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Abstract
The human genome codes for 21 S100 protein family members, which exhibit cell- and tissue-specific expression patterns.
Despite sharing a high degree of sequence and structural similarity, the S100 proteins bind a diverse range of protein targets and
contribute to a broad array of intracellular and extracellular functions. Consequently, the S100 proteins regulate multiple cellular
processes such as proliferation, migration and/or invasion, and differentiation, and play important roles in a variety of cancers,
autoimmune diseases, and chronic inflammatory disorders. This review focuses on the development of S100 neutralizing
antibodies and small molecule inhibitors and their potential therapeutic use in controlling disease progression and severity.
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In humans, there are 21 S100 protein family members
(Zimmer et al. 2012). The nomenclature for this family of
small calcium-binding proteins derives from the observation
that the two founding family members, S100A1 and S100B,
are soluble in 100% saturated ammonium sulfate (Moore
1965). The majority of S100 genes cluster on the long arm
of human chromosome 1 (S100A1–S100A14, S100A7s, and
S100A16), with the remaining family members distributed on
chromosomes 4 (S100P), 5 (S100Z), 21 (S100B), and the X
chromosome (S100G) (Henry et al. 2012; Ravasi et al. 2004).
Although the genomic loci encoding the S100 proteins are
highly conserved in mammals, there are species differences
(e.g., between humans and mice) that complicate the biolog-
ical evaluation of several family members and their contribu-
tion to human disease. For example, the human S100A7 locus
encodes three proteins (S100A7, S100A7A, and S100A7L2),
whereas the mouse locus encodes a single protein (S100A7A)
(Zimmer et al. 2012). Additionally, S100A12 and S100P are
not expressed in mice.

S100 family members share a high degree of sequence and
structural similarity, and typically form homodimers, with the
exception of the S100A8/S100A9 heterodimer (Donato et al.
2013; Zimmer et al. 2012). Each S100 subunit is composed of

four α-helices and contains two EF-hands (helix-loop-helix
motifs that are Ca2+-binding domains): a C-terminal canonical
EF-hand composed of 12 amino acids and anN-terminal S100
EF-hand composed of 14 amino acids that is unique to the
S100 family (Kawasaki et al. 1998). The two EF-hands are
connected by a loop or hinge region consisting of 12–14 ami-
no acids, which exhibits the most sequence divergence within
the family and is critical for interactions with target proteins
(Marenholz et al. 2004). In the absence of a protein target,
S100 proteins exhibit modest Ca2+-binding affinities that are
well below intracellular calcium concentrations. However,
Ca2+-binding affinities increase by 5–300-fold in the presence
of peptide and protein targets (Malashkevich et al. 2008;
Markowitz et al. 2005; Wright et al. 2009). This increase in
affinity can be understood in terms of structural rearrange-
ments, as Ca2+ binding induces a significant conformational
reorganization that reorients helix 3 to expose a hydrophobic
cleft required for target recognition (Fig. 1). Several studies
suggest that in the absence of a protein target, Ca2+-bound
S100 proteins sample a number of conformational states with
predominantly weak Ca2+-binding affinities; target binding
reduces dynamics throughout the protein and shifts the ensem-
ble towards conformations with high Ca2+-binding affinities
(Liriano et al. 2012; Palfy et al. 2016). As a consequence of
this coupling, target binding is typically Ca2+-dependent.
Despite the fact that Ca2+ binding induces a similar conforma-
tional reorganization in all S100 family members examined to
date, structural studies of S100-target complexes have shown
that S100 family members utilize distinct mechanisms for
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target recognition (Bhattacharya et al. 2003; Dempsey et al.
2012; Kiss et al. 2012; Lee et al. 2008; Oh et al. 2013;
Ozorowski et al. 2013; Rety et al. 2000; Rety et al. 1999;
Rustandi et al. 2000; Wright et al. 2009). The distribution of
hydrophobic and charged residues, as well as differences in
surface geometries, all contribute to the range of target binding
modes observed amongst S100 family members (Ozorowski
et al. 2013; Ramagopal et al. 2013; Wafer et al. 2013). The
growing number of S100-target structures has provided

important insights into the chemical and physical determi-
nants controlling target selectivity, which can be exploited
for the development of selective S100 therapeutics. This re-
view focuses on the development of S100 protein small mol-
ecule inhibitors, as well as more recent efforts on biologics
that specifically target S100 proteins in the extracellular
milieu.

Intracellular and extracellular functions

The diversity of the S100 proteins enables cells to selectively
respond to changes in intracellular Ca2+ levels. The S100 pro-
teins are expressed in a cell- and tissue-specific manner in
vertebrates (Donato 2003) and have non-redundant roles in a
wide range of biological processes such as proliferation, mi-
gration and/or invasion, and differentiation. S100 proteins reg-
ulate the activity of numerous intracellular protein targets, and
some targets are regulated by multiple S100 family members
(Donato et al. 2013; Hermann et al. 2012; Liu et al. 2015). The
Ca2+-dependent regulation of these interactions enables S100
proteins to function as calcium sensors that transduce changes
in intracellular calcium concentrations into biochemical and
biological responses. There are a number of well-
characterized S100-target protein interactions, including
S100B and p53 (Bresnick et al. 2015), S100A4 and
nonmuscle myosin-IIA (Dulyaninova and Bresnick 2013),
and S100A10 and annexin A2 (Liu et al. 2015). However,
the complete repertoire of intracellular protein targets and cor-
responding cellular functions are not well described for the
majority of S100 proteins.

S100s proteins lack signal sequences and are typically con-
sidered cytoplasmic proteins. Nonetheless, several family
members are secreted via nonclassical pathways and/or are
released by cells to function as extracellular factors (Donato
et al. 2013; Marenholz et al. 2004; Ryckman et al. 2003; Yan
et al. 2008). Extracellular S100 proteins have been reported to
bind several cell surface receptors, including the advanced
glycosylation end product-specific receptor (also known as
RAGE) (Koch et al. 2010; Park et al. 2010; Penumutchu
et al. 2014; Xie et al. 2007; Yatime et al. 2016), TLR4
(Ehrchen et al. 2009), CD36 (Tondera et al. 2017), FGFR1
(Riuzzi et al. 2011), CD166 antigen (also known as ALCAM)
(von Bauer et al. 2013), the interleukin-10 receptor
(Dmytriyeva et al. 2012), EMMPRIN (also known as cell
surface glycoprotein extracellular matrix metalloproteinase in-
ducer) (Hibino et al. 2013), neuroplastin-β (Sakaguchi et al.
2016), CD68 (Okada et al. 2016) and ErbB4 (Pankratova et al.
2018). Some S100 proteins, such as S100B and S100A12, are
reported to bind multiple cell surface receptors (Koch et al.
2010; Riuzzi et al. 2011; Tondera et al. 2017; von Bauer et al.
2013; Xie et al. 2007). Despite the identification of potential
cell surface receptors for several family members, for most

Fig. 1 S100 protein organization. Ribbon diagrams of apo-S100A4
(PDB 1M31), Ca2+-S100A4 (PDB 2Q91), and the Ca2+S100A4-
myosin-IIA (MIIA) peptide complex (PDB 3ZHW). The individual
S100A4 subunits are shown in blue and green, the Ca2+ ions are shown
as gray spheres, and the myosin-IIA peptide is in yellow. Ca2+ binding
induces a significant conformational reorganization that reorients helix 3
to expose a hydrophobic cleft that is required for target binding
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S100 proteins, the biochemical mechanisms mediating these
S100-receptor interactions and the downstream consequences
of S100 signaling are not known.

Specificity and regulation of S100-receptor
interactions

Multiple S100 proteins bind TLR4 (Cerezo et al. 2014; Foell
et al. 2013; Vogl et al. 2007) and RAGE (Leclerc et al. 2009).
The ectodomain of RAGE is composed of three immunoglob-
ulin domains (V, C1, and C2), and several S100 proteins have
been reported to bind each domain, suggesting that these S100
proteins may have overlapping binding sites (Leclerc and
Heizmann 2011). For example, S100B, S100A1, S100A2,
S100A5, and S100A6 all bind the V domain (Leclerc et al.
2009; Ostendorp et al. 2007; Yatime et al. 2016). Given that
multiple extracellular S100 proteins are typically associated
with specific pathologies (e.g., elevated S100A8/S100A9,
S100A4, and S100B in the serum of rheumatoid arthritis pa-
tients) (Austermann et al. 2018; Bresnick et al. 2015), this
raises the question as to whether distinct S100 proteins can
elicit differential signaling responses via interactions with the
same cell surface receptors.

Recent studies with S100A8/S100A9 suggest that oligo-
merization can locally restrict S100 protein activity.
Biochemical and cellular studies indicate that extracellular
S100A8/S1009 elicits many of its effects via interactions with
TLR4 (Cheng et al. 2008; Vogl et al. 2007) and RAGE (Bjork
et al. 2009; Ghavami et al. 2008; Turovskaya et al. 2008).
While the S100A8/S100A9 heterodimer can bind TLR4, the
higher calcium ion concentrations found in the extracellular
milieu (in the range of 2–3 mM (Brini et al. 2013; Goldstein
1990)) induces the formation of S100A8/S100A9 tetramers.
This masks the TLR4 binding interface on the S100A8/
S100A9 heterodimer, providing a mechanism for modulating
S100 biological activity (Vogl et al. 2018). In contrast,
S100A8 or S100A9 homodimers, which also bind TLR4, do
not form tetramers (Vogl et al. 2006). Thus, this autoinhibitory
mechanism allows for selective regulation of S100A8/
S100A9 heterodimer activity. Oligomerization may also con-
tribute to the regulation of other S100 protein-receptor inter-
actions. For example, in the presence of calcium, S100B
forms stable tetramers that bind RAGE with higher affinity
than the S100B dimer (Ostendorp et al. 2007). Similarly, cal-
cium and zinc induce the formation of S100A12 hexamers,
which are required for RAGE and TLR4 binding (Kessel et al.
2018; Moroz et al. 2009). In addition, S100 oligomers are
reported to bind different multimeric states of RAGE (e.g.,
S100A12 hexamers bind RAGE tetramers and S100B dimers
bind RAGE dimers) (Xie et al. 2007; Xue et al. 2016).
Together, these data suggest that S100 protein oligomerization

is an important mechanism for regulating the functional diver-
sity of this family of proteins.

In addition to oligomerization, covalent modification may
also regulate the extracellular functions of S100 proteins. An
intramolecular disulfide bond modulates the antimicrobial ac-
tivity of S100A7 (Cunden et al. 2017) and transglutaminase 2-
mediated crosslinking of S100A11 dimers is required for sig-
naling via the p38MAPK pathway in chondrocytes (Cecil and
Terkeltaub 2008). Other types of post-translation modifica-
tions may also regulate oligomerization and/or activity. For
example, citrullination promotes the formation of a S100A3
homotetramer (Kizawa et al. 2008), and a number of S100
proteins are S-nitrosylated, including S100B (Bajor et al.
2016), S100A1 (Lenarcic Zivkovic et al. 2012) and S100A8/
A9 (Lim et al. 2011). Other types of oxidative modification
such as S-glutathionylation, cysteinylation and the formation
of intra- and intersulfinamide bonds have also been observed
in S100 proteins (Lim et al. 2011; Orre et al. 2007).
Additionally, sumoylation and phosphorylation of S100 pro-
teins have been reported (Miranda et al. 2010; Sakaguchi et al.
2004; Schenten et al. 2018).Whether S100 proteins with post-
translational modifications are released into the extracellular
environment and how these modifications modulate S100
structure or function has largely not been determined.

S100 neutralizing antibodies

During both local and systemic inflammation, tissue and se-
rum levels of several S100 proteins correlate with disease
severity (Donato et al. 2013; Kessel et al. 2013; Nefla et al.
2016). In addition, extracellular S100 proteins can function as
damage-associated molecular pattern (DAMP) proteins, there-
by triggering proinflammatory responses via binding to pat-
tern recognition receptors expressed on epithelial cells and
innate and adaptive immune cells. This can induce autoim-
mune conditions and inflammatory disorders (Donato et al.
2013; Foell et al. 2007; Nefla et al. 2016; Xia et al. 2017;
Zackular et al. 2015). Function-blocking antibodies targeting
cell surface receptors and ligands are major classes of protein
therapeutics for the treatment of cancers and immune disor-
ders (Brufsky 2010; Mansh 2011; Saif 2013; Scott et al.
2012). Given the substantial literature showing that extracel-
lular S100 proteins mediate inflammatory responses in cancer
and autoimmune and chronic inflammatory diseases
(Austermann et al. 2018; Bresnick et al. 2015; Grigorian
et al. 2008), S100 neutralizing antibodies may provide a novel
therapeutic strategy. To date, antibodies targeting S100A8/A9,
S100A4, S100A7 (Padilla et al. 2017), and S100P (Dakhel
et al. 2014) have demonstrated efficacy for a number of path-
ological conditions. Since antibodies targeting S100A8/A9
and S100A4 have been examined in the most detail, our
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discussion will focus on studies examining the biological ac-
tivity of these antibodies.

S100A8/A9

The S100A8/A9 heterodimers are the best characterized S100
family members with respect to extracellular functions.
Extracellular S100A8/S100A9 is strongly associated with in-
flammatory and autoimmune diseases, including rheumatoid
arthritis, spondyloarthritis, systemic sclerosis, and systemic
lupus erythematosus (Austermann et al. 2018). Function-
blocking S100A9 antibodies inhibit dextran sulfate sodium
(DSS)-induced acute colitis and attenuate azoxymethane/
DSS-induced colitis-associated cancer (Zhang et al. 2017b),
reduce neutrophilic inflammation and airway reactivity in a
murine asthma model (Lee et al. 2017), and diminish immune
cell infiltration and preserve bone/collagen in a model of rheu-
matoid arthritis (Cesaro et al. 2012).

In solid cancers, elevated S100A8/A9 expression within
the tumor microenvironment or in plasma correlates with
aggressive disease (Cheng et al. 2008; Hauschild et al.
1999; Laouedj et al. 2017; Miller et al. 2017; Tidehag
et al. 2014). In particular, extracellular S100A8/A9 plays
an important role in the recruitment of myeloid cells and
myeloid-derived suppressor cells (MDSCs), which pro-
mote tumor growth and the establishment of the pre-
metastatic niche (Acharyya et al. 2012; Cheng et al.
2008; Hiratsuka et al. 2006; Ichikawa et al. 2011).
Tumor-derived TGFβ and VEGFA upregulate the expres-
sion and secretion of S100A8/A9 in lung-associated mye-
loid and endothelial cells (Hiratsuka et al. 2006). S100A8/
A9 induces the expression of serum amyloid 3, which in
turn recruits CD11b+ myeloid cells to pre-metastatic sites
(Hiratsuka et al. 2008). This process produces a proinflam-
matory environment that recruits circulating tumor cells
(CTCs) to the lung; S100A8 and S100A9 neutralizing an-
tibodies block the recruitment of both myeloid cells and
CTCs (Hiratsuka et al. 2006; Hiratsuka et al. 2008). In
acute myeloid leukemia (AML), S100A8 antibodies, but
not S100A9 antibodies, induce AML cell differentiation,
reduce leukemic burden and increase survival (Laouedj
et al. 2017). In addition, peptibodies, peptide-Fc fusion
proteins that target S100A8 and S100A9, reduce tumor
burden in multiple cancer models (Qin et al. 2014).
Lastly, in murine models of breast cancer, S100A9 anti-
bodies have been used in conjunction with single-photon
emission computed tomography (SPECT) for the in vivo
detection of S100A8/A9 as a marker for the establishment
of the pre-metastat ic niche (Becker et al . 2015;
Eisenblaetter et al. 2017). Together, these studies highlight
the potential use of S100A8 and S100A9 antibodies as
both therapeutic and diagnostic reagents.

S100A4

S100A4 has a direct and causative role in tumor metastasis
(Bresnick et al. 2015). In animal models of breast and other
cancers, S100A4 overexpression in tumor cells promotes an
aggressive metastatic phenotype, while inhibition of S100A4
expression significantly reduces metastatic burden
(Ambartsumian et al. 1996; Davies et al. 1993; Davies et al.
1996; Grigorian et al. 1996; Maelandsmo et al. 1996;
Takenaga et al. 1997; Xue et al. 2003). S100A4 is also
expressed in normal cells and tissues, including fibroblasts,
lymphocytes, macrophages, osteoclasts, and other bone
marrow-derived cells (Bruhn et al. 2014; Erlandsson et al.
2013; Hashimoto et al. 2013; Li et al. 2010; Takenaga et al.
1994). Stromal S100A4, and in particular extracellular
S100A4, is thought to promote tumor metastasis by stimulat-
ing an inflammatory, pro-tumorigenic environment (Bettum
et al. 2014; Grum-Schwensen et al. 2005; Hansen et al.
2015; O'Connell et al., 2011). Consistent with a role in medi-
ating inflammatory responses, extracellular S100A4 is associ-
ated with the pathogenesis of several autoimmune and chronic
inflammatory diseases such as osteoarthritis (Amin and Islam
2014; Yammani et al. 2009), rheumatoid arthritis
(Klingelhofer et al. 2007; Oslejskova et al. 2009), psoriasis
(Zibert et al. 2010), Crohn’s disease (Cunningham et al.
2010), bacterial colitis (Zhang et al. 2017a), and fibrosis
(Chen et al. 2015). S100A4 blocking monoclonal antibodies
have been shown to limit tumor metastasis and T cell recruit-
ment in syngeneic mouse models of breast cancer (Grum-
Schwensen et al. 2015; Klingelhofer et al. 2012), to inhibit
the growth of pancreatic tumors in immunocompromised
mice (Hernandez et al. 2013), to decrease azoxymethane/
DSS-induced colon inflammation and tumorigenesis (Zhang
et al. 2018), and to reduce epidermal thickness in a mouse
model of human psoriasis (Zibert et al. 2010). While these
studies support a role for extracellular S100A4 in promoting
an inflammatory phenotype, the receptors responsible for
S100A4-mediated inflammatory responses are not well
characterized.

In vitro, biochemical studies support the interaction of
S100A4 with RAGE and TLR4 (Bjork et al. 2013; Leclerc
et al. 2009). While extracellular S100A4 is reported to stimu-
late downstream signaling events in a number of systems, the
role of RAGE in mediating cellular responses to S100A4 is
controversial (Grotterod et al. 2010). Most notably, a number
of studies on extracellular S100A4 and associated down-
stream signaling events have reported that the bioactive form
of S100A4 is an oligomer of a higher order than the canonical
dimer (Cerezo et al. 2014; Forst et al. 2010; Novitskaya et al.
2000). However, these studies used a His-tagged S100A4,
which forms large multimers (~ 200 kDa) (Novitskaya et al.
2000). It is well established that histidine tags can affect the
oligomeric states and functions of proteins (Amor-Mahjoub
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et al. 2006; Majorek et al. 2014; Sprules et al. 1998). Indeed,
biophysical studies with untagged S100A4 in the presence of
calcium have reported the formation of only S100A4 dimers
and tetramers, but not higher order oligomers (House et al.
2011; Malashkevich et al. 2008; Streicher et al. 2010). The
high molecular weight S100A4 species detected in the plasma
of cancer patients or synovial fluid from osteoarthritis and
rheumatoid arthritis patients may represent higher order
S100A4 oligomers, but could also represent S100A4 dimers
or tetramers bound to target proteins present in the extracellu-
lar milieu (Ambartsumian et al. 1996; Klingelhofer et al.
2007). These observations underscore the need to rigorously
validate biochemical reagents and highlight the need to re-
evaluate the biological functions of extracellular S100A4
using untagged S100A4.

Small molecule inhibition of S100 proteins

Given the roles of S100 proteins in proinflammatory process-
es in human disease, strategies for the pharmacological mod-
ulation of S100 protein function have received considerable
attention. One approach is the inhibition of S100 gene tran-
scription (Gao et al. 2018; Sack et al. 2011; Stein et al. 2011).
Transcription of S100A4 is directly mediated by theβ-catenin/
TCF complex (Stein et al. 2006), and compounds that induce
β-catenin degradation and/or block the formation of the β-
catenin/TCF complex (e.g., calcimycin—a calcium iono-
phore; niclosamide—an antihelminth drug; and sulindac—a
nonsteroidal anti-inflammatory drug) inhibit S100A4 tran-
scription (Dahlmann et al. 2016; Sack et al. 2011; Stein et al.
2011). In addition, duloxetine, a serotonin-norepinephrine re-
uptake inhibitor, was identified recently as a S100B transcrip-
tional inhibitor (Gao et al. 2018). However, the effectiveness
of this general strategy may be limited by the long half-life of
S100 proteins, as a study in NIH3T3 cells showed that several
S100 proteins have half-lives on the order of 90–140 h
(Schwanhausser et al. 2011). Such long half-lives can make
it difficult to sufficiently reduce protein levels to achieve a
therapeutic response. In addition, these transcriptional inhibi-
tors are known to affect the expression of multiple gene tar-
gets, which could cause significant toxicities (Dahlmann et al.
2016). Despite these potential limitations, both S100A4 and
S100B transcriptional regulators have exhibited efficacy in a
number of cancer models (Dahlmann et al. 2016; Gao et al.
2018; Stewart et al. 2016). Moreover, niclosamide, an FDA-
approved drug, is currently under evaluation for safety and
efficacy in a phase II clinical trial for patients with metastatic
colorectal cancer whose disease has progressed under previ-
ous therapy (Burock et al. 2018).

Most protein-protein interactions are typified by large
interfaces composed of relatively Bflat^ featureless sur-
faces that are difficult to disrupt with small molecules.

However, the target binding clefts of S100 proteins, which
are exposed upon Ca2+ binding, can readily bind small
molecules. As a consequence, there has been significant
success in the identification of small molecules that block
S100-target protein interactions. Several anti-allergy drugs
such as cromolyn, amlexanox, tranilast, and olopatadine
are reported to bind multiple S100 proteins (Fig. 2)
(Mack and Marshall 2010; Okada et al. 2002; Rani et al.
2010; Shishibori et al. 1999). Cromolyn, which blocks the
coimmunoprecipitation of S100P with RAGE, also attenu-
ates the growth of pancreatic tumors and sensitizes tumors
cel l s to gemci tabine , a chemotherapeut ic agent
(Arumugam et al. 2013; Kim et al. 2012). Amlexanox
is a S100A13 antagonist that blocks interactions with
fibroblast growth factor 1 (FGF1), and inhibits the release
of the S100A13-FGF1 complex in vivo (Mouta
Carreira et al. 1998). In addition, amlexanox sensitizes
MLL/AF4-positive acute lymphoblastic leukemia to
TNFα treatment via the downregulation of S100A6 ex-
pression through an unknown mechanism (Tamai et al.
2017). While these anti-allergic compounds exhibit prom-
ising effects on S100-mediated pathologies they are not
selective S100 inhibitors. For example, amlexanox also
inhibits IκB kinase ε and TANK-binding kinase 1, proteins
that promote a proinflammatory response associated with
the development of obesity (Beyett et al. 2018; Reilly et al.
2013). These observations suggest that the anti-
inflammatory responses observed with amlexanox and oth-
er anti-allergics are likely due to the modulation of multi-
ple cellular pathways.

Phenothiazines, a class of anti-psychotic compounds, also
interact with multiple S100 family members (Garrett et al.
2008; Marshak et al. 1985; Pingerelli et al. 1990; Wilder
et al. 2010) as well as other EF-hand-containing proteins such
as troponin C and calmodulin (Fig. 2) (Cook et al. 1994;
Feldkamp et al. 2015; Vandonselaar et al. 1994; Vertessy
et al. 1998). Structural studies of the S100A4-trifluoperazine
(TFP) complex demonstrate that two TFP molecules reside in
the target binding cleft of each S100A4 subunit, and that TFP
binding induces the assembly of Ca2+-S100A4-TFP dimers
into a five-fold symmetric pentameric ring (Malashkevich
et al. 2010). Prochlorperazine (PCP) also induces the forma-
tion of a pentameric ring of Ca2+-S100A4 dimers.
Phenothiazine-mediated oligomerization may be unique to
S100A4, as chlorpromazine does not induce the formation
of higher order S100B oligomers (Wilder et al. 2010).
Notably, the architectures of the TFP-binding pockets, the
number of bound TFP molecules, and the orientation of the
TFP molecules are quite different between S100A4, troponin
C, and calmodulin (Cook et al. 1994; Feldkamp et al. 2015;
Malashkevich et al. 2010; Vandonselaar et al. 1994; Vertessy
et al. 1998). Given the differences in TFP-binding modes and
the large number of phenothiazine derivatives that are
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available, it may be possible to selectively target these proteins
with appropriate phenothiazine analogs (Brem et al. 2017;
Montoya et al. 2018; Pluta et al. 2017).

Other examples of small molecule S100 inhibitors in-
clude covalent inhibitors that modify cysteine residues in
helix 4 of S100B and S100A4. Despite the proximity of
these cysteines to the C-terminal EF-hand, their modifica-
tion does not affect Ca2+ binding, but does disrupt Zn2+-
mediated conformational rearrangements in S100B, and
target binding to both S100A4 and S100B (Cavalier et al.
2014; Dulyaninova et al. 2011). While these compounds
exhibit efficacy in disrupting S100-target interactions
in vitro, selectivity is an issue. The covalent S100A4 and
S100B inhibitor, 2,3-bis[2-hydroxyethylsulfanyl]-1,4-
naphthoquinone, also inhibits the activities of multiple pro-
tein tyrosine phosphatases through the modification of an
active site cysteine (Brisson et al. 2005; Vogt et al. 2008).
Similarly, other covalent S100B inhibitors are reported to
have a number of targets, including transglutaminase 2

(Palanski and Khosla 2018), alcohol dehydrogenase
(Koppaka et al. 2012), and protein kinase C (Herbert
et al. 1990). Nonetheless, these compounds represent new
chemical scaffolds for the development of S100 inhibitors
with improved affinity and specificity.

In addition to covalent S100 inhibitors, non-covalent inhib-
itors include paquinimod (ABR-215757) and tasquinimod
(ABR-215050), quinoline-3-carboxamide derivatives that dis-
rupt the interaction of S100A8/S100A9 with TLR4 and
RAGE (Bjork et al. 2009; Kallberg et al. 2012); 4-aroyl-3-
hydroxy-5-phenyl-1H-pyrrol-2(5H)-one analogs and
substituted 1,2,4-triazoles that inhibit the interaction between
S100A10 and annexin A2 (Reddy et al. 2012; Reddy et al.
2011); pentamidine, which blocks the interaction of S100B
with p53 (Charpentier et al. 2008; Markowitz et al. 2004),
and SEN205A and distamycin A, which target the S100B-
p53 interaction site (Agamennone et al. 2010; Cerofolini
et al. 2015) (Fig. 2). While these compounds have been eval-
uated for their ability to disrupt specific S100 protein-target

Fig. 2 Chemical structures of
S100 inhibitors
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interactions, it is unknown if they can inhibit the binding of all
ligands for a particular S100 protein.

Although current efforts are focused on improving the af-
finity, selectivity, and biological half-life of these S100 inhib-
itors, a number of these compounds have been evaluated in
murine models of disease and some have advanced to human
clinical trials. Paquinimod reduces inflammation and disease
progression and/or severity in a number of inflammatory
models (Fransen Pettersson et al. 2018; Tahvili et al. 2018;
Wache et al. 2015). Tasquinimod inhibits tumor growth and
metastasis in several models of prostate cancer, possibly by
limiting the recruitment of MDSCs and tumor-associated
macrophages to the tumor microenvironment (Raymond
et al. 2014). However, tasquinimod has also been reported to
be a potent negative allosteric regulator of HDAC4; inhibition
of HDAC4-mediated deacetylation of HIF-1α and other fac-
tors compromises cancer cell survival and tumor angiogenesis
(Isaacs et al. 2013). Regardless of whether tasquinimod acts
through S100A9, HDAC4, or both, tasquinimod improves
progression-free survival in patients with metastatic
castration-resistant prostate cancer (Fizazi et al. 2017; Pili
et al. 2011), but does not exhibit clinical efficacy in heavily
pre-treated patients with advanced hepatocellular, ovarian, re-
nal cell, and gastric cancers (Escudier et al. 2017). S100B is
overexpressed in cultured melanoma cells and is a strong bio-
marker for melanoma (Gaynor et al. 1980; Hauschild et al.
1999). Pentamidine, an FDA-approved anti-parasitic that

targets S100B and disrupts its interaction with p53
(Markowitz et al. 2004), exhibits efficacy against ex vivo mel-
anoma samples (Smith et al. 2010). Pentamidine is under
evaluation in patients with relapsed or refractory melanoma
and in patients with solid tumors, including pancreatic, colon,
and hepatocellular cancers (www.clinicaltrials.gov,
NCT00810953, NCT00809796, NCT02210182).

Within the S100 family, S100B has been most thoroughly
studied with respect to small molecule inhibitors. An exami-
nation of S100B-inhibitor complexes has revealed three dis-
crete pockets that accommodate small molecules (Fig. 3)
(Cavalier et al. 2014; Hartman et al. 2013). Site 1 is the target
binding site (e.g., TRTK peptide or p53 C-terminal peptide)
and involves interactions with residues from the hinge region
and helices 3 and 4. SEN205A is an example of a site 1
inhibitor (Agamennone et al. 2010). Site 2 interactions in-
volve residues from the hinge and helix 4, and site 3 interac-
tions utilize residues from the C-terminal loop and helix 1.
Examples of inhibitors that occupy these sites include com-
pounds that covalently modify Cys84 of S100B (site 2)
(Cavalier et al. 2014), and amlexanox and chlorpromazine,
which bind site 3 in S100A13 and S100B, respectively
(Rani et al. 2010; Wilder et al. 2010). For the S100B-
pentamidine and S100A4-TFP complexes, in which two in-
hibitor molecules are bound per S100 subunit, both sites 2 and
3 are occupied (Charpentier et al. 2008; Malashkevich et al.
2010). Despite minimal overlap with the S100B target–

Fig. 3 S100 protein-inhibitor complexes. a Ribbon diagram of Ca2+-
S100B showing the general locations of the three binding sites that can
accommodate small molecules and representative structures showing
small molecules bound to each site. The individual S100 subunits are
shown in light blue and green, the Ca2+ ions are shown as gray spheres
and the inhibitors as pink sticks. Site 1: S100B-SEN205A (PDB
3HCM)—involves residues from the hinge and helices 2 and 3. Site 2:
S100B-SC1475 (3,4-dimethoxydalbergione) (PDB 4PE4)—involves

residues from the hinge and helix 4. Site 3: S100A13-amlexanox (PDB
2KOT)—involves residues from the C-terminal loop and helix 1. b
Structures of Ca2+–S100B-pentamidine (PDB 3CR4) and c Ca2+–
S100A4-trifluoperazine (TFP) (PDB 3KO0) showing two inhibitor
molecules bound per S100 subunit and occupation of both sites 2 and
3. TFP binding induces the assembly of five Ca2+–S100A4-TFP dimers
into a pentameric ring
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binding cleft, pentamidine disrupts p53 binding, suggesting
that inhibition occurs via allosteric effects (Markowitz et al.
2004). Altogether, these data demonstrate that the binding of
small molecules at different sites within a given S100 subunit
allows for multiple mechanisms for inhibition, including small
molecule–mediated S100 oligomerization (S100A4-TFP and
S100A4-PCP), competitive inhibition with protein targets
(S100A13-amlexanox; S100B-SEN205A) and allosteric reg-
ulation (S100B-pentamidine) (Charpentier et al. 2008;
Malashkevich et al. 2010) (Agamennone et al. 2010; Rani
et al. 2010). Moreover, the unique surface geometries and
chemical features of each S100 family member should readily
allow selective targeting of these proteins.

Conclusion

Significant advances have been made in understanding the
intracellular and extracellular functions of S100 proteins
and their roles in modulating proinflammatory and other
responses that contribute to the development and progres-
sion of cancer and autoimmune and chronic inflammatory
diseases. Despite this progress, a detailed understanding
of the cell surface receptors that mediate extracellular
S100 signaling is lacking. Furthermore, we do not fully
understand the dynamics and regulation of S100 protein
secretion, or the role of oligomerization and post-
t ranslat ional modif icat ions in the regulat ion of
intracellular/extracellular S100 activity. The continued de-
velopment of antibodies and small molecule inhibitors
will be important for attributing specific biological activ-
ities to particular S100 proteins and for defining the con-
tribution of intracellular and extracellular S100 activities
in biological processes. Furthermore, these reagents may
have potential therapeutic applications for a number of
cancers and immune disorders. S100 protein biology con-
tinues to provide a rich area of investigation and the eval-
uation of the cell biological and biochemical functions of
these proteins will provide new insights into human
disease.
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