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Abstract
Actin filament assembly typically occurs in association with cellular membranes. A large number of proteins sit at the
interface between actin networks and membranes, playing diverse roles such as initiation of actin polymerization,
modulation of membrane curvature, and signaling. Bin/Amphiphysin/Rvs (BAR) domain proteins have been implicated
in all of these functions. The BAR domain family of proteins comprises a diverse group of multi-functional effectors,
characterized by their modular architecture. In addition to the membrane-curvature sensing/inducing BAR domain
module, which also mediates antiparallel dimerization, most contain auxiliary domains implicated in protein-protein
and/or protein-membrane interactions, including SH3, PX, PH, RhoGEF, and RhoGAP domains. The shape of the BAR
domain itself varies, resulting in three major subfamilies: the classical crescent-shaped BAR, the more extended and less
curved F-BAR, and the inverse curvature I-BAR subfamilies. Most members of this family have been implicated in
cellular functions that require dynamic remodeling of the actin cytoskeleton, such as endocytosis, organelle trafficking,
cell motility, and T-tubule biogenesis in muscle cells. Here, we review the structure and function of mammalian BAR
domain proteins and the many ways in which they are interconnected with the actin cytoskeleton.
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Introduction

BAR domain proteins were named after the founding members
of this family: mammalian Bin1 (Sakamuro et al. 1996) and
Amphiphysin (Lichte et al. 1992), and yeast Rvs167 (Sivadon
et al. 1995), which were independently characterized and found
to be related in sequence (Sakamuro et al. 1996). Generally,
however, BAR domain proteins are unrelated at the sequence
level. Membership into this family is strictly based on the pres-
ence of the BAR domain, which crystal structures revealed
consists of a helical bundle of ~ 200–280 amino acids that

associates in antiparallel fashion to form dimers of varying size
and curvature (Habermann 2004; Millard et al. 2005; Peter
et al. 2004; Tarricone et al. 2001), and the finding that this
domain is also responsible for membrane binding and curvature
sensing/generation in vitro and in cells (Farsad et al. 2001;
Henne et al. 2007; Itoh et al. 2005; Mattila et al. 2007;
Shimada et al. 2007; Takei et al. 1999; Tsujita et al. 2006).
The link between BAR domain proteins and the cytoskeleton
emerged almost immediately, as it was recognized that the actin
cytoskeleton and budding pattern of yeast Rvs167 mutant cells
was altered (Sivadon et al. 1995). It is now recognized that most
functions associated with BAR domain proteins are also inti-
mately linked to actin cytoskeleton remodeling, in processes
such as endocytosis, organelle trafficking, cell motility, and T-
tubule biogenesis in muscle cells (Antonny et al. 2016; Kessels
and Qualmann 2015; Saarikangas et al. 2010; Scita et al. 2008;
Suetsugu and Gautreau 2012; Zhao et al. 2011). Most BAR
domain proteins contain additional domains that often partici-
pate along with the BAR domain in membrane binding and in
protein-protein interactions. Among these so-called auxiliary
domains, the most common is the Src homology 3 (SH3) do-
main that in many BAR domain proteins binds directly to cy-
toskeletal assembly factors and/or dynamin. Also abundant
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Fig. 1 Domain organization of BAR domain proteins. The classical
crescent-shaped BAR subfamily is shown on the left and the F-BAR
and I-BAR subfamilies are shown on the right (top and bottom,

respectively). Protein domains are represented according to the domain
key shown at the bottom right. The amino acid boundaries of domains are
indicated (see also Supplementary Table 1)
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among these proteins are domains that either recruit or regulate
Rho-family GTPases, which are master regulators of the actin
cytoskeleton (Hall 2012; Ridley 2015). Another common
theme among BAR domain proteins is the presence of
autoinhibitory intramolecular interactions, which are relieved
by binding to other proteins and/or membranes. Here, we re-
view these topics, with a particular emphasis on mammalian
BAR domain proteins.

BAR domain structure, subfamilies,
and membrane binding

BARdomain proteins interact withmembranesmainly via non-
specific electrostatic interactions (Saarikangas et al. 2010), and
most share the ability to tubulate membranes in vitro and in
cells (Farsad et al. 2001; Henne et al. 2007; Itoh et al. 2005;
Mattila et al. 2007; Peter et al. 2004; Shimada et al. 2007; Takei
et al. 1999; Tsujita et al. 2006). However, there is substantial
variability in the type of membrane curvature BAR domain
proteins generate. These differences emanate from two main

factors: variability in the BAR domain fold itself and differ-
ences in the type of coats (or lattices) BAR domain proteins
can form on membranes via BAR-BAR interactions.

Based on crystal structures, three major subfamilies of
BAR domain proteins have been defined (Figs. 1 and 2 and
Table S1): the classical crescent-shaped BAR (Peter et al.
2004; Tarricone et al. 2001), the more extended and less
curved Fes/CIP4 homology-BAR (F-BAR) (Frost et al.
2007; Henne et al. 2007; Itoh et al. 2005; Shimada et al.
2007), and the Inverse-BAR (I-BAR) subfamilies (Lee et al.
2007; Millard et al. 2005). While members of the I-BAR sub-
family are more closely related to one another, there is sub-
stantial variability among members of both the BAR and F-
BAR subfamilies, such that sequence or even structural align-
ments of these two subfamilies have been restricted to small
subgroups of proteins. Here, we separately superimposed all
the crystal structures of members of the three subfamilies
based on the core antiparallel dimerization region, i.e.,
avoiding the distal ends of the dimers which diverge the most
(Fig. 3). Based on this structural superimposition, we gener-
ated sequence alignments that were then extended to include

BAR (Amphiphysin, PDB: 1URU) 

F-BAR (FBP17, PDB: 2EFL)

I-BAR (MIM, PDB: 2D1L)

167 Å 

225 Å 

188 Å

Fig. 2 Structures of
representative members of the
three major BAR domain
subfamilies (as indicated). The
figure also shows electrostatic
surface representations, indicating
the potential membrane-binding
surfaces (dotted lines) and the
overall dimensions of the dimers
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other members of the subfamilies for which crystal structures
have not yet been determined (Fig. 4). Such structural and
sequence alignments highlight both common and distinctive
features among BAR domain proteins. Thus, the basic folding
unit of the BAR domain in all three subfamilies consists of
three long and kinked α-helices, running antiparallel to one
another. Two such units associate in antiparallel fashion
through a Bhand-shake^ type of interaction to form a six-
helix bundle with two-fold symmetry around the dimer inter-
face, consisting mainly of hydrophobic interactions.
Independent of the subfamily, BAR domain dimers are gener-
ally elongated and curved, and have a positively charged sur-
face that mediates the interactions with negative charges of the
membrane (Fig. 2). The main structural differences both
among and within subfamilies emerge from the remarkable
variability in the degree of bending and twisting that the three
primary helices can exhibit, as well as variability in the angle
of dimerization. Moreover, in several BAR domains, the pri-
mary helices are split or interrupted, and helical appendages
and N- or C-terminal helical extensions to the core BAR do-
main are also often observed (Fig. 4). One notable example of
such extensions is the so-called N-BAR fold, first described
for Amphiphysin (Peter et al. 2004), which constitutes a var-
iation of the classical BAR domain in which an amphipathic
α-helix preceding the BAR domain inserts into the membrane

and participates in membrane curvature generation. Another
example is observed in the structure of Endophilin, in which
the first helix (helix-1) of the BAR domain is interrupted by a
~ 20 amino acid insertion that folds partially into an extra
amphipathic α-helix exposed on the membrane-binding, con-
cave face of the BAR domain, and which functions as a wedge
that penetrates the membrane for curvature generation (Gallop
et al. 2006; Masuda et al. 2006; Weissenhorn 2005). Of note,
Endophilin as well as RICH1 (Nadrin) also present an N-BAR
helix like Amphiphysin (Bhatia et al. 2009; Gallop et al.

90°

Fig. 3 Superimposition of the existing structures of members of the three
BAR domain subfamilies. Two perpendicular views of the BAR domain
portion (amino acids outside the BAR domain were removed when
present) of the first-determined structure is shown for each protein
(PDB codes are indicated, color coded). The structures were
superimposed based on the core antiparallel dimerization region, i.e.,
avoiding the distal ends of the dimers which diverge the most, and

using the program SALIGN (Braberg et al. 2012). However, some of
the most divergent structures had to be manually superimposed using
the PyMol Molecular Graphics System, Version 2.0 (Schrödinger,
LLC). Curved arrows indicate the significant spread among structures at
the distal ends of the dimers, which correlates with the membrane defor-
mation capacity of each protein

Fig. 4 Alignment of the sequences of all the members of the three BAR
domain subfamilies. a–c BAR, F-BAR, and I-BAR subfamilies, respec-
tively. The sequences are shown in the same order as the domain diagrams
of Fig. 1. A subset of the sequences was first aligned based on the struc-
tural alignment shown in Fig. 3, and this initial alignment was then ex-
tended to include the sequences of proteins for which the structures are
still unknown, using the program PROMALS3D (Pei and Grishin 2014).
Further edition and display optimization of this alignment was performed
with the program Jalview (Waterhouse et al. 2009). The three main heli-
ces of the BAR domain are indicated by the diagram shown on top of the
alignments, where the gray-colored regions represent extensions to the
three main helices of the BAR domain. For of each column, the back-
ground is colored according to residue type and conservation, using the
Clustal X color scheme of Jalview: blue, conserved hydrophobic; red,
conserved positively charged; magenta, conserved negatively charged;
green, conserved polar; orange, conserved glycine; yellow, conserved
proline; cyan, conserved aromatic; white, non-conserved

�
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2006). A similar insert, called the wedge loop, is observed on
the membrane-binding face of the F-BAR domain protein
Syndapin (Wang et al. 2009). The presence of additional

membrane insertion motifs is now also documented in the I-
BAR subfamily, in which at least two of the members, MIM
and ABBA, insert an amphipathic helix into the membrane

Fig. 4 continued.
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bilayer that contributes to the larger diameter of the tubular
structures formed by these two proteins in vitro and their more
efficient filopodia formation in cells (Saarikangas et al. 2009).

The structural differences among BAR domain subfamilies
correlate with important differences in the way they interact
with cellular membranes, since to a large degree the BAR
domain is thought to impose its shape on the membrane sub-
strate through a so-called scaffolding mechanism (Blood et al.
2008; McMahon and Gallop 2005; Mim and Unger 2012;
Zimmerberg and Kozlov 2006). Thus, the classical BAR do-
main is generally more curved and significantly shorter (~
167 Å) than the F-BAR domain (~ 225 Å), which also has a
shallower curvature (Fig. 2). However, both domains display
significant variability in the degree of curvature. Among
members of the BAR domain subfamily, SNX1 has the most
highly curved structure visualized thus far (PDB: 4FZS, un-
published), whereas SNX9 has a rather flat structure
(Pylypenko et al. 2007). The same is true of the F-BAR do-
main, displaying a nearly flat structure for SRGAP2 (Sporny
et al. 2017), a curved structure for GMIP (PDB: 3QWE) and
an S-shaped structure for Syndapin (also called PACSIN)
(Rao et al. 2010; Wang et al. 2009). Regardless of these dif-
ferences, the positively charged, membrane-binding surface in
both the BAR and F-BAR domains is located on the concave
face of the dimer, and accordingly, they generate positive
membrane curvature by binding on the surface of tubular li-
posomes (Frost et al. 2008; Mim et al. 2012; Shimada et al.
2007). As a consequence of their larger size and shallower
curvature, F-BAR domain proteins tend to generate mem-
brane tubules of larger diameter than BAR domain proteins
both in vitro and in cells (Frost et al. 2008; Henne et al. 2007;
Itoh et al. 2005; Mim et al. 2012; Shimada et al. 2007). The I-
BAR domain is intermediate in size (~ 188 Å) and has opposite
curvature to that of the BAR and F-BAR domains, displaying a
convex membrane-binding surface (Lee et al. 2007; Millard
et al. 2005). Accordingly, the I-BAR domain binds to the inner
leaflet of membrane tubules and generates negative membrane
curvature, thus playing a role in the formation of cellular pro-
trusions such as filopodia (Mattila et al. 2007; Saarikangas et al.
2009; Zhao et al. 2011). One exception is the I-BAR protein
Pinkbar (planar intestinal- and kidney-specific BAR domain
protein), which is specifically expressed in epithelial cells and
has a nearly flat membrane-binding surface, such that it does
not induce membrane tubulation but rather promotes the forma-
tion of planar membrane sheets (Pykalainen et al. 2011).

It is now clear that in addition to the structure of the BAR
domain, other factors determine the way in which these pro-
teins interact with and remodel cellular membranes. Most no-
table among these factors is the seemingly diverse ways in
which BAR domains can interact with each other to form
coats on membranes (Frost et al. 2008; McDonald and
Gould 2016; Mim et al. 2012; Mim and Unger 2012;
Shimada et al. 2007; Simunovic et al. 2016; Simunovic et al.

2013). Indeed, disrupting the ability of BAR domain proteins
to form such two-dimensional lattices through mutagenesis
impairs their ability to sculpt liposomes in vitro and mem-
branes in cells (Frost et al. 2008; Pykalainen et al. 2011;
Shimada et al. 2007). Furthermore, while the F-BAR domain
of CIP4 and FBP17 forms helical coats on membrane tubules
via lateral and tip-to-tip interactions (Frost et al. 2008), the N-
BAR domain of Endophilin forms a lattice that is held togeth-
er primarily through interactions between the extended N-
terminal amphipathic helices of neighboring Endophilin mol-
ecules (Mim et al. 2012). As a result, the Endophilin lattice
exposes larger areas of membrane surface than CIP4 and
FBP17, which form more densely packed lattices.

Another factor influencing membrane binding by BAR do-
main proteins is coincidence detection, whereby other do-
mains participate along with the BAR domain in membrane
binding (Moravcevic et al. 2012). Examples include coopera-
tive membrane binding by the PX-BAR module of sorting
nexins (Lo et al. 2017; Pylypenko et al. 2007; Yarar et al.
2008), the BAR-PH module of ASAP/ACAP-family mem-
bers (Peter et al. 2004), and the PDZ-BAR module of
PICK1 (Jin et al. 2006; Pan et al. 2007) (more below about
the role of auxiliary domains).

Multi-domain structure of BAR domain
proteins, autoinhibition, and Rho GTPase
regulation

The BAR domain is rarely found in isolation, as most members
of this superfamily contain one or more auxiliary domains
(Fig. 1). Some of the existing crystal structures show either
auxiliary domains or GTPases interacting tightly with BAR
domains (Fig. 5) (Boczkowska et al. 2015). The auxiliary do-
main most commonly found among BAR domain proteins is
the SH3 domain, present in ~ 50%of all BAR domain proteins,
either as a single or multiple copies. The presence of the SH3
domain is a strong indicator of interactions with actin cytoskel-
eton assembly factors and/or the GTPase dynamin. The actin
assembly factors most commonly recruited by BAR domain
proteins include nucleation promoting factors (NPFs) of the
Arp2/3 complex (Suetsugu and Gautreau 2012) and actin nu-
cleation and elongation factors such as formins (Fujiwara et al.
2000; Garabedian et al. 2018; Goh et al. 2012b; Graziano et al.
2014; Willet et al. 2015; Yan et al. 2013) and Ena/VASP-
family proteins (Cestra et al. 2005; Chou et al. 2014; Disanza
et al. 2013; Krugmann et al. 2001; Lim et al. 2008; Oikawa
et al. 2013; Salazar et al. 2003; Vehlow et al. 2013), all of
which contain Pro-rich sequences that mediate these interac-
tions (Dominguez 2016). NPFs, in particular, activate the nu-
cleation activity of the Arp2/3 complex, and in this way, they
control the time and location for branched actin network as-
sembly in cells (Pollard 2007).

Biophys Rev (2018) 10:1587–1604 1593



Another way in which BAR domain proteins control actin
cytoskeleton remodeling is through their ability to regulate
Rho-family GTPases (Aspenstrom 2014; de Kreuk and
Hordijk 2012). Rho GTPases are master regulators of actin
assembly dynamics (Hall 2012; Ridley 2015), acting as mo-
lecular on/off switches as they cycle between active GTP-
bound and inactive GDP-bound states (Ridley 2012). This
cycle is regulated by two types of proteins: Guanine nucleo-
tide Exchange Factors (GEFs), which catalyze the exchange
of GDP for GTP to activate Rho GTPases, and GTPase
Activating Proteins (GAPs), which stimulate the catalytic ac-
tivity to inactivate Rho GTPases (Bos et al. 2007).
Additionally, some Rho GTPases are regulated by Guanine
nucleotide Dissociation Inhibitors (GDIs), which sequester
Rho GTPases in their inactive conformation (Garcia-Mata
et al. 2011). Approximately 35% of all BAR domain proteins
either contain ArfGAP, RhoGAP, or RhoGEF domains and
regulate the activities of various GTPases or are themselves
regulated by Rho-family GTPases (de Kreuk and Hordijk
2012) (Fig. 1). Direct regulation by Rho GTPases has been
reported for all members of the I-BAR subfamily, including
IRSp53 (Abou-Kheir et al. 2008; Disanza et al. 2013; Kast
et al. 2014; Krugmann et al. 2001; Lim et al. 2008; Miki et al.
2000), MIM (Bompard et al. 2005; Drummond et al. 2018),
ABBA (Saarikangas et al. 2008; Zeng et al. 2013; Zheng et al.
2010), IRTKS (Sudhaharan et al. 2016), and Pinkbar
(Sudhaharan et al. 2016), as well as the BAR domain protein
Arfaptin (D'Souza-Schorey et al. 1997; Van Aelst et al. 1996),
and the F-BAR family-members Toca1 (Bu et al. 2010; Ho

et al. 2004; Watson et al. 2016), CIP4 (Aspenstrom 1997;
Pichot et al. 2010), and Syndapin 2 (PACSIN2) (de Kreuk
et al. 2011). Although not specifically reviewed here,
phosphorylation-dependent signaling also abounds among
BAR domain proteins, several of which are either directly
phosphorylated or contain themselves tyrosine kinase do-
mains that regulate downstream effectors, including cytoskel-
etal proteins (Craig 2012).

One more consequence of the multi-domain organization of
BAR domain proteins is autoinhibition, as many auxiliary do-
mains moonlight as inhibitory domains. Indeed, examples
abound among cytoskeletal proteins of domains implicated in
autoinhibition that expose a different functional surface upon
activation, including the DAD (Diaphanous Autoregulatory
Domain) domain of certain formins (Gould et al. 2011) and
the C-region of WASP-family NPFs (Panchal et al. 2003),
which both play dual roles in autoinhibition and actin nucle-
ation. Among BAR domain proteins, autoinhibition can affect
membrane binding, interactions with downstream effectors,
regulation of Rho GTPases, or a combination of these func-
tions. Two well-documented examples, demonstrated at the
cellular, biochemical, and structural levels include the inhibi-
tion of IRSp53 and Syndapin 1. In IRSp53, autoinhibition in-
volves an intramolecular interaction between the CRIB-PR and
SH3 domains (Kast et al. 2014; Krugmann et al. 2001), and is
additionally reinforced by binding of 14-3-3 to phosphorylation
sites located mainly in the region between the CRIB-PR and
SH3 domains (Cohen et al. 2011; Robens et al. 2010). Binding
of Cdc42 to the CRIB-PR and/or cytoskeletal effectors to the

BAR-PH
APPL2  (PDB: 4H8S)

Other PDB entries: 

APPL1 (2ELB, 2Q13, 2Z0O) 

ACAP1 (4NSW)

PX-BAR
SNX9  (PDB: 2RAJ)

Other PDB entries:

SNX9 (2RAI, 2RAK, 3DYT, 3DYU)

SNX33 (4AKV)

BAR-SH3
Syndapin 1  (PDB: 2X3W)

BAR-Arl1
Arfaptin-2 (PDB: 4DCN)

90°

Fig. 5 Structures of BAR domain
proteins showing tightly
interacting auxiliary domains.
The PDB codes of the structures
are shown, as well as those of
related structures. BAR domain
dimers are colored orange and
green, and the auxiliary domains
(or GTPase) are colored magenta.
For each structure, two
perpendicular views are shown.
Only one SH3 domain was
resolved in the structure of
Syndapin 1; the second SH3
domain was generated by
symmetry
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SH3 domains synergistically activates IRSp53 (Kast et al.
2014). It is still unknown, however, how 14-3-3-dependent
inhibition is relieved, although it is likely to involve dephos-
phorylation of IRSp53. In Syndapin 1, the SH3 domain inter-
nally inhibits the membrane deformation activity of the F-BAR
domain, and association of the SH3 domain with Pro-rich se-
quences in downstream effectors such as dynamin releases this
inhibitory interaction and exposes the membrane-binding activ-
ity of the F-BAR domain (Goh et al. 2012a; Rao et al. 2010;
Wang et al. 2009). Table 1 summarizes documented examples
of autoinhibition among BAR domain proteins.

BAR domain proteins coordinate actin
cytoskeleton and membrane remodeling

Themembrane tubulation activity of BARdomain proteins was
first established for Amphiphysin (Takei et al. 1999) and
Endophilin (Farsad et al. 2001), whereas their ability to regulate
actin dynamics was reported even earlier for Rvs167, the yeast

homolog of Amphiphysin, which was found to play crucial
roles in actin assembly (Sivadon et al. 1995) and endocytosis
(Munn et al. 1995). However, it was only around 2005 that it
started to emerge that BAR domain proteins acted as multi-
functional hubs, coordinating these two types of activities along
with signaling cues to regulate numerous cellular processes,
and in particular membrane trafficking (Cestra et al. 2005;
Dawson et al. 2006; Ferguson et al. 2009; Itoh and De
Camilli 2006; Itoh et al. 2005; Kessels and Qualmann 2004;
McMahon and Gallop 2005; Shimada et al. 2007; Tsujita et al.
2006) and the formation of cell protrusions (Mattila et al. 2007;
Millard et al. 2005; Suetsugu et al. 2006). Since these initial
studies, most BAR domain proteins have now been linked to
actin assembly pathways, and it is becoming increasingly clear
that this large family of proteins provides probably the most
diverse and widespread link between membranes and the actin
cytoskeleton. As mentioned above, such linkages often involve
regulation of actin assembly through effects on Rho-family
GTPases (de Kreuk and Hordijk 2012) or direct recruitment
of NPFs of the Arp2/3 complex (Suetsugu and Gautreau

Table 1 Autoinhibition of BAR
domain proteins Protein Autoinhibition and references

PICK1 Adopts an autoinhibited conformation, characterized by its uniform cytoplasmic localization, in
which the membrane-binding surface of the BAR domain is masked (Lu and Ziff 2005;
Madasu et al. 2015; Madsen et al. 2008; Perez et al. 2001). Deletion of the PDZ domain or
binding of the PDZ domain to a ligand at the membrane exposes the membrane-binding
capacity of the BAR domain, resulting in PICK1 relocalization to vesicle-like clusters

Amphiphysin Binding to membranes depends on dynamin binding to the SH3 domain, which relieves
SH3-BAR autoinhibitory interactions (Meinecke et al. 2013)

BIN1 Pro-rich peptides that bind to the SH3 domain relive autoinhibitory BAR-SH3 domain inter-
actions (Wu and Baumgart 2014)

Endophilin Binding to membranes depends on dynamin binding to the SH3 domain, which relieves
SH3-BAR autoinhibitory interactions (Meinecke et al. 2013)

RICH1 An intramolecular interaction between the BAR and RhoGAP domains inhibits the GAP
activity (Beck et al. 2013)

GRAFs An intramolecular interaction between the BAR and RhoGAP domains inhibits downregulation
of Rho GTPase activity via the GAP domain (Eberth et al. 2009; Fauchereau et al. 2003)

ASAP1 An interaction between the BAR domain and the PH andArfGAP domains inhibits the ArfGAP
activity (Jian et al. 2009)

FCHSD2 In cells, the SH3 domains control the protrusion formation activity of the BAR domain
(Almeida-Souza et al. 2018), as also observed with the Drosophila homolog Nwk in which
the autoinhibitory activity of the SH3 domain is modulated by its interaction with N-WASP
(Stanishneva-Konovalova et al. 2016)

Syndapins Binding to membranes depends on dynamin binding to the SH3 domain, which relieves
SH3-BAR autoinhibitory interactions (Goh et al. 2012a; Rao et al. 2010; Senju et al. 2011;
Wang et al. 2009)

SRGAP2 Autoinhibited by intramolecular interaction between the F-BAR and SH3 domains, released
upon effector binding to the SH3 domain (Guerrier et al. 2009)

ARHGAP45 An intramolecular interaction between the BAR and RhoGAP domains inhibits the GAP
activity (de Kreuk et al. 2013)

IRSp53 Inhibited through an intramolecular interaction between the CRIB-PR and SH3 domains (Kast
et al. 2014; Krugmann et al. 2001) that is reinforced by binding of 14-3-3 to phosphorylation
sites within the region between the CRIB-PR and SH3 domains (Cohen et al. 2011; Robens
et al. 2010)
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Table 2 Coordination of membrane remodeling and actin assembly by BAR domain proteins

Protein Function and references

PICK1 Studies disagree as to whether PICK1 inhibits Arp2/3 complex; one study reported that PICK1 inhibits actin filament nucleation by the
Arp2/3 complex through interactions of its BAR domain with filamentous actin and its acidic C-terminal tail with Arp2/3 complex, which
allegedly reduces membrane tension for endocytosis (Rocca et al. 2008). However, another study found that PICK1 does not bind nor
inhibits Arp2/3 complex, but does associate with fast-moving vesicles, which move in a manner consistent with myosin-driven motility
(Madasu et al. 2015)

Amphiphysin Implicated in actin remodeling during endocytosis, phagocytosis, and T-tubule formation via its recruitment of N-WASP and the Arp2/3
complex assembly machinery (Butler et al. 1997; Yamada et al. 2007; Yamada et al. 2009)

BINs Implicated in T-tubule biogenesis in muscle cells in an N-WASP/Arp2/3 complex-dependent manner (Hong et al. 2014; Lee et al. 2002)
BIN1/N-WASP-dependent actin assembly is required for nuclear positioning and triad organization in skeletal muscle (Falcone et al. 2014)
BIN1 links the nuclear envelope to the actin andmicrotubule cytoskeletons to position and shape the nucleus (D’Alessandro et al., DevCell.

2015)
BIN2 is highly expressed in leukocytes, where it controls podosome formation, motility, and phagocytosis. It associates with actin-rich

structures on the plasma membrane and via its Pro-rich C-terminal region recruits SH3-containing partners such as Endophilin-A2 and
αPIX (Sanchez-Barrena et al. 2012)

BIN3 colocalizes with F-actin in lamellipodia, where it forms a complex with Rac1 and Cdc42 and promotes the migration of differentiated
muscle cells during early myogenesis (Simionescu-Bankston et al. 2013)

Endophilins Participate along with dynamin and the actin cytoskeleton in plasma membrane invagination during endocytosis (Itoh et al. 2005)
In cells lacking dynamin, actin-nucleating proteins, actin, and several BAR domain proteins (Endophilin, BINs, SNX9, and SNX18)

accumulate at the base of arrested endocytic clathrin-coated pits, where they support the growth of dynamic long tubular necks (Ferguson
et al. 2009)

Directly interact with both lamellipodin and MENA to mediate EGFR endocytosis in an actin-dependent manner (Vehlow et al. 2013)
Act together with dynamin and actin to drive a fast form of clathrin-independent endocytosis at PIP2-rich sites (Boucrot et al. 2015; Renard

et al. 2015)
Promotes actin polymerization in dendritic spines and its loss causes impaired AMPA receptor-mediated synaptic transmission and

long-term potentiation (Yang et al. 2018)
RICHs RICH1 (ARHGAP17) regulates Rho GTPases through its GAP domain to mediate the formation of stress fibers and focal adhesions in

platelets (Beck et al. 2013)
RICH2’s (ARHGAP44) recruitment to nanoscale membrane deformations limits filopodia initiation via Rac inhibition mediated by its GAP

domain, which in turn reduces actin polymerization required for filopodia formation (Galic et al. 2014)
GRAFs Owing to their Rho-GAP-dependent actin remodeling and BAR domain-dependent membrane sculpting activities, GRAF 1 and 2 promote

myoblast fusion in muscles (Doherty et al. 2011)
GRAF1’s RhoGAP domain exhibits strong GTPase-stimulating activity towards RhoA, Cdc42, and Rac1, which regulates cell adhesion

and spreading through effects on the actin cytoskeleton, including the formation of stress fibers, focal adhesions, filopodia, and
lamellipodia (Elvers et al. 2012)

GRAF3’s RhoA GAP activity is regulated through Src-mediated tyrosine phosphorylation to control focal adhesion dynamics and promote
cell motility (Luo et al. 2017)

ASAP1 Controls invadopodia formation, and this activity requires the presence of the BAR and SH3 domains and Src tyrosine kinase-mediated
phosphorylation (Bharti et al. 2007)

Tuba The four N-terminal SH3 domains bind dynamin, which is critical for the fission of endocytic vesicles. The RhoGEF domain activates
Cdc42. The C-terminal SH3 domain binds N-WASP and Ena/VASP, which promotes actin polymerization. In this way, Tuba links
membrane deformation, dynamin activity and actin dynamics during endocytosis (Cestra et al. 2005; Salazar et al. 2003)

SNX33 Plays a role in maintaining cell shape and cell cycle progression through its interaction with WASP (Zhang et al. 2009)
FES Through the coordinated actions of the F-BAR, SH2 and tyrosine kinase domains, FES couples signaling via the high-affinity immuno-

globulin G receptor (FcεRI) and actin reorganization in mast cells to support endocytosis and chemotaxis (McPherson et al. 2009)
FCHSDs Expressed in hair cell stereocilia and cuticular plate. FCHSD2 (but not FCHSD1) interacts with WASP and N-WASP via its SH3 domains

and stimulates actin assembly in vitro, whereas FCHSD1 colocalizes and interacts with another BAR domain protein, SNX9, and
enhances its WASP-Arp2/3 complex-dependent actin polymerization activity (Cao et al. 2013)

FCHSD2 recruits N-WASP to PIP2-rich membrane domains at the base of clathrin-coated pits to promote Arp2/3 complex-dependent actin
polymerization for pit maturation (Almeida-Souza et al. 2018)

Syndapins
(PACSINs)

Provide a link between the actin cytoskeleton and membrane remodeling by interacting with membranes, dynamin, and N-WASP. Function
in endocytic and vesicle trafficking events important for neuronal morphogenesis and cell migration (Andersson et al. 2008;
Dharmalingam et al. 2009; Modregger et al. 2000; Qualmann and Kelly 2000; Qualmann et al. 1999; Quan and Robinson 2013)

Form a complex with polycystin-1 at the membrane and recruit N-WASP and the Arp2/3 complex to initiate actin assembly and modulate
directional epithelial cell migration, which contributes to the establishment and maintenance of tubular structures (Yao et al. 2014)

Interact with and act synergistically with the actin nucleator cordon-bleu (Cobl) in the formation of actin-rich stereocilia, playing roles in
dendritic arborization (Schwintzer et al. 2011) and sensory hair cell formation (Schuler et al. 2013)

Toca-1 Participates along with dynamin and the actin cytoskeleton in plasma membrane invagination during endocytosis (Itoh et al. 2005)
Mediates Cdc42-dependent actin nucleation by activating N-WASP (Aspenstrom 1997; Ho et al. 2004), and this activity is strongly

enhanced in the presence of liposomes of a specific diameter (Gallop et al. 2013; Takano et al. 2008).
Integrates membrane trafficking and actin dynamics through WASP and SCAR/WAVE (Fricke et al. 2009)
Induces the formation of filopodia and endocytic vesicles in neuroblastoma cells (Bu et al. 2009) and is implicated in membrane tubulation

and vesicle formation and motility in CHO and HeLa cells (Bu et al. 2010)
Mediates the recruitment and activation of N-WASP and the Arp2/3 complex for actin comet tail formation and motility of Shigella flexneri

(Leung et al. 2008)
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2012). In Table 2, we compile existing evidence linking BAR
domain proteins to cytoskeleton remodeling events, focusing
specifically on mammalian BAR domain proteins.

Several studies have also shown that some BAR domains
(taken in isolation) can bind actin filaments directly and influ-
ence actin polymerization in vitro (Drager et al. 2017; Kostan
et al. 2014; Millard et al. 2005; Rocca et al. 2008), which is

mechanistically understandable given the overall positive
charge of the membrane binding-surface of the BAR domain
and the presence of a negatively charged helical rim along the
long-pitch helix of the actin filament. However, the functional
significance of such interactions is unclear, since they are in-
trinsically incompatible with membrane binding, which uses
the same positively charged surface on the BAR domain and

Table 2 (continued)

Protein Function and references

Implicated in trafficking events downstream of Cdc42 that require actin polymerization by the Arp2/3 complex in mammalian cells and
C. elegans (Bai and Grant 2015)

Forms a complex with ZO-1 and recruits N-WASP at tight junctions to induce actin assembly dynamics for proper maintenance of cell-cell
contacts (Van Itallie et al. 2015)

FBP17 (Toca-2) Participates along with dynamin and the actin cytoskeleton in plasmamembrane invagination during endocytosis (Itoh et al. 2005; Kamioka
et al. 2004; Shimada et al. 2007; Tsujita et al. 2006) and podosome and phagocytic cup formation in macrophages (Tsuboi et al. 2009),
and this activity is antagonized by another F-BAR protein, PSTPIP2 (Tsujita et al. 2013)

CIP4 (Toca-3) Coordinates actin assembly downstream of Cdc42 through interactions with membranes, dynamin andWASP-family proteins (Aspenstrom
1997) for plasma membrane invagination during endocytosis (Itoh et al. 2005; Tsujita et al. 2006)

Implicated alongside FBP17 in phagocytic cup formation (Dombrosky-Ferlan et al. 2003)
Promotes GLUT4 endocytosis through bidirectional interactions with N-WASp and Dynamin-2 (Hartig et al. 2009)
Regulates platelet-derived growth factor (PDGF) beta-receptor internalization downstream of Cdc42, impacting actin assembly and cell

migration (Toguchi et al. 2010)
Is essential for integrin-dependent T cell trafficking (Koduru et al. 2010)
Its loss impairs membrane-cytoskeleton remodeling and reduces platelet production (Chen et al. 2013)

SRGAPs SRGAP2 integrates cell edge curvature and Slit-Robo-mediated repulsive cues to fine-tune Rac1 activation dynamics and elicit fibroblast
contact inhibition of locomotion (CIL) (Fritz et al. 2015)

SRGAP3 regulates cytoskeletal reorganization through inhibition of the Rho GTPase Rac1 and interaction with actin remodeling proteins,
playing a role in the development of dendritic spines. Disruption of SRGAP3 leads to intellectual disability in humans (Bacon et al. 2013)

ARHGAP45
(HMHA1)

Regulates cytoskeletal remodeling and cell spreading through its RhoGAP activity (de Kreuk et al. 2013)

IRSp53 Interacts with Rac and induces membrane deformation in a Rac-dependent manner (Suetsugu et al. 2006)
The synergic bundling activity of the IRSp53-Eps8 complex, regulated by Cdc42, contributes to the generation of filopodial protrusions

(Disanza et al. 2006)
Deforms PIP2-rich membranes through an inverse BAR domain-like mechanism (Mattila et al. 2007), playing a role in the formation of cell

protrusions such as filopodia by coordinating membrane and actin cytoskeleton dynamics (Kast et al. 2014; Lim et al. 2008; Yang et al.
2009)

Enterohemorrhagic E. coli (EHEC) recruits IRSp53 at the membrane through an interaction with its translocated effector protein Tir that
inserts into the plasma membrane. IRSp53 in turn recruits the secreted bacterial virulence factor EspFu, which then recruits and activates
N-WASP, leading to Arp2/3 complex-dependent actin polymerization for pedestal formation (Vingadassalom et al. 2009; Weiss et al.
2009)

Associates in a phosphorylation dependent manner with 14-3-3, which inhibits binding of its SH3 domain to cytoskeletal proteins such as
WAVE2 and Eps8, and prevents binding of Cdc42, resulting in shorter filopodia lifetimes (Cohen et al. 2011; Robens et al. 2010)

Cdc42 switches IRSp53 from inhibition of actin growth to elongation by clustering VASP (Disanza et al. 2013)
Recruits the actin filament elongation factor VASP through its SH3 domain, and this interaction is essential for podosome formation

(Oikawa et al. 2013)
While bound to the plasma membrane at the tip of filopodia through interaction with Cdc42 and the membrane via the I-BAR domain, the

SH3 domain sequentially switches binding partners between dynamin-1, Mena and Eps8 for filopodia initiation, assembly, and
disassembly, respectively (Chou et al. 2014)

Recruited and activated by Cdc42 at sites of clathrin and dynamin-independent endocytosis, which in turn recruits Arp2/3
complex-dependent actin polymerization for endocytosis (Sathe et al. 2018)

MIM Deforms PIP2-rich membranes through an inverse BAR domain-like mechanism, playing a role in the formation of cell protrusions such as
filopodia and dendritic spines (Mattila et al. 2007). Some isoforms contain a C-terminal WH2 domain, which recruits monomeric actin
(Lee et al. 2007)

Promotes Arp2/3 complex-dependent actin filament assembly at intercellular junctions and is required for integrity of kidney epithelia
intercellular junctions (Saarikangas et al. 2011)

Its knockout in mouse embryonic fibroblasts impairs cell polarity and the motility response to growth factors via effects on the actin
cytoskeleton (Yu et al. 2011)

Through its I-BAR domain, MIM accumulates at transendothelial cell macroaperture (TEM) tunnels induced by Bacillus anthracis edema
toxin and triggers Arp2/3 complex-dependent actin polymerization, which reseals the TEM (Maddugoda et al. 2011)

Accumulates at spine initiation sites in a PIP2-dependent manner to begin the outward deformation of the plasma membrane. This is
followed by recruitment of the Arp2/3 complex assembly machinery required for spine elongation and proper synaptogenesis
(Saarikangas et al. 2015)
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is the primary function of this domain. Furthermore, we must
consider that actin filaments in cells are heavily decorated with
filamentous actin-binding proteins. Most notably, a recent
study found that up to 80% of actin filaments in cells are
decorated with one of over 40 existing tropomyosin iso-
forms (Meiring et al. 2018), whose binding site along the
long-pitch helix of the actin filament (Dominguez 2011; Li
et al. 2011) overlaps with the proposed binding surface of
the BAR domain (Kostan et al. 2014). It is nevertheless
conceivable that under regulation BAR domains could
switch between binding to actin filaments and membranes,
which remains to be further explored.

Interactions among BAR domain proteins—a
combinatorial toolkit for membrane
remodeling

BAR-BAR heterodimerization (or interaction) could be another
factor expanding the range of activities mediated by BAR do-
main proteins. Indeed, numerous BAR domain proteins have
been reported to associate with one another, including mamma-
lian BIN1 and BIN2 (Ge and Prendergast 2000); BIN1 and
Amphiphysin (Ramjaun et al. 1999; Slepnev et al. 1998;
Wigge et al. 1997) and their yeast and C. albicans orthologs
(Friesen et al. 2006; Gkourtsa et al. 2015; Lombardi and
Riezman 2001; Youn et al. 2010); the F-BAR proteins
SRGAP1, SRGAP2, and SRGAP3 (Coutinho-Budd et al.
2012); sorting nexins SNX1, SNX2, SNX5, and SNX6 (Haft

et al. 1998; Parks et al. 2001; Wassmer et al. 2007) and their
yeast orthologs (Seaman and Williams 2002); BIN1 and SNX4
(Leprince et al. 2003); FCHSD1 and FCHSD2 (Cao et al. 2013);
and PICK1 and ICA69/ICA1L (Cao et al. 2007; He et al. 2015;
Holst et al. 2013). However, it is unclear whether these proteins
associate through actual heterodimerization or via side-by-side
interaction of intact homodimers, since the dissociation of some
BAR domain dimers appears unlikely given the extremely large
hydrophobic interface buried by dimerization. Independent of
this consideration, this is a topic that deserves further investiga-
tion, since in principle, the combinatorial association of BAR
domain proteins could considerably expand the spectrum of
membrane curvature and partner recruitment activities of this
family of proteins. Finally, non-molecular factors, including ex-
ternal physical forces applied on the membrane (tension and
friction) have been also suggested to impact the ability of BAR
domain proteins to remodel membranes (Nishimura et al. 2018).

In summary, a prototypical BAR domain protein is one that
has a membrane-binding and antiparallel dimerization BAR
domain of variable size and curvature (Fig. 6). Almost invari-
ably, these proteins feature auxiliary domains, which are typ-
ically implicated in the recruitment of actin cytoskeleton as-
sembly factors or regulation of Rho-family GTPases, which in
turn also regulates actin assembly. These auxiliary domains
often participate along with the BAR domain in membrane
binding. In the resting, inactive state, many BAR domain pro-
teins exist in compact autoinhibited conformations and upon
activation, triggered by binding to effectors and/or mem-
branes, undergo large conformational changes that expose

GAP, GEF,

GBD
SH3, PX, PH

PDZ, etc
BAR domain

Rho GTPase regulation & 

cytoskeleton remodeling

(Membrane binding)

Active

Inactive

Membrane binding

Protein-protein, protein-membrane 

interactions & cytoskeleton remodeling

Rho GTPase regulation & 

cytoskeleton remodeling

Protein-protein, protein-membrane 

interactions & cytoskeleton remodeling

Fig. 6 Diagram showing a
prototypical BAR domain protein
in the active and inactive states. In
most BAR domain proteins
characterized thus far, interaction
sites with membranes,
downstream effectors and
GTPases are exposed as a result
of a conformational change upon
activation
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the membrane-binding surface of the BAR domain, as well as
protein-protein or protein-membrane interaction sites in the
auxiliary domains. The spectrum of actin assembly activities
associated with BAR domain proteins is constantly increas-
ing, and thus this will likely continue to be a very active area
of research. Also underexplored remain the structural mecha-
nisms of membrane tubulation, as well as the potential con-
nections between BAR domain proteins and molecular motors
of the myosin, dynein, and kinesin families that could together
drive efficient membrane deformation events (McIntosh et al.
2018). Finally, through combinatorial BAR-BAR association,
the potential for BAR domain protein-dependent activities
increases exponentially, opening exciting new prospects for
future investigation.
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