, which includes Cdc42 and Rac1, have been identified in D. discoideum, 

indicating that the ability to manipulate mammalian cell migration has likely evolved in L. 
pneumophila within the Protist hosts (Bush, Franek, & Cardelli, 1993; Rivero et al., 1999; 

Vlahou & Rivero, 2006). Remarkably, IQGAP-1 is involved in many other signaling 

pathways and coordinates multiple cellular activities such as chemokine and growth factor-

dependent cell proliferation, adhesion, and phagocytosis. However, its depletion does not 

affect the ability of L. pneumophila to replicate in A549 epithelial cells (M. D. Brown & 

Sacks, 2006; Sylvia Simon et al., 2015; White, Erdemir, & Sacks, 2012). Control of a large 

number of cellular processes through IQGAP-1could be very beneficial to L. pneumophila.
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Alveolar macrophages, lung fibroblasts and epithelial cells secrete IL-8, a potent 

chemotactic and activator of neutrophils. L. pneumophila infection of alveolar macrophages 

and epithelial cells induces IL-8, in an NF-κB-dependent manner (Chang et al., 2004; 

Kunkel, Standiford, Kasahara, & Strieter, 1991; Teruya et al., 2007). Although little is 

known about the role of IL-8 and cell migration during L. pneumophila infection, 

modulation of such highly evolved metazoan processes by L. pneumophila is a clear 

adaptation of the pathogen to more evolved metazoan hosts.

Blocking host cell motility could be beneficial to L. pneumophila to dampen the host 

immune response or to prevent energy expenditure. Alternatively, alterations in host cell 

migration could be an untargeted consequence of interference in other host cell processes 

that interact with host cytoskeletal and/or microtubular components, like formation of the 

LCV and recruitment of vesicles.

Host histone modification by L. pneumophila

Histones are conserved throughout the eukaryotic lineage (Nuñez-Corcuera, Birch, & 

Williams, 2011; Waterborg, 2012). However, the post-translational modification profile of 

H3 varies greatly among species and is more complex in mammals than lower eukaryotes, 

unlike H4 which is less modified and more consistent across species (Garcia et al., 2007). 

One T4SS effector, RomA, contains a eukaryotic SET-domain, which catalyzes lysine 

methylation of histones resulting in the downregulation of host gene expression (M. Rolando 

et al., 2013). RomA specifically targets histone H3 for trimethylation at a residue, K14, not 

previously known to be otherwise methylated in mammals (M. Rolando et al., 2013). It 

could be that posttranslational modification of this residue is more common in Protists or 

lower metazoans than mammals, and provided a greater replication benefit for L. 
pneumophila in the environment. RomA is required for intracellular replication in human 

macrophages and to a greater extent in Acanthamoeba castellanii (M. Rolando et al., 2013). 

RomA is also responsible for methylating non-histone proteins (Schuhmacher et al., 2018). 

Additionally, the T4SS effector, LegAS4, a homolog of RomA, has been shown to methylate 

K14 of H3, as well as K4 and K9 (T. Li et al., 2013; M. Rolando & Buchrieser, 2014; Son et 

al., 2015). Methylation of K9 by LegAS4 increases rDNA transcription (Son et al., 2015). It 

is currently unknown whether these two effectors are working synergistically or 

antagonistically in the host and if that is speciesdependent.

The foundations for epigenetics in histone modification may be conserved but the nuances of 

post-translational modifications vary. However, L. pneumophila modifies histones of may 

have evolved in lower eukaryotes but may not have the same effect in human macrophages, 

or the effect is accidental rather than being shaped by evolution and adaptation. It will be 

interesting to see how differences between these evolutionarily distant hosts change L. 
pneumophila epigenetic modifications.

Conclusion

Many aspects of the ability L. pneumophila to infect human macrophages can be defined by 

its relationship with protists. Although it is more likely that the large arsenal of L. 
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pneumophila effectors evolved through the long term adaptation to various protist hosts 

(Best and Abu Kwaik, 2018), it is unlikely that these lower eukaryotes could have provided 

all the training necessary for successful evolution of L. pneumophila to evade the more 

evolved innate defense processes and proliferate in metazoan macrophages. Many findings 

point towards a putative role for metazoans in the evolution of L. pneumophila and its ability 

to replicate in macrophages Effector modulation and control of NF-κB (Abu-Zant 2007, 

Losick 2006, bartfeld 2009, Ge 2009), including the ability to dampen TLR2 signaling 

(Mallama 2017), and the upregulation of anti-apoptotic genes regulated by NF-κB (Banga et 

al., 2007; Abu-Zant et al., 2007).

Difficulty in probing intracellular L. pneumophila within eukaryotes in environmental 

samples and difficulty identifying the putative eukaryotic hosts has been the major limitation 

in confirming a larger natural reservoir for L. pneumophila. Higher eukaryotes present 

greater challenge for L. pneumophila due to their more sophisticated innate immune 

processes. It could be that environmental metazoans serve only as reservoirs for L. 
pneumophila, where intracellular replication is limited but persistence or transient infection 

occurs. This could still allow for selective pressure and evolution of defense mechanism in 

L. pneumophila against process that are more evolved to what is found in macrophages.

Metazoans in the aquatic environment are unavoidable by L. pneumophila, which has the 

propensity to infect evolutionarily distant hosts. L. pneumophila manipulate many cellular 

processes that are highly conserved through evolution of eukaryotes, such as the endosomal-

lysosomal degradation pathway, histone methylation, cell migration, prenylation, and the 

ubiquitin-proteasome system. However, it is highly unlikely that evolution of L. 
pneumophila from a Protists parasite into infection of human macrophages was simply due 

the accidental aerosols transmission after human industrialization and manipulation of the 

aquatic environment within the past ~100 years. However, L. pneumophila modulates 

various highly evolved metazoan processes absent from protist hosts. These include TLRs, 

mTOR, NF-κB, inflammasomes, caspases, and apoptotic and anti-apoptotic pathways. 

Therefore, we hypothesize that some lower metazoan species are likely to be natural hosts 

for L. pneumophila and these have played a key role in further evolution to enable L. 
pneumophila to manipulate numerous highly evolved metazoan-specific innate defense 

processes in order to proliferate within higher metazoan cells human macrophages and cause 

pneumonia.
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Figure 1. 
Manipulation of evolutionarily conserved and metazoan-specific innate defense processes by 

L. pneumophila. The endosomal-lysosomal degradation pathway, which is effectively 

evaded by L. pneumophila in macrophages and Protists, is highly conserved through 

evolution. The VipD effector of L. pneumophila binds the host Rab5 to prevent vacuolar 

maturation and acidification. Extracellular traps (ETs) of mitochondrial DNA in D. 
discoideum requires NOX and ROS; whereas METosis in human macrophages consists of 

mitochondrial and nuclear DNA and is not ROS-dependent. A) In human macrophages but 

not Protist hosts, TLR5 engagement with bacterial flagellin triggers early activation of NF-

κB. The LegK1 effector binds IκB allowing for NF-κB activation. TLR2 signaling is 

mediated by the bacterial LPS but is dampened by the T2SS. TLR4 polymorphisms 

contribute to disease phenotypes in human, but the role of TLR4 in humans is unclear. 

Autophagy pathways are activated in human macrophages through multiple mechanisms, 

such as the VipD effector releasing cytochrome c from the mitochondria. However, the SidF 

effector interacts with pro-apopotic members of the Bcl2 family to block cell death. B) In D. 
discoideum LegK2 prevents vATPase from localizing to the LCV, which blocks 

acidification, but whether this also occurs in human macrophages is unknown. The T4SS 

effectors LepA and LepB contribute to non-lytic release of L. pneumophila in amoebae but 

not macrophages. D. discoideum contains two TIR-domain proteins that are involved in host 

defense against L. pneumophila, but their function is unknown.
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Table 1.

Legionella pneumophila-permissive metazoan hosts.

Human alveolar macrophages (Nash, Libby, & Horwitz, 1984)

Human monocyte derived macrophages (Horwitz & Silverstein, 1980)

Mouse macrophages permissive (A/J) (Yamamoto et al., 1988)

Rat alveolar epithelial and macrophages (Mody et al., 1993)

Human macrophage cell lines (Kunishima, Takemura, Yamamoto, Kanemitsu, & Shimada, 2000; Neumeister, Faigle, 
Lauber, Northoff, & Wesselborg, 2002; Pearlman, Jiwa, Engleberg, & Eisenstein, 1988; 
Weissgerber, Faigle, Northoff, & Neumeister, 2003)

Mouse macrophage cell lines (Hoffmann et al., 2013)

A549 (human lung epithelial) (Kunishima et al., 2000; Maruta et al., 1998)

MRC-5 (human lung fibroblast) (Daisy, Benson, McKitrick, & Friedman, 1981; Oldham & Rodgers, 1985)

HEK293 (human embryonic kidney) (Habyarimana, Price, Santic, Al-Khodor, & Kwaik, 2010)

HeLa (human cervical epithelial) (Daisy et al., 1981; Dreyfus, 1987; R. A. Garduno, Quinn, & Hoffman, 1998)

Hep-2 (CCL-23) (human epithelial, HeLa-derived) (Daisy et al., 1981; Oldham & Rodgers, 1985)

WI-26 (CCL-95.1) (human epithelial-like) (Stone & Abu Kwaik, 1998)

HepG2 (human liver epithelial) Our unpublished data

CHO (Chinese hamster ovary, epithelial) (Robinson & Roy, 2006)

L929 (mouse adipose fibroblast) (Fernandez, Lee, Haldane, Sumarah, & Rozee, 1989)

McCoy (mouse fibroblast) (Daisy et al., 1981)

Vero (Cercopithecus aethiops kidney epithelial) (Oldham & Rodgers, 1985)

Macaca nemestrina alveolar macrophages (R. F. Jacobs, Locksley, Wilson, Haas, & Klebanoff, 1984)

Jurkat (human T lymphocyte) (Neumeister et al., 2002; Weissgerber et al., 2003)

Guinea Pig (Berendt, Young, Allen, & Knutsen, 1980)

Drosophila melanogaster (Dorer et al., 2006)

Leiostomus xantrurus macrophages (Weeks, Sommer, & Dalton, 1988)

Caenorhabditis elegans (Brassinga et al., 2010; Komura, Yasui, Miyamoto, & Nishikawa, 2010)
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Table 2.

Human proteins involved in the immune response that are modulated by L. pneumophila and their homologs in 

Caenorhabditis elegans and Dictyostelium discoideum.

Humans C. elegans D. discoideum

NF-κB

IκB IκB-1

TRAF1 TRF-1

IRAK PIK-1

Caspase-9 CED-3

Apaf-1 CED-4

NLRC4 CED-4

Bcl2 CED-9

BID, BIM EGL-1

IAP (Birc5) BIR-1, BIR-2

TLRs TOL-1 TirA/TirB

Cell Microbiol. Author manuscript; available in PMC 2020 January 01.


	Summary
	Environmental hosts of L. pneumophila
	Phagotrophy by protists versus phagocytosis
	The primitive versus the sophisticated innate response of protists and macrophages
	Modulation of Toll-like receptors signaling, a late evolutionary process, by L. pneumophila
	Modulation of metazoan Caspases, apoptotic/anti-apoptotic pathways, and the NLRC4 inflammasome by L. pneumophila
	Modulation of metazoan NF-κB by L. pneumophila
	Modulation of phagocyte chemotaxis and cell migration by L. pneumophila
	Host histone modification by L. pneumophila
	Conclusion
	References
	Figure 1.
	Table 1.
	Table 2.

