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Abstract
Trichomonas vaginalis is a sexually transmitted, eukaryotic 
parasite that causes trichomoniasis, the most common non-
viral, sexually transmitted disease in the USA and worldwide. 
Little is known about the molecular mechanisms involved in 
the host immune response to this widespread parasite. Here 
we report that T. vaginalis induces NLRP3 inflammasome ac-
tivation in human macrophages, leading to caspase-1 acti-
vation and the processing of pro-IL-1β to the mature and 
bioactive form of the cytokine. Using inhibitor-based ap-
proaches, we show that NLRP3 activation by T. vaginalis in-
volves host cell detection of extracellular ATP via P2X7 recep-
tors and potassium efflux. In addition, our data reveal that T. 
vaginalis inflammasome activation induces macrophage in-
flammatory cell death by pyroptosis, known to occur via cas-
pase-1 cleavage of the gasdermin D protein, which assem-
bles to form pores in the host cell membrane. We found that 
T. vaginalis-induced cytolysis of macrophages is attenuated 

in gasdermin D knockout cells. Lastly, in a murine challenge 
model, we detected IL-1β production in vaginal fluids in re-
sponse to T. vaginalis infection in vivo. Together, our findings 
mechanistically dissect how T. vaginalis contributes to the 
production of the proinflammatory IL-1β cytokine and un-
cover pyroptosis as a mechanism by which the parasite can 
trigger host macrophage cell death.

© 2018 The Author(s) 
Published by S. Karger AG, Basel

Introduction

Trichomonas vaginalis is a eukaryotic parasite that in-
fects the urogenital tract of women and men. The parasite 
is transmitted through sexual intercourse and, after hav-
ing colonized its human host, causes the disease tricho-
moniasis, which is the most common nonviral, sexually 
transmitted infection (STI) in the USA [1] and worldwide 
[2]. While T. vaginalis STI can be asymptomatic in many 
individuals [3], others experience inflammation of the va-
gina, cervix, or prostate [4]. The inflammatory response 
mounted against the parasite is predicted to fuel multiple 
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adverse health effects associated with T. vaginalis infec-
tion. These include a higher incidence of premature births 
[5], an increased risk of cervical [6, 7] or aggressive pros-
tate cancer [8, 9], and an increased risk of acquiring [10] 
and potentially transmitting the human immunodefi-
ciency virus (HIV) to a sexual partner [11]. 

Despite the serious public health threat posed by T. 
vaginalis, limited knowledge exists regarding the molecu-
lar mechanisms by which T. vaginalis elicits inflamma-
tion. As an extracellular parasite, T. vaginalis survives in 
the human body via uptake of nutrients from host cells to 
which it can adhere and/or phagocytose and lyse, includ-
ing vaginal or prostate epithelial cells [12], and red or 
white blood cells [13]. Currently, human clinical data re-
garding the specific innate immune response to T. vagi-
nalis infections are scarce, and existing knowledge large-
ly stems from human coinfection studies or from in vitro 
experiments. Cauci and Culhane [14] reported a signifi-
cant increase in vaginal IL-1β levels in pregnant women 
who had bacterial vaginosis and a T. vaginalis coinfection 
compared to pregnant women with only bacterial vagino-
sis. Indeed, inflammatory profiling of human monocytes 
and monocyte-derived macrophages in response to T. 
vaginalis infection identified IL-1β as an upregulated cy-
tokine [15–17]. However, the cellular mechanisms and 
requirements for the production of this important im-
mune response factor during macrophage and T. vagina-
lis encounters are unknown. Here we delineate the cellu-
lar pathway that is activated in macrophages by T. vagi-
nalis leading to the maturation and release of IL-1β.

Inflammasomes are multimeric cytosolic complexes 
that sense the presence of pathogens or changes in cellular 
homeostasis and activate commensurate innate immune 
responses. The inflammasome complex is defined by the 
responding sensor protein, which has characteristic 
structural domains and includes the nucleotide-binding 
oligomerization domain-like receptors (NLRs) NLRP1, 
NLRP3, and NLRC4, as well as the AIM2 and pyrin pro-
teins [18]. Inflammasome assembly is initiated by NLR 
recognition of pathogen-associated molecular patterns 
(PAMPs) or endogenous danger-associated molecular 
patterns (DAMPs) [18]. Upon detecting these stimuli, the 
sensor proteins oligomerize and associate with the adap-
tor protein ASC in a multiprotein complex that recruits 
pro-caspase-1 and promotes its autoproteolytic process-
ing [19, 20]. Mature protease caspase-1 then cleaves the 
pro-forms of inflammatory cytokines IL-1β and IL-18 to 
generate the mature bioactive forms capable of binding 
their cognate receptors and initiating cell signaling [21–
27]. Two major outcomes of inflammasome activation 

are processing and release of mature IL-1β and induction 
of a rapid cell death termed pyroptosis [28, 29].

In this study, we show that T. vaginalis activates NLRP3 
inflammasomes in human macrophages, leading to bio-
active IL-1β production and pyroptotic cell death. The 
parasite-driven NLRP3 inflammasome activation in-
volves sensing of ATP as a DAMP and potassium efflux, 
and IL-1β release in response to T. vaginalis can be de-
tected in vivo in a mouse vaginal challenge study. Thus, 
T. vaginalis activation of NLRP3 inflammasomes leads 
not only to a strong macrophage proinflammatory re-
sponse against the parasite, consistent with recent find-
ings in prostate epithelial cells [30], but also to elimina-
tion of the macrophages in the process. The balance of 
innate immune detection and inflammatory response is 
likely to influence T. vaginalis colonization and patho-
genesis differentially depending on the magnitude and 
stage of infection.

Materials and Methods

Growth of Cells and Culture
T. vaginalis strains RU393 (New York, NY, USA; ATCC 50142 

[31]) and MSA1132 (Mt. Dora, FL, USA [12]) were both obtained 
from Patricia Johnson’s Laboratory at UCLA. Parasites were treat-
ed with 50 μg/mL chloramphenicol and 5 μg/mL tetracycline for 6 
days and then frozen down as stocks. The parasites were thawed 
from these stocks and passaged daily for less than 2 weeks, as pre-
viously described [32], in the continued presence of chloramphen-
icol and tetracycline. Human THP-1 monocytes (ATCC TIB-202) 
were cultured in RPMI medium supplemented with 10% fetal bo-
vine serum (FBS), 0.05 mM 2-mercaptoethanol, 0.2% D-glucose, 10 
mM HEPES, and 1 mM sodium pyruvate. The THP-1 monocytes 
were differentiated to macrophages by treating the cells with 25 nM 
PMA (phorbol 12-myristate 13-acetate; Thermo Fisher Scientific) 
for 24 h.

THP-1 Cas9 Cell Line
A Cas9 stable cell line was generated by transducing THP-1 

cells with Lenti-Cas9-Blast lentivirus (Addgene 52962-LV). Spin-
fection was performed by spinning down THP-1 cells with viral 
particles supplemented with 10 μg/mL polybrene at 1,000 g, 32  ° C, 
for 1 h. After 48 h, cells were selected for stable expression of Strep-
tococcus pyogenes Cas9 using blasticidin (10 μg/mL). Ten days after 
selection, the cells were harvested and Cas9 expression was con-
firmed by immunoblotting and qPCR.

Cloning of GSDMD sgRNAs
Two sgRNA sequences previously shown to successfully target 

the gasdermin D (GSDMD) gene were cloned into the lentiGuide-
Puro vector (Addgene; Plasmid #52963) as described previously 
[33]. The sgRNA sequences were as follows: GSDMD KO1 
5′-TGAGTGTGGACCCTAACACC-3′ [from 34] and GSDMD 
KO2 5′-CTTGCTTTAGACGTGCAGCG-3′ [from 33; GeCKOv2 
Library, identifier #HGLibA_20413].
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GSDMD Knockout Cell Lines
Lentivirus was packaged in HEK 293T cells (ATCC CRL-3216) 

using the Fugene HD transfection reagent (Promega) and 4 μg of 
the gasdermin D sgRNA-lentiGuide-Puro construct, 4 μg of the 
packaging plasmid psPAX2 (Addgene; Plasmid #12260), and 4 μg 
of the VSV-G envelope expressing plasmid pMD2-G (Addgene; 
Plasmid #12259). THP-1 Cas9 cells (described above) were spin-
fected with 10 μg/mL polybrene and viral particles for 1 h at 1,000 g,  
32  ° C. After 48 h, cells were selected for stable expression of the 
sgRNAs using puromycin (1 μg/mL). After 10 days of selection, 
cells were cloned by limiting dilution. Two clonal cell lines (KO1 
and KO2), one from each sgRNA, were harvested and gasdermin 
D knockout was confirmed by immunoblotting assays and PCR 
analysis.

T. vaginalis Co-Culture Experiments
A total of 1 × 105 THP-1 cells were seeded and differentiated in 

96-well plates. T. vaginalis RU393 parasites were spun down at 
2,061 g, washed once, and then resuspended in RPMI + 2% heat-
inactivated FBS. Serial dilutions were performed to attain the de-
sired T. vaginalis-to-macrophage ratios. Medium was aspirated 
from the THP-1 macrophages and 100 μL of T. vaginalis cell sus-
pension added to each well. For inhibitor or chemical treatment 
experiments, parasites were premixed with the vehicle or test com-
pound and then added to the macrophages.

Cytokine and Caspase-1 Protein Analysis
IL-1β cytokine levels and caspase-1 protein levels present in cell 

culture supernatants were quantified using the DuoSet IL-1β ELI-
SA kit and the Quantikine Human Caspase-1/ICE ELISA Kit (both 
from R&D Systems).

IL-1β Signaling Assay
HEK-BlueTM IL-1β Cells (InvivoGen) were purchased and 

grown per the company’s specifications. A total of 50,000 IL-1β 
Sensor Cells were seeded per well of a 96-well plate; 50 μL of cell 
supernatant from each experimental sample or a recombinant hu-
man IL-1β (InvivoGen) dilution was added to the IL-1β Sensor 
Cells and incubated at 37  ° C, 5% CO2, for 18 h. Secreted alkaline 
phosphatase activity was assessed by adding 50 μL of the HEK-Blue 
IL-1β reporter cell supernatants onto 150 μL of QUANTI-BlueTM 
reagent (InvivoGen) and measuring the optical density at 620 nm 
using an EnSpire Plate Reader (PerkinElmer). Background levels 
from THP-1 only or THP-1 cells treated with vehicle were sub-
tracted from all values to report IL-1β signaling levels above back-
ground levels.

Caspase-1 Activity Assay
Caspase-1 activity was assessed using the Caspase-1/ICE Colo-

rimetric Assay Kit (BioVision). A total of 2 × 106 THP-1 macro-
phages were seeded and differentiated in 6-well plates. T. vaginalis 
RU393 parasites were spun down at 2,061 g, washed once, and re-
suspended in RPMI + 2% heat-inactivated FBS; 1.5 mL of parasite 
suspension were added to each well. After a 2.5-h co-incubation, 
the cell supernatants were removed and the cells lysed with cell 
lysis buffer. Caspase-1 activity was assessed per the manufacturer’s 
specifications in whole cell lysates normalized by equal protein 
amounts.

Reagents and Inhibitors
Escherichia coli LPS, ATP, KCl, NaCl, and adenosine 5′-tri-

phosphate, periodate oxidized sodium salt (oxATP) were pur-
chased from Sigma. The Ac-YVAD-CMK caspase-1 peptide in-
hibitor was purchased from Enzo, and the NLRP3/AIM2 inhibitor 
CRID3 was purchased from Tocris.

Filter Experiment Assays
Co-incubation experiments were performed in the presence of 

a Millicell®-96 Cell Culture Insert Plate PCF with a pore size of 
0.4 μm (Millipore). For contact conditions, T. vaginalis cell sus-
pensions were placed under the filter to allow direct interaction 
between T. vaginalis and THP-1 cells. For filter conditions that 
prevented physical contact, T. vaginalis was placed on top of the 
filter.

Lactate Dehydrogenase Cytolysis Assays
Cytolysis was assessed by assaying for lactate dehydrogenase 

(LDH) release from cells using the CytoTox-ONETM Homoge-
neous Membrane Integrity Assay Kit (Promega). The manufac-
turer’s specifications were used to perform the assays and calculate 
the percent cytolysis compared to 100% lysis controls. For cytoly-
sis analysis of gasdermin D knockout cell lines, cell lysis was com-
pared to THP-1 Cas9 parental cells (THP-1 wild type).

Immunoblot Analysis
A total of 2 × 106 THP-1 macrophages were seeded and differ-

entiated per well of a 6-well plate. After co-incubation with T. vagi
nalis, the cells were washed 2 times with PBS and lysed with RIPA 
Buffer (Thermo Fisher Scientific) containing HALTTM protease in-
hibitor cocktail. Samples were separated by SDS-PAGE, immu-
noblotted, and visualized with SuperSignal® WestPico Chemilu-
minescent Substrate (Thermo Fisher Scientific) and CL-XPo-
sureTM Film (Thermo Fisher Scientific). The following antibodies 
were used for immunoblotting: anti-IL-1β (AF-201-NA; Cell Sig-
naling), anti-β-actin (A5316; Sigma), anti-gasdermin D (20770-1-
AP; Proteintech), anti-goat IgG HRP-conjugated (HAF017; R&D), 
and ECL Amersham anti-mouse IgG HRP-linked (NA931; GE 
Healthcare).

Animal Experiments
Six-week-old female C57BL/6 mice were purchased from The 

Jackson Laboratory. The mice were pretreated by daily intraperi-
toneal (i.p.) injections with 100 μL of 2 mg/mL Dexamethasone 
Sodium Phosphate Injection, USP (West-Ward Pharmaceuticals) 
for 4 days prior to infection. The day before infection, the mice 
were also injected i.p. with 100 μL of 5 mg/mL β-estradiol resus-
pended in sesame oil (both from Sigma). For animal infections,  
T. vaginalis MSA1132 strain was washed twice and resuspended  
in sterile DPBS (Dulbecco’s phosphate-buffered saline; Corning). 
A total of 6 × 106 T. vaginalis in a final volume of 10–15 μL were 
used to infect the mice vaginally. Three days after infection, vaginal 
lavages were collected by washing the vaginal lumen 4 times with 
50 μL of DPBS (200 μL total) using Gel-Loading pipet tips (Thermo 
Fisher Scientific).

Statistical Analysis
For the in vitro experiments, statistical significance was calcu-

lated using a Student t test. For IL-1β detection in the animal stud-
ies, Grubbs’ test was performed to test for the presence of experi-
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mental outliers. One cytokine value from the uninfected mouse 
group (777.768 pg/mL) and 1 value from the T. vaginalis-infected 
group (266.183 pg/mL) were identified as outliers. A Mann-Whit-
ney test was used to test for statistical significance across the re-
maining samples. p < 0.05 was considered as statistically signifi-
cant.

Results

T. vaginalis Stimulates Bioactive IL-1β Secretion in a 
Caspase-1-Dependent Manner
The NLRP3 inflammasome is highly expressed and 

best characterized in cells of the myeloid cell lineage in-
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Fig. 1. THP-1 exposure to Trichomonas vaginalis leads to bioactive 
IL-1β production via caspase-1 activity. THP-1 macrophages were 
incubated with T. vaginalis using different multiplicities of infec-
tion (MOIs; T. vaginalis:host cell) for 4 h unless otherwise stated. 
As a positive control for inflammasome activation, THP-1 cells 
were stimulated with 10 ng/mL LPS + 5 mM ATP. To test for the 
presence of processed IL-1β, experiment supernatants were placed 
on HEK-Blue IL-1β reporter cells. Bioactive IL-1β binds to the IL-1 
receptor on IL-1β reporter cells, activating production of a report-
er enzyme. Reporter enzyme activity was quantified spectrophoto-
metrically and is proportional to IL-1β signaling activity, shown as 
relative units (RU) after subtracting background readings from su-
pernatants of THP-1 cells alone or THP-1 cells treated with vehicle 
control. As a positive control, recombinant bioactive IL-1β (rIL-
1β) was added to the HEK-Blue IL-1β reporter cells. a IL-1β in cell 
supernatants was measured by ELISA. b Bioactive IL-1β was de-
tected using the HEK-Blue IL-1β reporter cells. c Immunoblot de-
tection of the IL-1β cleavage product (17 kDa; arrowhead) in whole 

cell lysates of THP-1 macrophages exposed to T. vaginalis for 4 h 
at an MOI of 1. Full-length pro-IL-1β (31 kDa) could be detected 
in both samples. Actin loading control and molecular weight 
markers in kilodalton are also shown. d THP-1 macrophages were 
exposed to T. vaginalis for 2.5 h. The amount of caspase-1 activity 
was assayed by measuring cleavage of the p-nitroanilide-labeled 
YVAD peptide (YVAD-pNA) spectrophotometrically. The fold 
change relative to THP-1 cells alone is shown. e Amounts of cas-
pase-1 protein released into cell supernatants as quantified by ELI-
SA. f, g THP-1 cells were co-incubated with T. vaginalis in the 
presence of the caspase-1 peptide inhibitor Ac-YCAD-CMK or  
vehicle control. Levels of bioactive IL-1β were detected using the 
IL-1β reporter cells (f) and IL-1β protein levels were detected by 
ELISA (g). For each experiment, samples were assayed at least  
in triplicate. Representative results from 2 (d, e) or 3 (a–c, f, g)  
independent experiments are shown. The graphs show the mean 
with standard deviations. * p < 0.05, ** p < 0.01, compared to THP-
1 cells (a, b, d, e) or vehicle treatment at that MOI (f, g).
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cluding macrophages and dendritic cells [35, 36]. As mac-
rophages are among the most abundant immune effector 
cells in the female reproductive tract [37], we investigated 
whether T. vaginalis activates NLRP3 inflammasomes in 
human macrophages. For our studies, we used the human 
THP-1 monocyte-like cell line, which is differentiated to 
macrophages using PMA treatment. NLRP3 inflamma-
some activation involves two signals. Signal 1, known as 
the priming step, occurs after receptor engagement, and 
signal transduction leads to NF-κB activation, which in 
turn stimulates increased transcription of the genes en-
coding pro-IL-1β and NLRP3 [38–40]. Signal 2, the acti-
vation step, is initiated by diverse microbial PAMPs and 
host cell DAMPs which lead to the physical assembly of 
the NLPR3 inflammasome complex. Examples of NLRP3 
signal 2 activators include bacterial surface proteins, mi-
crobial pore-forming toxins, and viral RNA, as well as 
host cell DAMPs such as extracellular ATP, amyloid-β, 
and monosodium urate crystals [41, 42].

We found a dose-dependent increase in IL-1β secre-
tion from THP-1 macrophages at increasing multiplici-
ties of infection (MOIs) of T. vaginalis (Fig. 1a); LPS and 
ATP, two well-described NLRP3 inflammasome inducers 
that provide signal 1 and signal 2, respectively [43], served 
as positive controls. While IL-1β protein has been detect-
ed by ELISA in the monocyte/macrophage cytokine re-
sponse to T. vaginalis exposure [15–17], it was unclear if 
this represented the pro-form of IL-1β released secondary 
to parasite-induced cell lysis or whether it was the pro-

cessed and bioactive form of the inflammatory cytokine. 
To test the bioactivity of IL-1β generated upon THP-1 
macrophage exposure to T. vaginalis, we added cell su-
pernatants from the co-culture experiments to HEK-Blue 
IL-1β Sensor Cells (InvivoGen). These reporter cells ex-
press IL-1R (IL-1 receptor) to initiate cell signaling and 
trigger the production of a SEAP reporter enzyme that 
can convert a colorimetric substrate to provide a readout 
for IL-1β signaling. With recombinant bioactive IL-1β 
serving as a positive control for IL-1β signaling activity, 
Figure 1b shows that T. vaginalis co-incubation with 
THP-1 macrophages led to processing of pro-IL-1β and 
generation of bioactive IL-1β capable of IL-1R-mediated 
cell signaling. LPS and ATP served as positive controls for 
NLRP3 inflammasome activation in the THP-1 cells. The 
immunoblot analysis in Figure 1c confirms detection of 
the 17-kDa bioactive IL-1β cleavage product in whole cell 
lysates from THP-1 macrophages exposed to T. vaginalis, 
which was not detected in the uninfected control. Con-
versely, the full-length pro-IL-1β protein, which has a 
molecular weight of 31 kDa but migrates with an appar-
ent molecular weight of ∼36 kDa, was detected in both 
uninfected THP-1 macrophages and macrophages ex-
posed to T. vaginalis. Therefore, macrophage co-incuba-
tion with T. vaginalis leads to active production of pro-
cessed and bioactive IL-1β.

Canonical inflammasome assembly and activation 
leads to the autoproteolytic processing of the proenzyme 
form of caspase-1 (45 kDa) to its active form composed 
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Fig. 2. Trichomonas vaginalis activates NLRP3 inflammasomes in 
THP-1 macrophages. THP-1 macrophages were exposed to T. vagi- 
nalis at a multiplicity of infection of 5 (T. vaginalis:host) for 4 h in 
the presence of CRID3 (a, b), an NLRP3/AIM2 inflammasome in-
hibitor, or exogenous KCl and NaCl (c, d). Levels of bioactive IL-
1β were detected using the IL-1β reporter cells (a, c) and total IL-1β 

protein levels were detected by ELISA (b, d). A representative re-
sult from 3 independent experiments is shown. The graphs show 
the mean with standard deviations. * p < 0.05, ** p < 0.01, com-
pared to THP-1 cells co-incubated with T. vaginalis vehicle treat-
ment.
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of a heterodimeric tetramer of the p20 and p10 subunits 
[44]. To quantify caspase-1 activity, we assayed cleavage 
of the chromogenic peptide YVAD-pNA. After 2.5-h co-
incubation with T. vaginalis, we detected a ∼4-fold in-
crease in caspase-1 activity from THP-1 cells at an MOI 
of 5 and a ∼3-fold increase at an MOI of 1 (Fig. 1d). Cas-
pase-1 can be released into cell supernatants after inflam-
masome activation [45], and we found a dose-dependent 
release of high amounts of caspase-1 in THP-1 superna-
tants following exposure to increasing MOIs of T. vagina-
lis (Fig. 1e). Treatment with the specific Ac-YVAD-CMK 
peptide inhibitor of caspase-1 markedly ablated bioactive 
IL-1β production (Fig.  1f), a result corroborated when 
total IL-1β was quantified by ELISA (Fig. 1g). Together, 
these results indicate that upon exposure to T. vaginalis, 
caspase-1 activity is increased in THP-1 cells and leads to 
the processing of pro-IL-1β to bioactive IL-1β.

T. vaginalis Activates NLRP3 Inflammasomes
Multiple innate immune sensor proteins can be as-

sembled to form different types of inflammasome com-
plexes [18]. Many inflammasomes are activated by bac-
terial components such as LPS or flagellin [46] that are 
not found in the eukaryotic T. vaginalis parasite. NLRP3 
inflammasomes were strong molecular candidates for 
the observed generation of bioactive IL-1β, since they 
can also be activated in response to host cell perturba-
tions and by sensing DAMPs potentially released during 
cellular injury inflicted by T. vaginalis. To investigate 
the role of NLRP3 as the sensor protein driving IL-1β 
processing, we co-incubated T. vaginalis with THP-1 
cells in the presence or absence of CRID3, which inhib-
its ASC oligomerization to block both NLRP3 and AIM2 
inflammasomes [47]. CRID3 treatment completely ab-
lated bioactive IL-1β signaling from THP-1 macro-
phages exposed to T. vaginalis at an MOI of 5 or 10 
(Fig. 2a); similar reductions in total IL-1β detected by 
ELISA were observed at each MOI (Fig. 2b). A variety of 
ligands or cell perturbations can serve as upstream acti-
vators of NLRP3 inflammasome activation; however, 
the precise molecular mechanism shared by these vari-
ous pathways to result in NLRP3 inflammasome activa-
tion is still a subject of active investigation. K+ efflux has 
been identified as a common signaling event in many 
cases of NLRP3 inflammasome activation [41, 48, 49]. 
Therefore, we compared the levels of IL-1β signaling in 
THP-1 cells co-incubated with T. vaginalis in the pres-
ence or absence of added extracellular KCl to counteract 
the effects of K+ efflux [49] and observed a dose-depen-
dent inhibition of IL-1β signaling (Fig. 2c) and total IL-

1β protein levels (Fig. 2d). As a control for addition of 
extracellular ions, exogenous addition of NaCl only 
slightly modified IL-1β signaling (Fig. 2c) and had no 
effect on IL-1β protein levels (Fig. 2d). Together these 
results indicate that T. vaginalis induction of IL-1β se-
cretion in THP-1 macrophages is mediated through 
NLRP3 inflammasome activation in a scenario where  
K+ efflux is required.

ATP-P2X7 Receptor Signaling and Macrophage 
Contact Contributes to T. vaginalis-Induced 
Inflammasome Activation
Extracellular ATP serves as a DAMP by binding to cell 

surface P2X7 receptors that provoke K+ efflux from the 
cell and subsequent NLRP3 inflammasome activation 
[50–55]. To test whether ATP plays a role in inflamma-
some activation by T. vaginalis, we co-incubated the par-
asites with THP-1 macrophages in the presence of ox-
ATP, which covalently and irreversibly binds to P2 fam-
ily receptors (P2XR), inhibiting their ATP-mediated ion 
transport and ATP-dependent IL-1β release [54, 56].  
oxATP treatment led to a dose-dependent reduction in 
IL-1β signaling and IL-1β protein levels in THP-1 macro- 
phages exposed to T. vaginalis (Fig.  3a, b). To further 
probe P2X7 receptor involvement, we used glyburide 
(also known as glibenclamide), which inhibits P2X7 re-
ceptors and is also a broad-spectrum inhibitor of ATP-
binding cassette transporters. As a result of blocking K+ 
efflux, glyburide inhibits NLRP3 inflammasomes [57]. 
Glyburide treatment completely ablated the production 
of bioactive IL-1β in T. vaginalis-infected THP-1 macro-
phages (Fig. 3c), and more than halved the amount of IL-
1β protein detected by ELISA (Fig. 3d). Together, these 
results indicate that exposure of macrophages to T. vagi-
nalis leads to inflammasome activation via P2X7 recep-
tor-mediated K+ efflux in response to extracellular ATP.

To determine if direct contact between the parasite 
and the THP-1 cells was necessary to induce inflamma-
some activation, we placed a filter in between the macro-
phages and T. vaginalis, which allows soluble materials to 
pass through but prohibits direct contact between the 
parasites and the THP-1 macrophages. In conditions 
where T. vaginalis was placed above the filter (no direct 
contact), the secretion and processing of IL-1β were 
markedly reduced (Fig. 3e, f). Thus, physical contact of 
the host macrophages with the parasites is critical for 
sensing either an unknown PAMP on T. vaginalis or, 
more likely, a DAMP (e.g., ATP) arising from the host cell 
generated upon cell lysis that serves as a signal for inflam-
masome activation.
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T. vaginalis Inflammasome Activation Leads to  
THP-1 Macrophage Cell Death by Pyroptosis
In addition to IL-1β secretion, NLRP3 inflammasome 

activation can lead to an inflammatory cell death called 
pyroptosis. Cell lysis occurs after the mature caspase-1 
protease has cleaved the gasdermin D protein [28], which 
then oligomerizes [58] and forms pores in the plasma 
membrane [29], prompting cell swelling and membrane 
rupture. Pyroptosis is recognized as a distinct form of cell 
death in large part due to its fast nature (compared to 
apoptosis) and its accompanying “fiery” inflammatory 
response [59]. Pyroptosis is commonly detected by mon-
itoring downstream membrane damage that leads to re-

lease of intracellular proteins like LDH. Of note, LDH 
assays have been the standard assay used by many inves-
tigators to monitor T. vaginalis lysis of vaginal epithelial 
cells and prostate epithelial cells [12]. To test how T. va
ginalis-induced inflammasome activation may influence 
macrophage pyroptosis, we examined the effect of in-
flammasome inhibitors on macrophage LDH release fol-
lowing infection with the parasite. Co-incubation of cells 
in the presence the caspase-1 inhibitor Ac-YVAD-CMK 
led to a significant reduction in host cell lysis at each MOI 
(Fig. 4a). Similar reductions in THP-1 macrophage lysis 
by T. vaginalis were also obtained with the NLRP3/AIM2 
inflammasome inhibitor CRID3 (Fig. 4b). A complete re-
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Fig. 3. Response to extracellular ATP via P2X7 receptor signaling 
and physical contact contributes to Trichomonas vaginalis inflam-
masome activation. THP-1 macrophages were exposed to T. vagi-
nalis at a multiplicity of infection (MOI) of 5 (T. vaginalis:host) for 
4 h in the presence of oxidized ATP (oxATP; a, b) or glyburide (c, 
d), an ATP-gated P2X7 receptor inhibitor. e, f A 0.4-μm membrane 
filter that allowed soluble materials to flow through but prevented 
contact was placed in between THP-1 macrophages and T. vagina-
lis in the “above filter” condition, or parasites were placed below 
the filter to allow contact between T. vaginalis and macrophages 

(“contact” condition). THP-1 cells were treated with 10 ng/mL  
LPS + 5 mM ATP as a positive control for NLRP3 activation. Levels 
of bioactive IL-1β were detected using the IL-1β reporter cells (a, 
c, e) and total IL-1β protein levels were detected by ELISA (b, d, 
f). Representative results from 3 independent experiments are 
shown in a–d, and from 2 independent experiments in e and f. The 
graphs show the mean with standard deviations. a–d ** p < 0.01 
compared to THP-1 cells exposed to T. vaginalis in the presence of 
vehicle control. e, f * p < 0.05, ** p < 0.01, compared to the contact 
with T. vaginalis condition at that MOI.
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duction in cell death is not unexpected, as inhibition of 
pyroptosis can activate apoptosis [60], and caspase-1 pep-
tide inhibitors may yield incomplete inhibition of LDH 
release after inflammasome activation [20, 61]. There-
fore, to further investigate the induction of pyroptosis by 
T. vaginalis at a molecular level, we generated two inde-
pendent knockouts of gasdermin D in THP-1 macro-
phages using CRISPR-Cas9 as confirmed by Western blot 
(Fig. 4c) and PCR evidence of genome editing. When the 
gasdermin D knockout macrophages were exposed to T. 
vaginalis, we observed a 40–60% reduction in LDH re-
lease (cell death) compared to wild-type THP-1 cells 
(Fig. 4d). These results reveal that T. vaginalis can kill host 
macrophages through pyroptosis.

As a pilot study to determine if activation of IL-1β re-
lease is observed in vivo, we modified a previously estab-
lished mouse model of T. vaginalis infection [62]. Unfor-
tunately, T. vaginalis mouse models have required estro-
gen treatment together with the synthetic glucocorticoid 
and immunosuppressant dexamethasone [63] prior to 
and after T. vaginalis infection in order to facilitate colo-
nization by the parasite [62]. To investigate inflamma-
some activation by T. vaginalis under minimal immune 
suppression conditions, we inoculated mice with one of 
the most virulent clinical strains available, called MSA1132 
[12], using an optimized protocol illustrated schemati-

cally in Figure 5a. T. vaginalis strain MSA1132 also yield-
ed bioactive IL-1β production in our in vitro studies (data 
not shown). Three days after parasite or mock (PBS) in-
fection, we collected vaginal lavages and examined IL-1β 
protein levels by ELISA. T. vaginalis infection led to a sta-
tistically significant increase in IL-1β secretion in vivo 
(Fig. 5b), consistent with our in vitro results.

Discussion

In this work we show that upon contact with THP-1 
human macrophages, T. vaginalis can activate NLRP3 in-
flammasomes, lead to release of bioactive IL-1β, and in-
duce pyroptotic cell death. We thus infer that direct con-
tact of T. vaginalis with macrophages is necessary to de-
liver both signals required for NLRP3 inflammasome 
activation. Inflammasome activation by T. vaginalis is 
mediated in part by sensing extracellular ATP via P2X7 
receptors, which lead to K+ efflux. Midlej and Benchimol 
[64] have shown that T. vaginalis inflicts membrane dam-
age upon host cell contact, a likely requisite for the release 
of ATP and other DAMPs that can serve as signal 2 for 
inflammasome activation. 100 μM oxATP can inhibit the 
ability of 5 mM ATP to stimulate macrophage IL-1β pro-
duction [65]. Similarly, we observed inhibition of IL-1β 
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signaling with 100 μM oxATP, but higher doses of oxATP 
yielded still greater inhibition, so it is likely that signifi-
cant ATP quantities are generated locally by T. vaginalis-
induced cell damage allowing macrophage P2X7 receptor 
activation. We hypothesize that the general mechanism 
of host cell injury by T. vaginalis and subsequent release 
of DAMPs may underpin our preliminary observation of 
T. vaginalis-induced IL-1β secretion in our murine short-
term challenge model.

Several groups have reported T. vaginalis activation  
of NF-κB in vaginal epithelial cells, human monocyte-
derived macrophages, murine macrophages, and THP-1 
macrophages [16, 17, 66, 67], establishing a precedence 
for the parasite’s ability to provide a signal 1 required for 
NLRP3 inflammasome priming. To date, the only T. vagi
nalis cell surface component shown to contribute to NF-
κB activation is the parasite’s glycocalyx [68], now known 
as Tv lipoglycan [69]. Toll-like receptor (TLR) 2 contrib-
utes to sensing of T. vaginalis by murine macrophages 
leading to NF-κB signaling [67]. It remains to be mecha-
nistically investigated what other TLRs contribute to 
sensing T. vaginalis. TLR4 involvement has been impli-
cated by indirect evidence, as cervicovaginal lavages from 
T. vaginalis-infected women stimulated TNF-α produc-
tion from TLR4-responsive murine splenocytes at higher 
levels than splenocytes nonresponsive to TLR4 ligands 
[70]. In HeLa cells, TLR2, TLR4, and TLR9 expression is 
increased upon infection with T. vaginalis [71], and TLR4 
upregulation has also been reported in a prostate stromal 
cell line exposed to the parasite [72]. Further dissection of 

how T. vaginalis contact with human macrophages leads 
to the generation and delivery of both signal 1 and signal 
2 is a subject of ongoing investigation in our laboratory.

Our work has also demonstrated that T. vaginalis acti-
vation of the NLRP3 inflammasome in macrophages con-
tributes to their physical lysis via pyroptosis, the first di-
rect demonstration that the parasite can kill host cells 
through this inflammatory cell death pathway. Gu et al. 
[30] found that T. vaginalis can activate NLRP3 inflam-
masomes in a prostate epithelial cell line, but measures of 
cell viability, pyroptosis, or gasdermin D involvement 
were not reported. Nevertheless, our results and that of 
Gu et al. [30] add T. vaginalis to the growing number of 
sexually-transmitted pathogens that lead to inflamma-
some activation [73, 74]. Studying the outcomes of in-
flammasome activation by STIs is of clinical importance, 
as the proinflammatory microenvironment in the repro-
ductive tract may affect susceptibility to other STIs or fa-
cilitate coinfections [73, 74], and T. vaginalis is already 
associated with gonorrhea, chlamydia, syphilis, and her-
pes simplex virus types 1 and 2, as well as with an in-
creased risk and transmission of HIV [10, 11, 75]. While 
our work was performed with THP-1 cells, an established 
cell line previously used for the study of vaginal coloniz-
ing bacteria [76, 77], future experimentation with our 
murine model and human primary vaginal macrophages 
is warranted to fully evaluate how T. vaginalis activates 
inflammasomes in the vaginal mucosal environment.

Bioactive IL-1β can exert effects on virtually all cell 
types and promote a multitude of functional outcomes in 

300
250
200
150

100

50

0
PBS

Day 3:
vaginal
lavages

Day 0:
infection with

T. vaginalis

Day –1:
i.p. β-estradiol

injection

Day –4 to –1:
daily i.p. dexamethasone

injections

ba

m
IL

-1
β,

 p
g/

m
L

T. vaginalis

*

Fig. 5. Trichomonas vaginalis infection leads to IL-1β production 
in a mouse model of infection. a The timeline shows the pretreat-
ment strategy for female C57BL/6 mice prior to intravaginal T. 
vaginalis inoculation or PBS mock infection. b Concentrations of 
IL-1β protein levels in vaginal lavages collected 3 days after infec-

tion quantified by ELISA. The data shown are from 3 independent 
experiments combined (n = 25 mice per treatment group). The 
median and range are shown. * p < 0.05 compared to the PBS un-
infected control.



T. vaginalis Activates NLRP3 
Inflammasomes and Induces Pyroptosis

95J Innate Immun 2019;11:86–98
DOI: 10.1159/000493585

innate immunity and the shaping of adaptive immunity 
[78, 79]. These functions include inducing fever, promot-
ing increased leukocyte recruitment to the infection site, 
and enhancing effector functions and cell survival [78]. 
Increased neutrophil numbers are reported in vaginal la-
vages of T. vaginalis-infected women [14, 80], but it re-
mains unknown whether in human infections the in-
creased leukocyte recruitment contributes to controlling 
the infection or to inducing pathology. An example of the 
latter adverse effects occurs with the extracellular fungus 
Candida albicans, in which NLRP3 inflammasome acti-
vation contributes to pathogenesis by promoting in-
creased neutrophil influx and vaginitis in a murine mod-
el of infection [81, 82].

The physical lysis of host macrophages through pyrop-
tosis likely mitigates the magnitude of the host innate im-
mune response to T. vaginalis. For example, although we 
detected increased IL-1β production upon T. vaginalis in-
fection in our murine infection model, we did not observe 
any gross visible phenotypes. Similarly, a majority of in-
fected individuals are also asymptomatic [3]. This dichot-
omy highlights the complexity in the biology of T. vagi-
nalis infections, in which inflammasome activation oc-
curs in response to the parasite; however, the lysis of 
IL-1β-producing cells by the parasite may affect the 
amounts and effects of the bioactive IL-1β produced. The 
parasite is also highly motile with 5 flagella [83, 84]. This 
property likely influences how long the parasite remains 
in contact with host cells to allow for parasite sensing, 
how effective released host effector molecules are at tar-
geting the parasite, and the effect of recruited leukocytes, 
if the parasite can physically swim away. Other parasite 
virulence factors also help dampen the local immune re-
sponse – and potentially the effects of inflammasome ac-
tivation on adaptive immunity. For example, T. vaginalis 
proteases can degrade complement components and an-
tibodies [85], and the parasite can also lyse B cells and T 
cells [15]. T. vaginalis also expresses ectoATPases which 
can degrade extracellular ATP [86], the latter of which we 
identified to serve as a DAMP for NLRP3 inflammasome 
activation. Future work testing the effect of parasite mu-
tants and uncovering such parasite virulence factors will 
allow us to broaden our understanding of the overall in-
nate immune response, of its impact on T. vaginalis sur-
vival in the host, and of the observation that T. vaginalis 
frequently causes persistent and recurrent infections [87].

It is well recognized that the immune response to T. 
vaginalis is complex and that the outcomes of infection 
vary [3, 88]. The potency of inflammasome activation and 
differential macrophage lysis through pyroptosis by dif-

ferent strains may contribute to the observed differences 
in host responses. Our work has identified ATP sensing 
and K+ efflux as activators of NLRP3 inflammasomes in 
macrophages responding to T. vaginalis infection. These 
general processes are likely to be elicited in other cell 
types, such as the vaginal and cervical cells first encoun-
tered by the parasite and immune cells recruited to the 
infection site. Our work has set the foundation for further 
investigation into how T. vaginalis activates inflamma-
somes and how this molecular pathway contributes to IL-
1β-mediated immune responses and proinflammatory 
host cell death.
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