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Abstract

This short review traces how our knowledge of the molecular mechanisms of cellular movements originated and developed over
the past 50 years. Work on actin-based and microtubule-based movements developed in different ways, but in both fields, the
discovery of the key proteins drove progress. Starting from an inventory of zero molecules in 1960, both fields matured
spectacularly, so we now know the atomic structures of the important proteins, understand the kinetics and thermodynamics
of their interactions, have documented how the molecules behave in cells, and can test theories with molecularly explicit

computer simulations of cellular processes.
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Introduction: birth of the field in the 1960s

Scientists who have started work on the mechanisms of cellular
movements since the turn of the twenty-first century would not
recognize the field I entered as a college student. I spend a
summer of 1963 at the Pasadena Foundation in the laboratory
of Charles Pomerat, one of the pioneers of tissue culture. He
had about a half dozen phase contrast microscopes with 16-mm
movie cameras recording time-lapse movies of cultured cells
day and night, and I had the privilege of reviewing these films
with him twice a week. I was fascinated by the wide variety of
movements including cellular locomotion, organelle move-
ments, nuclear rotation, mitosis, and cytokinesis and the explo-
rations of axonal growth cones. I made quantitative measure-
ments of growth cone dynamics and calculated means and stan-
dard deviations using a mechanical Marchant calculator
(Pomerat et al. 1964). A trip to the library revealed that nothing
was known about the molecular mechanisms of any of the
movements. Several papers reported the isolation of crude
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protein fractions from nonmuscle cells that resembled mixtures
of actin and myosin from skeletal muscle (Lowey 1952; Bettex-
Galland and Luscher 1959), but none of the motility proteins
had been purified. Discussions at a conference on “Primitive
Motile Systems in Biology” at Princeton University in 1963
revealed that leading figures in the field questioned whether
biochemical approaches would reveal anything useful about
cellular movements (Allen and Kamiya 1964).

Everything changed when Ian Gibbons isolated dynein
from axonemes (Gibbons and Rowe 1965); Gary Borisy,
Richard Weisenberg, and Ed Taylor (Borisy and Taylor
1967; Weisenberg et al. 1968) purified tubulin; and Sadashi
Hatano and Fumio Oosawa (Hatano and Oosawa 1966;
Hatano and Tazawa 1968) followed by Mark Adelman and
Ed Taylor (Adelman and Taylor 1969a, b) purified actin and
myosin from the acellular slime mould Physarum.

Unaware of the work on Physarum, | investigated amoeboid
movements with professor Susumo Ito from 1965 to 1968 as a
medical student at Harvard Medical School. Our attempts to
image the motility machinery by transmission electron micros-
copy of thin sections of fixed cells were unrevealing, so I
attempted to repeat experiments by Thompson and Wolpert
(Thompson and Wolpert 1963). They made extracts of
Amoeba proteus in the cold and reported that after adding
ATP and warming to room temperature, the crude cytoplasm
would undergo streaming in a sealed chamber on a microscope
slide. Fortunately, I did not know that the experts in the field
were skeptical about these claims, and, after ten failures in the
spring of 1968, I learned how to reactivate the extracts. We
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observed spectacular streaming of organelles followed by the
formation of linear bundles that were pulled toward organizing
centers. Electron microscopy revealed that thin filaments as-
sembled in the extract and formed bundles that converged on
clusters of thick filaments (Pollard and Ito 1970). Experiments
with a homemade viscometer showed that the extracts gelled
when the thin filaments formed. We imagined that the filaments
were actin and myosin, although some were skeptical. When 1
presented our observations at the annual meeting of the
American Society for Cell Biology in December 1968, I spoke
in a session on microtubules, because no one else at the meeting
was working on cellular actin filaments. At the same time, Hal
Ishikawa developed a method to decorate actin filaments in
glycerol-extracted cells with muscle heavy meromyosin, and
his electron micrographs of thin sections convinced cell biolo-
gists that actin filaments filled the cytoplasm of animal cells
(Ishikawa et al. 1969).

At that point, in the late 1960s, we dreamed someday to
know the amino acid sequences and structures of actin and
myosin, but that seemed far off, given the limited technology
available. At that time, there were no purified DNAs, no DNA
sequences, no SDS gel electrophoresis of proteins, no useful
antibodies, no applications of fluorescence microscopy in cell
biology, no electronic databases of publications or published
papers, no electronic cameras, and no personal computers or
kits for routine biochemical procedures. Light and electron
microscopy images were recorded on film. Biochemists used
enzyme assays or viscosity measurements to detect cytoskel-
etal proteins of interest and had only low-pressure gel filtra-
tion and ion exchange chromatography to purify proteins and
analytical ultracentrifugation to assess purity.

Success of the reductionist strategy

Fifty years later, the field has advanced far beyond our wildest
dreams in 1968. The field has collected an extensive inventory
of the molecules comprising the motile machinery, atomic
structures of key proteins, quantitative measurements of pro-
teins in live cells on a second time scale, and enough measure-
ments of concentrations, rate constants, and equilibrium con-
stants to formulate mathematical models of complex cellular
systems for simulations to test their ability to account for the
microscopic measurements.

Three factors drove this progress. First, the pioneers in the
motility field were inspired by the high standards set by the
biophysicists, physiologists, and biochemists working on the
mechanism of muscle contraction (CSHSQB 1972). Many of
these leaders came from physics and we aspired to emulate
them. The following generations of investigators accepted these
standards, which made the field much more quantitative and
mechanistic than many other areas of cell biology research.

@ Springer

Second, the field adopted every new technology to study
mechanisms including presteady state kinetics (Finlayson
et al. 1969), three-dimensional reconstructions of polymers
from electron micrographs (Moore et al. 1970), fluorescent an-
tibody staining of fixed cells (Lazarides and Weber 1974), mo-
lecular cloning and expression of recombinant proteins
(Cleveland et al. 1978), fluorescence spectroscopy (Kouyama
and Mihashi 1981), video microscopy (Inou¢ 1981; Allen et al.
1985), microinjecting and imaging fluorescently labeled pro-
teins in live cells (Wang et al. 1982), confocal microscopy
(White et al. 1987), molecular genetics (DeLozanne and
Spudich 1987), mathematical modeling (Bray et al. 1993), phy-
logenetic analysis (Goodson and Spudich 1993), GFP-fusion
proteins (Ding et al. 1998), quantitative fluorescence microsco-
py (Wu and Pollard 2005), super resolution microscopy (Bates
et al. 2007), and electron cryomicroscopy (Fujii et al. 2010).

Third, the nascent motility field pursued the full reductionist
strategy (Fig. 1) to characterize the mechanisms of cellular
movements. The fundamental biological questions were al-
ready posed in the nineteenth century: how do cells move,
change their shapes, transport intracellular components, sepa-
rate their chromosomes, and divide in two during cytokinesis?
Studies of muscle contraction led the way in the period from
the 1930s to the 1960s using elegant physiological experi-
ments on live cells, biochemistry, and structural studies.
Biochemists isolated muscle myosin and actin and recombined
them in threads that contracted in the presence of ATP (Szent-
Gyorgyi 1945). Electron microscopy and x-ray fiber diffrac-
tion revealed how filaments of actin and myosin interact as
they slide during contraction (Huxley 1969). Biochemical
measurements showed how ATP hydrolysis by myosin re-
leased energy that is converted into force during interactions
with actin filaments (Lymm and Taylor 1971). Physiologists
proposed and tested mathematical models that accounted for
the force produced in living muscles (Huxley and Simmons
1971). A detailed understanding of the molecular mechanisms
was already achieved by 1972 by the time of a meeting at the
Cold Spring Harbor Laboratory (CSHSQB 1972).

Studies of the molecular basis of cellular movements
lagged behind muscle, since the reductionist agenda was stuck
before the inventory stage (Fig. 1) until the 1960s. Of course,
some progress was made without knowing the molecules. For
example, light microscopy revealed important features of mi-
tosis (Inoué and Sato 1967) and radioactive tracers established
the existence of fast and slow axonal transport (Ochs 1972;
Weiss 1967). However, it was the discovery of motility pro-
teins that opened the field for rapid progress. In less than a
decade, the field grew explosively culminating in an intense
meeting on “Cell Motility” in 1975 (Goldman et al. 1976).

Our knowledge of the mechanisms of cellular motility, in-
tracellular movements, mitosis, and cytokinesis each devel-
oped in different ways. Biochemists took the lead to identify
the major protein components of the motility system, in part
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Fig. 1 Reductionist agenda
(reprinted from PLoS Biology
(Pollard 2013))
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because no good methods were available to image actin fila-
ments in live cells. They used simple assays to purify myosin
motors (starting with myosin-II (Hatano and Tazawa 1968;
Adelman and Taylor 1969a, b; Adelstein et al. 1971) followed
by the first unconventional myosin-I (Pollard and Korn 1973)
and many other unconventional myosins (Goodson and
Spudich 1993)), actin monomer-binding proteins (profilin
(Carlsson et al. 1977) and thymosin-4 (Safer et al. 1991)),
severing proteins (cofilin (Bamburg et al. 1980; Nishida et al.
1984) and gelsolin (Yin and Stossel 1979)), capping proteins
(capping protein (Isenberg et al. 1980) and gelsolin (Yin and
Stossel 1979)), and cross-linking proteins (spectrin (Marchesi
and Steers Jr. 1968), alpha-actinin (Lazarides and Burridge
1975), filamin (originally actin-binding protein) (Hartwig
and Stossel 1975), fascin (Otto et al. 1979), fimbrin
(Bretscher and Weber 1980), dystrophin (Koenig and
Kunkel 1990)). Once libraries of gene and cDNA sequences
became available in the 1980s, the inventories of actin-
binding proteins grew rapidly. Later, biochemists discovered
the Arp2/3 complex (Machesky et al. 1994), which nucleates
actin filament branches (Mullins et al. 1998), and geneticists
discovered formins (Castrillon and Wasserman 1994), which
nucleate and processively elongate actin filament barbed ends
(Pruyne et al. 2002; Sagot et al. 2002; Paul and Pollard 2009).

In contrast to this biochemical attack on the mechanism of
cellular motility, geneticists discovered most of the proteins
that participate in cytokinesis. Actin and myosin-II were im-
plicated in cytokinesis by microscopy (Schroeder 1973;
Fujiwara and Pollard 1976) and antibody injections
(Mabuchi and Okuno 1977), but Paul Nurse followed by his
students used genetic screens for conditional mutations of
fission yeast to discover more than 150 genes required for
cytokinesis (Guertin et al. 2002; Pollard and Wu 2010).
RNAI experiments in Drosophila and C. elegans linked a
subset of these proteins to cytokinesis in animals (Pollard
2003). Our understanding of cytokinesis developed rapidly

Cellular agenda

» Measure concentrations

* Document dynamics in live cells

» Test ability of simulations to
predict cellular behavior in /
normal and perturbed cells

over the past twenty years, so we now know enough the bio-
chemistry and cellular events to formulate and simulate math-
ematical models that reproduce the assembly (Vavylonis et al.
2008) and constriction (Stachowiak et al. 2014) of the cytoki-
netic contractile ring. Nevertheless, many questions remain
about all aspects of cytokinesis, especially the regulatory
mechanism (Pollard 2017; Basant and Glotzer 2018).

Progress in understanding of microtubule-based movements
during mitosis and intracellular transport of organelles benefitted
from being able to image microtubules first by electron micros-
copy and fluorescence microscopy of fixed cells and subsequent-
ly by DIC and fluorescence microscopy of live cells. Microscopy
revealed the structure of the mitotic spindle including the polarity
of the microtubules (Euteneuer and Mclntosh 1981), assembly
properties of microtubules (Walker et al. 1988) including their
dynamic instability (Mitchison and Kirschner 1984), and the
great variety of cargo transported along microtubules (Barlan
and Gelfand 2017). The discoveries of kinesin (Vale et al.
1985) and cytoplasmic dynein (Paschal and Vallee 1987) initiat-
ed the characterization of many varieties of kinesin and a smaller
family of cytoplasmic dyneins. (A small historical note is that in
the 1973 Physiology Course at the Marine Biology Laboratory,
Roy Burns and I isolated a dynein-like 380-kDa protein from
brain that bound to microtubules but had only low ATPase ac-
tivity (Burns and Pollard 1974). No motility assays were avail-
able to test if our protein moved on microtubules.) Yeast genetics
decisively implicated kinesins in the assembly of the mitotic
spindle and the movements of chromosomes (Hoyt et al. 1992;
Saunders and Hoyt 1992). We now appreciate that cells orches-
trate dynamic microtubules, attachment sites at kinetochores, and
motor proteins to assemble the mitotic apparatus and separate
chromosomes reliably into the daughter cells (McIntosh 2016),
which are divided by cytokinesis.

The past three decades led to the discovery and characteri-
zation of many novel proteins that modify all aspects of micro-
tubule assembly. These proteins have functions comparable to
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the proteins that regulate actin assembly, but the two systems
evolved separately. The only homologous proteins are myosins
and kinesins (Kull et al. 1996) and actin filament cross-linking
proteins and microtubule end-binding proteins, which both use
calponin homology domains to interact with the polymers
(Hayashi and Ikura 2003). Other microtubule-binding proteins
sequester tubulin dimers (stathmin (Belmont and Mitchison
1996)), nucleate assembly by forming a template for the minus
end (y-tubulin ring complex (Zheng et al. 1995)), stabilize mi-
nus ends (CAMSAPs (Akhmanova and Steinmetz 2015)), sta-
bilize the wall of the microtubule (MAP2/tau family (Cleveland
et al. 1977)), kinesins that promote dissociation of subunits
from the ends (kinesin 8, kinesin 13, and kinesin 14 (Howard
and Hyman 2007)), and AAA-ATPases that sever microtubules
by extracting subunits from the wall (katanin and related pro-
teins (McNally and Vale 1993)).

Talented people matter

The reductionist strategy would not have been so successful
without dozens of investigators who entered the field over the
past five decades. They brought biophysical and biochemical
methods, molecular biology and genetics, numerous advances
in light and electron microscopy and mathematical modeling.
Even more important, they brought curiosity, analytical acu-
men, and creative ideas to explain complicated processes.

I have been particularly fortunate to have mentored 27 grad-
uate students and 50 postdocs as well as eager undergraduate
and medical students and skilled research assistants, who
worked and learned in my laboratory. These individuals have
achieved great success in academic science and education, pub-
lishing, the biopharmaceutical industry, and leadership posi-
tions in the biomedical research community. A long list of
collaborators, including the authors of some of the papers in
this volume, has helped with their expertise and ideas. And, of
course, all of us are grateful to the National Institutes of Health,
which has funded my laboratory continuously since 1972.
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