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Abstract

This is the fifth in the series of reviews developed as part of the Biomarkers of Nutrition for Development (BOND) pro-

gram. The BOND Iron Expert Panel (I-EP) reviewed the extant knowledge regarding iron biology, public health implica-

tions, and the relative usefulness of currently available biomarkers of iron status from deficiency to overload. Approaches

to assessing intake, including bioavailability, are also covered. The report also covers technical and laboratory considera-

tions for the use of available biomarkers of iron status, and concludes with a description of research priorities along with

a brief discussion of new biomarkers with potential for use across the spectrum of activities related to the study of iron

in human health. The I-EP concluded that current iron biomarkers are reliable for accurately assessing many aspects of

iron nutrition. However, a clear distinction is made between the relative strengths of biomarkers to assess hematological

consequences of iron deficiency versus other putative functional outcomes, particularly the relationship between mater-

nal and fetal iron status during pregnancy, birth outcomes, and infant cognitive, motor and emotional development. The

I-EP also highlighted the importance of considering the confounding effects of inflammation and infection on the inter-

pretation of iron biomarker results, as well as the impact of life stage. Finally, alternative approaches to the evaluation of

the risk for nutritional iron overload at the population level are presented, because the currently designated upper limits

for the biomarker generally employed (serum ferritin) may not differentiate between true iron overload and the effects

of subclinical inflammation. J Nutr 2018;148:1001S–1067S.

Keywords: iron, iron nutrition, iron status assessment, iron biology, iron biomarkers

Introduction

TheBiomarkers of Nutrition for Development (BOND) project
is designed to provide evidence-based advice to anyone with an

Published in a supplement to The Journal of Nutrition. The Biomarkers of
Nutrition for Development (BOND) project was developed by the nutrition pro-
gram staff of the Eunice Kennedy Shriver National Institute of Child Health and
Human Development (NICHD) of the NIH within the US Department of Health
and Human Services (DHHS). The initial 6 nutrients selected, iodine, vitamin
A, iron, zinc, folate, and vitamin B-12, were chosen for their high public health
importance. Expert panels on each nutrient were constituted and charged with
developing comprehensive reviews for publication in the BOND series. The
BOND program received its core funding from the Bill & Melinda Gates Foun-
dation, PepsiCo, the Division of Nutrition Research Coordination (DNRC, NIH),
the Office of Dietary Supplements (ODS, NIH), and the Eunice Kennedy Shriver
National Institute of Child Health and Human Development (NICHD, NIH). The
Supplement Coordinators for this supplement were Daniel J Raiten (NICHD,
NIH) and Jenica Abram, Academy of Nutrition and Dietetics (AND). Supplement

interest in the role of nutrition in health. Specifically, the BOND
program provides state-of-the-art information with regard to
the selection, use, and interpretation of biomarkers of nutrient
exposure, status, function, and effect (1). To accomplish this
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response to an invitation from NICHD, NIH within the US Department of Health
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pert Panel (I-EP) and other invited contributors and does not necessarily reflect
the official position of the NICHD, the NIH, the CDC/the Agency for Toxic Sub-
stances and Disease Registry, or the DHHS. In addition, individual members of
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objective, Iron Expert Panel (I-EP) members were recruited to
evaluate the literature and draft comprehensive reports on the
current state of the science with regard to specific nutrient bi-
ology and available biomarkers for assessing nutrient status at
clinical and population levels.

Phase I of the BOND project included the evaluation of
biomarkers for six nutrients: iodine, iron, zinc, folate, vita-
min A, and vitamin B12. The reviews for iodine, zinc, vita-
min A, and folate have been published previously (2–5). Read-
ers interested in obtaining information on iodine or folate
biomarkers that might be of use to their specific needs are
encouraged to utilize the interactive BOND Query-Based Sys-
tem located on the BOND website: http://www.nichd.nih.gov/
global_nutrition/programs/bond/Pages/index.aspx

This review represents the fifth in the series of reviews and
covers all aspects of iron biology relevant to the discovery, selec-
tion, use, and interpretation of biomarkers. The paper is orga-
nized to provide the reader with a full appreciation of the back-
ground history of iron as a public health issue, its biology, and
an overview of available biomarkers. Specific considerations for
the use and interpretation of biomarkers of iron nutrition across
a range of clinical and population-based applications are de-
scribed. The paper also highlights priority research needs for
moving this important global health agenda forward.

The biological importance of iron

Iron is the fourth most abundant element in the earth’s crust
and an essential component of almost all biological systems.
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Abbreviations used: ACD, anemia of chronic disease; ACT, α1-antichymotrypsin;
AGP, α1-acid glycoprotein; AOAC, Association of Official Analytical Chemists;
APP, acute-phase protein; APR, acute-phase response; BMP, bone morpho-
genetic protein; BOND, Biomarkers of Nutrition for Development; BRINDA,
biomarkers reflecting inflammation and nutrition determinants of anemia; CHr,
reticulocyte hemoglobin content; CNPase, cyclic nucleotide 3-phophohydrolase;
CRP, C-reactive protein; DCYTB, duodenal cytochrome b; DMT-1, divalent metal
transporter 1; DR, dietary record; EFSA, European Food Safety Authority; EP,
erythrocyte protoporphyrin; ERFE, erythroferrone; EuroFIR, European Food In-
formation Resource; EURRECA, European Recommendations Aligned; FAO,
Food and Agriculture Organization of the United Nations; FEP, free erythro-
cyte protoporphyrin; FPN, ferroportin; GAIN, Global Alliance for Improved Nu-
trition; HAMP, gene encoding hepcidin; HbE, hemoglobin E; Hct, hematocrit;
HFE, human hemochromatosis; HIF-1, hypoxia inducible factor 1; HIF2α, hypoxia
inducible factor 2α; HJV, hemojuvelin; ICSH, International Council for Standard-
ization in Haematology; IDA, iron-deficiency anemia; I-EP, Iron Expert Panel;
INSPIRE, Inflammation and Nutrition Science for Program/Policy and Interpreta-
tion for Research Evidence; IRIDA, iron-refractory iron-deficiency anemia; IRE,
iron-responsive element; IRP, iron-regulatory protein; MCH, mean corpuscular
hemoglobin; MCV, mean corpuscular volume; mTOR, mechanistic (mammalian)
target of rapamycin; NaFeEDTA, sodium iron ethylene diamine tetraacetic acid;
NRAMP2, natural resistance-associated macrophage protein 2; PSC, preschool
children; PT, proficiency testing; QA, quality assessment; QC, quality control;
RAS/RAF MAPK, rapidly accelerated fibrosarcoma mitogen-activated protein ki-
nase; RDW, red blood cell distribution width; Ret He, reticulocyte hemoglobin
equivalent; RNI, recommended nutrient intake; SF, serum ferritin; sHJV, soluble
hemojuvelin; sTfR, serum (soluble, plasma) transferrin receptor; SMAD, sons
of mothers against decapentaplegic; TB, tuberculosis; TfR, transferrin receptor;
TIBC, total iron-binding capacity; TSAT, percentage transferrin saturation; T3, tri-
iodothyronine; T4, thyroxine; TTSP, type-two transmembrane serine protease;
UIBC, unsaturated iron binding capacity; WRA, women of reproductive age; ZPP,
zinc protoporphyrin; ZPP/H, zinc protoporphyrin/heme ratio.

Humans require iron for energy production, oxygen transport
and utilization, cellular proliferation, and pathogen destruction.
Some of the seminal events in the evolution of our understand-
ing of iron in human health are outlined in Text Box 1 (6–21).

Text Box 1

Historical landmarks in iron biology
• Hippocrates (c 460 BC–c 370 BC) is credited as the

first physician to use iron as a topical therapeutic styptic.
• 1574: Nicolas Bautista Monardes (1493–1588)

published on the use of iron to treat a variety of systemic
illnesses (http://www.library.nd.edu/rarebooks/exhibits/
durand/indies/monardes.html) (6, 7).
• 1681: Sydenham is credited with first recognizing the

value of iron therapy for treatment of chlorosis (“green
sickness”), a commonly recognized disorder prevalent
among young women in in the 18th and 19th centuries
(6, 7).
• 1713: Nicolas Lemery and Etienne Geoffroy first

demonstrated the presence of iron in blood.
• 1831: Pierre Blaud, reported successful treatment of

the chlorosis with a combination of ferrous sulfate and
potassium carbonate (“Blaud’s pill”) (8).
• Amand Trousseau (1801–67) documented the use of

oral iron compounds and was the first to report the po-
tential risk of giving therapeutic doses of iron to patients
suffering from tuberculosis (9, 10).
• 1919: George Washington Carey recognized the im-

portance of iron for oxygen transport: “It is not simply the
heat that causes distress in a fever patient, but it is the lack
of oxygen in the blood due to a deficiency in iron, the car-
rier of oxygen” (11).
• 1925: Fontes and Thivolle discovered that there are

small quantities of iron in the plasma and the concentration
is decreased in experimentally induced anemia.
• 1932: Heath, Strauss and Castle provided incontro-

vertible evidence that parenterally administered iron im-
proved hemoglobin levels in patients with hypochromic
anemia. They also recognized the importance of iron for
the normal function of other tissues although most of their
attention was focused on what could be observed clin-
ically, i.e., abnormalities of the nails, skin and mucosae
(12).
• 1925: The plasma iron transport protein transferrin

was identified during the subsequent two decades (13).
• 1937: Laufberger crystalized the iron storage protein

ferritin from a horse’s spleen (14).
• 1937: McCance and Widdowson (15) concluded that:

1) iron is stored in the body and there are significant sex
differences; 2) healthy adults maintain iron balance despite
differences in dietary intake; 3) unlike some other minerals
very little iron is excreted in the urine; 4) the amount of iron
in the feces varies but is approximately equal to the amount
consumed in food, implying that only a small proportion
of dietary iron is absorbed; however, 5) because their meth-
ods were insufficiently sensitive to demonstrate that iron
absorption is highly regulated, they concluded that there
was no mucosal control.
• 1943: Hahn and Whipple demonstrated that: 1) iron

absorption is highly regulated and affected by anemia, hy-
poxia, and recent antecedent intake (16); and 2) to account
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for the regulation of iron balance they proposed that a
“mucosal block” occurs when the absorbing surface is ex-
posed to large quantities of iron limiting further absorp-
tion. Subsequent experiments revealed that the mucosal
block is not absolute and that body iron status has an im-
portant regulatory role in modulating iron absorption (17).
• 1963: Conrad and Crosby (18) demonstrated that: 1)

radioactive iron administered to rats enters mucosal cells;
and 2) when iron requirements are high, the iron is ex-
ported to the portal circulation; when low, the iron remains
in themucosal cells, as these cells are sloughed from the villi
after ∼48 h taking the iron with them and thereby limiting
absorption.
• 1997–2000: A mucosal iron transporter, respon-

sible for nonheme iron absorption, divalent metal
transporter 1 (DMT-1, also known as divalent cation
transporter), natural resistance-associated macrophage
protein (NRAMP2) (19), and the cellular iron exporter,
ferroportin (20) were identified.
• 2001: Park et al. (21) coined the name “hepcidin” to

describe a peptide that we now understand to be a major
regulator of iron absorption and homeostasis.

The unique biological properties of iron stem from the
marked variability of the Fe2+/Fe3+ redox potential which al-
lows iron sites to have redox potentials from ∼–0.5 V to ∼+0.6
V, encompassing virtually the entire biologically relevant range.
Protein ligands adapt these redox potentials to meet biologi-
cal requirements (22). TheMicronutrient Genomics Project (23)
provides a comprehensive list of iron-requiring proteins, includ-
ing enzymes, controlling factors, transporters, and storage pro-
teins, with the relevant genetic information. The GWAS web-
site (24) catalogues single nucleotide polymorphisms associated
with iron overload and iron deficiency (22, 25). A classification
system for iron-containing proteins based on biochemical func-
tion in humans was proposed by Crichton (22) and is outlined
in Text Box 2.

Text Box 2
Classification scheme for functional iron-containing pro-
teins in human biology

Hemoproteins
The iron atoms in hemoproteins are bound to the four

pyrrole rings of protoporphyrin IX (heme) and to one or
two axial ligands in the protein. There are three types of
hemoproteins:
• Oxygen carriers:
-Hemoglobin is the oxygen transporter in red blood

cells. Hemoglobin binds oxygen in the lung and transports
it throughout the bodywhere it is used in aerobic metabolic
pathways.

-Myoglobin is found in muscle tissue where it tem-
porarily stores oxygen making it readily available during
episodes of oxygen deprivation.
• Activators of molecular oxygen:
-Cytochrome oxidase
-Peroxidases
-Catalases
-Cytochrome P450s

• Electron transport proteins:
-Cytochromes transfer electrons from substrate oxida-

tion to cytochrome c oxidase.
Iron-sulfur proteins
• Iron-sulfur proteins mediate one electron redox pro-

cesses as integral components of the respiratory chain in
mitochondria.
• They are also involved in many other metabolic pro-

cesses including the control of gene expression, DNA dam-
age recognition and repair, oxygen and nitrogen sensing,
and the control of cellular iron acquisition and storage.

Other iron-containing proteins
•Mononuclear non-heme iron enzymes
• Dinuclear non-heme iron enzymes
• Proteins involved in iron transport and storage

Food sources and iron bioavailability

Foods that have relatively high iron content include liver, red
meat, beans, nuts, green leafy vegetables, and fortified breakfast
cereals, but iron absorption is very variable. For the purposes of
this review, bioavailability is the term used to describe the ex-
tent to which iron is absorbed from the diet and used for normal
body functions, which include incorporation into hemoglobin,
ferritin, and iron enzymes (26, 27). Throughout this review we
always use the nutritional definition of iron bioavailability. This
includes both the absorption and utilization of iron. Iron, unlike
other minerals, has no regulated excretion pathway, so absorbed
iron is more or less completely utilized for functional or storage
proteins. Bioavailability includes the iron used for storage, and
absorption and bioavailability are used synonymously. The his-
tory of the landmark observations that provided the basis for
our understanding of bioavailability is summarized in Text Box
3 (28–46).

Text Box 3

Landmarks in the study of iron bioavailability
• McCance, Edgecombe and Widdowson initiated the

study of dietary zinc and iron bioavailability and the in-
hibitory effect of phytate (28).
• Iron bioavailability studies were facilitated in the late

1940s and 1950s by the availability of two radioisotopes of
iron, 55Fe and 59Fe (29, 30). Iron absorption and bioavail-
ability are synonymous and were estimated based on the
measured incorporation of iron isotopes into hemoglobin.
• Observations by Dubach et al. (31) and Moore and

Dubach (30) simplified the methodical approach to mea-
suring food iron absorption and bioavailability, demon-
strating that 2 wk after the ingestion of radio iron, a mean
of 80% of the amount absorbed is present in the circulat-
ing red blood cells in healthy human volunteers, making it
unnecessary to undertake whole body counting.
• Layrisse et al. (32) demonstrated that absorption and

bioavailability from a food item in a meal is a property of
the composition of the meal, not of the specific food item,
which led to the “common pool” concept of iron absorp-
tion and removed the necessity to tag individual food items
(intrinsic labeling) when measuring nonheme iron absorp-
tion. A soluble isotopic tracer can be added to the meal. Its
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absorption and bioavailability will reflect the overall ab-
sorption and bioavailability from the meal (33, 34).
• This model was expanded to recognize the indepen-

dent absorption of heme iron and the existence of contam-
inant iron, i.e., insoluble nonfood iron derived from dust,
processing machinery, and cooking utensils (35) in the diet
that is not available for absorption (36).
• Radio-isotope methodology has now been largely re-

placed by stable isotopes (37).
• The important enhancers and inhibitors of iron ab-

sorption have been identified.
-Ascorbic acid (38), and, to a lesser extent, other organic

acids (39) and animal tissue (40, 41) are the most effective
enhancers of nonheme iron absorption.

-Phytate (42, 43) and polyphenols (44, 45) are the most
important inhibitors; calcium reduces iron absorption in
single-meal studies (46).

The two major forms of food iron are heme iron in meat
products (10–15% of daily dietary iron intake in populations
that eat meat) and non-heme iron in both plant foods and ani-
mal source foods, including meat (47). Ferritin iron, present at
fairly high levels in liver and legume seeds such as beans, and the
various forms of iron used for food fortification, are important
sources of non-heme iron. Heme iron is always well absorbed.
On the other hand, the absorption of non-heme iron, includ-
ing ferritin iron, depends on the iron status of the individual
consuming the meal as well as its composition. Text Box 4 (44,
47–55) contains some key points regarding the various sources
of iron.

Text Box 4

Relative absorption of dietary sources of iron
Heme iron
• Muscle tissue contains heme iron in the form of

hemoglobin and myoglobin.
• Heme iron is estimated to contribute 10–15% of the

total iron in meat-eating populations, but because of its
higher and more uniform absorption (estimated at 15–
35%), it may contribute up to 40% or more of the total
absorbed iron (47).
•The proportion of heme iron in leanmeats ranges from

∼30% in white meats to ∼70% in red meats (48).
Ferritin iron
• Liver is rich in ferritin iron.
• Legume seeds such as beans may also contain up to

30% of their iron as ferritin iron (49).
• Recent studies indicate that iron in plant ferritin is

readily released during cooking and digestion (50).
• In humans, ferritin iron is absorbed to the same extent

as ferrous sulfate when consumed in a meal (51).
Nonheme iron
• Present in plant and animal foods.
• Varies widely in absorption from <1% to >90% de-

pending on the iron status of the consumer and the pres-
ence of iron absorption inhibitors or enhancers in the food.

-The iron in beans and leafy vegetables, for example, is
poorly absorbed due to the presence of phytate and phe-
nolic compounds (44, 52).

-When these foods are consumed in composite meals
together with foods providing iron absorption enhancers,
such as ascorbic acid and muscle tissue, absorption may be
increased to nutritionally useful levels (53, 54).

Fortification iron (e.g., ferrous sulfate, ferrous fumarate;
for full list see below)
•Added to foods including cereal products, infant foods,

condiments, milk and dairy products, and meal replace-
ments.
• Iron compounds that are soluble in water or dilute

acid enter the common nonheme iron pool in the gastroin-
testinal tract and are absorbed to the same extent as native
nonheme iron compounds in the meal.
• Some iron fortification compounds, however, are not

soluble in the gastric acid, so do not fully enter the common
iron pool, and are poorly absorbed (48, 55).

Factors which influence non-heme iron bioavailability.

Food components influence iron bioavailability by influencing
iron absorption but have no influence on iron utilization. Food
components that are inhibitors of non-heme iron absorption
in general bind iron in the gastrointestinal tract and prevent
its absorption, whereas enhancers of iron absorption are food
components that weaken or prevent iron binding by inhibitory
compounds by reducing the more reactive ferric iron to its less
reactive ferrous state or additionally by binding iron in bioavail-
able complexes, thus preventing its binding to the inhibitor.
Table 1 contains descriptions of the most common factors af-
fecting iron absorption (26, 42, 44, 46, 52, 56–75).

Fortification iron. Iron bioavailability in relation to fortifi-
cation compounds refers to both absorption and utilization,
although the properties of the iron fortification compounds
influence only iron absorption. The properties, including
relative bioavailability, of iron compounds used in food fortifi-
cation have been extensively reviewed (76). The order of pref-
erence for use in food fortification is as follows (77): 1) ferrous
sulfate; 2) ferrous fumarate; 3) encapsulated ferrous sulfate or
encapsulated ferrous fumarate; 4) electrolytic iron (a pure form
of small particle size iron powder produced by an electrolytic
processe) or ferric pyrophosphate; 5) sodium iron ethylene di-
amine tetraacetic acid (NaFeEDTA) (78) is preferred for phytic-
acid-containing foods; 6) iron amino acid chelates, particularly
iron-glycinate chelates, have also been used as iron supplements
and as food fortificants for liquid milk, dairy products, wheat
rolls, and multinutrient beverages (79, 80). However, more
rigorous trials are required to establish their potential utility.

Text Box 5 (57, 58, 76–79, 81–83) contains some general
caveats about the use of iron fortificants and enhancers of iron
absorption).

Nutrient-nutrient interactions. Iron, iodine, and vitamin A
are the most common micronutrient deficiencies and often
occur concurrently in infants, women, and children in resource-
constrained settings. Deficiencies are most often due to higher
requirements of these risk groups, low dietary intake, and poor
bioavilability in food sources (84). In addition to the multiple
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TABLE 1 Common factors affecting iron absorption

Factor Description

Inhibitors
Phytic acid (myo-inositol

hexaphosphate)
• The main inhibitor of nonheme iron absorption from plant-based diets

• Relatively high levels are found in whole grain cereals and legume seeds
• A dose-dependent effect on iron absorption that starts at very low concentrations (42, 56)
• At phytic acid:iron molar ratios >6, iron absorption is greatly inhibited from composite meals containing small amounts of enhancing

components, whereas in cereal or soy meals with no enhancers, iron absorption is greatly inhibited by a molar ratio >1 (26)
• Food-processing methods, such as milling, germination, fermentation, and the addition of phytase enzymes, can be used to degrade phytic

acid and improve iron absorption from traditional or processed foods (57)
• Ascorbic acid reverses the inhibitory effect of phytate
• Ascorbic acid:iron molar ratio of 2:1 or 4:1 is recommended to overcome phytic acid inhibition of iron absorption in cereal foods that can be

packaged to avoid ascorbic acid losses during storage (58)
• EDTA will also overcome phytate inhibition in fortified foods such as wheat flour (59)

Polyphenols • Inhibit iron absorption in a dose-dependent way, although the strength of the binding depends on the structure of the phenolic compound
• Sources include: beverages (tea, coffee, cocoa, red wine) (60), vegetables (spinach, aubergine) (61), legumes (colored beans) (52), and

cereals such as sorghum (44)
• Polyphenol compounds vary widely in structure and extent of polymerization
• The gallate-containing tea polyphenols appear to be most inhibitory (60)
• Sorghum polyphenols are also very inhibitory
• Although colored bean and sorghum varieties containing high levels of phytate and polyphenols are strongly inhibitory (48), the polyphenol

inhibition is small relative to phytate inhibition (62).
• Ascorbic acid, and to a lesser extent EDTA, will overcome the polyphenol inhibition of iron absorption (63)

Calcium • Calcium is a relatively weak iron absorption inhibitor causing a dose-dependent inhibition in simple meals but little or no inhibition in
complex meals containing absorption enhancers (46)

• In a small bread meal, inhibition of iron absorption was dose related ≤ 300 mg Ca, with 165 mg Ca causing ∼50% inhibition whether added
as calcium chloride or 150 mL milk (64)

• The same quantity of milk added to a meal of steak, carrots, French fries, Camembert cheese, apple, bread, and water had no effect (65)
• Ascorbic acid readily overcomes the calcium inhibition of iron absorption (66)

Protein • Peptides from partially digested food proteins can inhibit iron absorption depending on their nature
• Peptides from legume proteins and some milk proteins are inhibitory
• The inhibitory nature of soy protein may be due to the peptides formed on digestion of the conglycinin fraction (67)
• The inhibitory nature of casein is thought to be due to nonabsorbable complexes formed between iron and casein phosphopeptides (68)

Enhancers
Ascorbic acid (vitamin C) • Ascorbic acid is the best-known and most potent enhancer of iron absorption either when present in fruits and vegetables (69) or added to

fortified foods as the pure compound
• Its facilitating effect is due to its ability to convert ferric to ferrous iron at low pH and to its chelating properties (70)
• Its effect is dose dependent and it can overcome much or all of the inhibition related to other food components as well as enhance the

absorption of all currently available iron fortification compounds (71) except NaFeEDTA (72)
• Its main disadvantage is that it is sensitive to losses during food processing, storage, and cooking because of oxidation

Muscle tissue •Muscle tissue from beef, lamb, chicken, pork, and fish, as well as liver tissue, enhance iron absorption from inhibitory meals (73)
• The mechanism is currently presumed to be linked to partially digested peptides
• Cysteine-containing peptides could potentially reduce ferric iron to the ferrous form and chelate iron in the same way as ascorbic acid; the

facilitating effect of enzymatically digested beef extract can be removed by oxidizing the cysteine residues (74)
• Unlike other food proteins, muscle proteins are rapidly digested by pepsin; conceivably, the infusion of small peptides in the jejunum could

be responsible for solubilizing iron and improving absorption (75)

exposure scenarios, it is also important to recognize that
nutrients do not function in isolation and often interact within
common pathways and biological systems. Examples of these
types of interactions include the influence of iron deficiency on
iodine utilization and the role of vitamin A, riboflavin, folic
acid, vitamin B12, and ascorbic acid as potential causes of ane-
mia (85). These complex interactions demand a more integrated
approach to nutritional assessment in the global health context.

Text Box 6 (84, 86–96) contains some examples of iron-
nutrient interactions. It is not a comprehensive list, but focuses
on some of the best characterized of these interactions.Although
uncertainty remains with regard to the implications of these
interactions, the intent is to highlight both the need for more
research and for awareness of their relationships, particularly
in the context of nutritional assessment at both individual and
population levels.

Text Box 5

General caveats regarding commonly used iron fortificants
• WHO/FAO (2006) provided recommendations for

iron compounds to be added to specific foods, including ce-
real products, condiments, milk, and cocoa products (78).
• Iron absorption from electrolytic iron and ferric py-

rophosphate added to foods is only half the iron absorp-
tion from ferrous sulfate. In order to ensure an adequate
iron absorption from a fortified food, the iron fortification
level when using electrolytic iron and ferric pyrophosphate
should be twice the fortification level when using ferrous
sulfate (76, 77).
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• Particular care is recommended when adding elemen-
tal iron powders; only electrolytic iron powder is judged
useful.
•Other commonly used iron powders, such as atomized

or hydrogen-reduced iron powders, are judged to be too
poorly absorbed and are not recommended.
• Ascorbic acid, phytase treatment, NaFeEDTA, and

amino acid chelates can be used to enhance iron absorp-
tion from food vehicles rich in inhibitors.

-Ascorbic acid is recommended to be added at a 2:1
molar ratio in relation to fortification iron for low-phytate
products and 4:1 for high-phytate products (58).

-Ascorbic acid’s instability during processing, storage,
and cooking is its main disadvantage.

-Phytases can be used to degrade phytic acid in high-
phytate foods either during processing (57) or during
digestion by addition to in-home fortification powders
added to cereal gruels at the time of consumption (81).

-NaFeEDTA is specifically recommended for high phy-
tate cereals such as whole-grain wheat flour (82) as
well as for sauces rich in peptides such as soy and fish
sauces.

-NaFeEDTA is particularly useful in the presence of
phytate.

-Na2EDTA is also effective in combination with ferrous
sulfate at molar ratios <1 with low-phytate cereals such as
rice (83).

-Na2EDTA does not appear to increase the absorption
of ferrous fumarate or ferric pyrophosphate.

-The amino acid chelate ferrous bisglycinate also pro-
tects iron from inhibitors and is especially useful in liquid
products such as milk (79).

Text Box 6

Examples of iron-nutrient interactions
Vitamin A
• An interaction of vitamin A in iron metabolism which

results in less incorporation of iron into red blood cells is
supported by animal studies in which long-term admin-
istration of vitamin A-deficient, but iron-sufficient diets,
leads to anemia which can be corrected with vitamin A
(86).
• In chronically inflamed/infected populations in low-

resource settings, it is also possible that vitamin A defi-
ciency induces anemia via its negative influence on the im-
mune defense, leading to more infections and more anemia
of infection and inflammation (87).
• The science regarding the interaction of vitamin A and

iron at the metabolic level is evolving. Some examples of
the impact of vitamin A deficiency include: impaired ery-
thropoiesis, poor red blood cell differentiation, impaired
incorporation of iron into hemoglobin, increased break-
down of malformed red blood cells, and impaired mobi-
lization of iron from reticuloendothelial macrophages and
liver iron stores (84).
• There is no agreement on the influence of vitamin A

on iron absorption. Although there was a report of stud-
ies demonstrating enhanced iron absorption by Venezuelan

peasants when vitamin Awas added to iron-fortified wheat
andmaize breads (88), the results could not be confirmed in
Swiss and Swedish students (89). The addition of vitamin A
to an iron-fortified maize porridge resulted in a reduction
in iron absorption by vitamin A-deficient Ivorian children
(90).

Iodine
• Extensive data from animal studies indicate that

iron deficiency with or without anemia impairs thyroid
metabolism. This is supported by two recent intervention
studies which showed that provision of both iron and io-
dine to iron-deficient, goitrous Ivorian and Moroccan chil-
dren decreased goiter rates more effectively than did the
provision of iodine alone (91, 92).
• It has been suggested that iron deficiency can lead to al-

terations in the thyroid hormone feedback system, reduce
deiodinase activity and lower the transformation of thy-
roxine to triiodothyronine in the peripheral tissue, and re-
duce thyroid hormone synthesis.
• Thyroperoxidase, a heme enzyme that plays a key role

in thyroid hormone synthesis by catalyzing the iodination
of thyroglobulin, is markedly decreased in iron-deficient
rats (93).

Zinc
• Due to similarities in absorption and transport, there

has been a long-standing concern about the potential neg-
ative interaction between iron and zinc (94).
•The study of this interaction is complicated not only by

shared chemistry, absorption, and transport but also study
design (e.g., single supplements compared with food ma-
trices, presence or absence of common enhancers and in-
hibitors).
• A debate exists with regard to the implications of this

potential interaction to public health interventions with an
emerging consensus that obviates concerns about joint ad-
ministration of these essential elements (95, 96).

Criteria for categorizing bioavailable iron intake (dietary

reference intakes). Nutritional requirements for iron are
markedly affected by the life stage of the individual (age, sex,
and in the case of women, pregnancy). Various reference values
for iron intake at the population level have been published, tak-
ing bioavailability into consideration (27, 47, 97). Several cat-
egories that have specific applications are summarized in Text
Box 7. Detailed guidelines describing the appropriate applica-
tion of these parameters are available (47, 97).

Text Box 7

Dietary Reference Intake categories
Estimated average requirement or average requirement:
• The average daily intake needed to meet the estimated

requirements of 50% of the individuals in the population
being evaluated.
• The Institute of Medicine values for the United States

and Canada assume a bioavailability of 18%.
RDA
• The average daily intake needed to meet the estimated

requirements of 97.5% of the individuals in the population
being studied.
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• The Institute of Medicine values for the United States
and Canada assume a bioavailability of 18%.

Adequate intake
• For populations in which the estimated average re-

quirement cannot be specified and is usually the aver-
age daily intake based on observed or experimentally
determined approximations in apparently healthy indi-
viduals who are assumed to have an adequate iron
intake, e.g. full term during the first six months of
life.

Upper level
• The highest continuous daily iron intake considered

unlikely to pose any risk of adverse health effects for al-
most all individuals in the specified life stage and sex
group.

WHO/FAO: recommended nutrient intake (RNI)
• Conceptually equivalent to the RDA, the RNI is the

value used by WHO/FAO.
• Expanded stipulated values make adjustments for

bioavailability providing separate levels for 15%, 10%,
and 5% bioavailability.

Population reference intake
• Conceptually equivalent to the RDA, this is the value

used by the European Food Safety Authority (EFSA).
• EFSA uses an absorption value of 16% for men and

18% for women to convert physiological requirements into
dietary intakes.

Iron homeostasis

The requirement for iron in a multitude of biological processes
emphasizes the importance of an uninterrupted iron supply for
cellular turnover. This demand and the need to avoid the poten-
tial toxic effects of free iron are met by a rigorously regulated
system that controls the rate of iron absorption, maintains a
store of readily available iron and recycles iron derived from
cells at the end of their life spans.

The cells that constitute the various body organs are being
renewed constantly. Iron requirements change dramatically dur-
ing cell growth and maturation. The overall requirement also
changes because of physical growth in children, pathophysio-
logical changes in organ function, and pregnancy. Iron impor-
tation must be controlled precisely and continuously to supply
physiological needs and avoid potential toxicity.This is achieved
by maintaining a readily available, highly regulated iron store.
Considerable quantities of iron are rapidly mobilized if there is
a sudden increase in physiological requirements. An adult with
a 1000-mg store can extract 40 mg daily (98). On the other
hand, maximal bioavailability from a high bioavailability West-
ern diet is only 2–4 mg/d. It is convenient to review iron biology
relevant to the selection of biomarkers of nutritional iron sta-
tus by first dealing with systemic and cellular iron homeostasis.
This is followed by a description of absorption and finally sec-
tions dealing with placental iron uptake and iron transfer into
the nervous system.

Iron homeostasis is achieved by the coordinated opera-
tion of two systems. Iron supply is regulated by keeping the
plasma iron level within a fairly narrow range (systemic iron
homeostasis). Individual cells have the ability to adjust the
amount of iron they import and to store any excess (cellular
iron homeostasis). Almost two-thirds of body iron is found
in the erythroid compartment (circulating red blood cells).

Alterations in erythropoiesis therefore have a dominant effect
on the regulation of iron absorption, transport, and storage (99).

Systemic iron homeostasis

Iron is transported through the systemic circulation and extra-
cellular fluid bound to transferrin. Text Box 8 (22, 98, 100–107)
contains a summary of some key elements of systemic iron trans-
port.

Text Box 8
Key elements of systemic iron transport

Transferrin
Transferrin is the major vehicle for iron delivery to cells

and is present in the circulating plasma and extravascular
fluid, and has the following characteristics:
• Apotransferrin (transferrin without attached iron) is

a single-chain glycoprotein with two lobes, each of which
can bind one ferric ion. It is synthesized in the liver and has
a half-life of 8 d.
• Iron is tightly bound under physiological conditions

in the plasma with an effective stability constant of 1026–
1030 M−1. Iron bound to transferrin remains soluble, but
is prevented from generating toxic free radicals.
• Binding is markedly affected by pH, being maximal

above pH 7.0. Dissociation of the iron occurs if the pH is
lowered, becoming virtually complete below pH 4.5 (22,
100, 101).
• Duodenal enterocytes, macrophages in the spleen,

liver, and bone marrow, and hepatocytes are the major
sources of iron that binds to transferrin.
• About 35% of the iron-binding sites on plasma trans-

ferrin are occupied at any one time; it is customarily ex-
pressed as percentage of transferrin saturation (TSAT); this
corresponds to a plasma or serum iron concentration of
∼115 µg/L.
• A diurnal variation exists in both the plasma iron con-

centration and the TSAT, with higher levels in the morning
in most individuals (100, 102). The pattern is usually re-
versed in in people who are awake at night and sleep during
the day.
• The iron is removed by target cells and the apotrans-

ferrin returned to the plasma or extracellular fluid.
• This cycle is completed >10–15 times each day. Thus,

the circulating transferrin pool contains only ∼3 mg Fe at
any one time, but 10 times as much iron (∼35 mg), most
of it destined for developing red blood cells (∼24 mg),
moves through this transport system each day in a normal
adult (98). However, the potential capacity of the system
to respond to an increased demand for iron is remarkable.
It is exemplified by patients suffering from thalassemia
major with severe ineffective erythropoiesis. Rapid iron
recycling may supply sufficient iron to sustain erythroid
marrow production levels that are 6–10 times normal
(103).

Ferroportin
Ferroportin is expressed on the surfaces of cells and is

the only known cellular iron exporter (104, 105), trans-
porting iron across the plasma membrane for its subse-
quent binding by transferrin in the plasma and extracel-
lular fluid, and has the following traits:
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• It is a transmembrane protein that transports ferrous
iron.
• It is encoded by the SCL40A1 gene (solute carrier fam-

ily 40 member 1).
• It binds ferrous iron. Iron transfer to transferrin re-

quires oxidation by copper oxidases, ceruloplasmin in
macrophages and hepatocytes, hephaestin in duodenal en-
terocytes (106), and zyklopen in the placenta (107).

DMT1
• DMT1 represents a large family of orthologous metal

ion transporter proteins that are highly conserved from
bacteria to humans (22).
• DMT1 can bind a variety of divalent metals, but is

primarily an iron transporter in mammals.

Most of the iron entering the plasma pool (∼22 mg/d) is
derived from the reprocessing of heme in red blood cells that
have reached the end of their 100–120-d life spans by special-
ized macrophages in the spleen, liver (Kupffer cells), and bone
marrow (98, 100, 108). These old red blood cells are phago-
cytosed and the heme is rapidly catabolized by cytosolic heme
oxygenase-1 to yield biliverdin, carbonmonoxide, and iron. The
iron is either returned to the plasma via ferroportin within a
mean transit time of ∼86 min or stored in ferritin (109, 110).
When iron status is in the normal range, ∼64% is transferred
to transferrin. In iron-deficient individuals, almost all the iron
is released immediately, but as much as 80% may be retained
and incorporated into ferritin in patients suffering from aplastic
anemia when requirements are minimal because erythropoiesis
is severely impaired. This intracellular ferritin iron pool is in
dynamic equilibrium with the iron circuit. The half-time of res-
idence in the pool is ∼6 d in an individual with a normal iron
store. Smaller quantities of iron are exported by other cells, par-
ticularly hepatocytes. Absorption from the diet contributes only
∼1 mg/d in an iron-sufficient adult man. During their childbear-
ing years, women absorb a little more, ∼1.5 mg/d, to compen-
sate for menstrual blood losses (100).

Regulation of systemic iron homeostasis. Systemic iron
homeostasis depends on the regulation of the rate of iron de-
livery to circulating transferrin. This is achieved by adjustments
to the amount of ferroportin on cell membranes through the
action of circulating hepcidin (111). Hepcidin binds to ferro-
portin, causing the complex to be ubiquinated, internalized and
degraded (112, 113). Hepcidin is therefore the central regula-
tor that controls iron absorption, iron recycling, and the size of
the iron store in adults and children >6 mo (114–116). While
hepcidin is detectable in the newborn infant (117), further stud-
ies are necessary to determine whether its regulation is similar
to that demonstrated in older children and adults. Text Box 9
(111, 118–120) contains some salient features of hepcidin bi-
ology. The following is a brief summary of the key interacting
pathways involved in control of hepcidin and iron concentra-
tions.

Text Box 9

Salient features of hepcidin
• Synthesized primarily in hepatocytes as an 84-amino-

acid propeptide that is processed to the active 25-amino-

acid peptide in the Golgi apparatus before being secreted
into the circulation.
• Subsequent amino-terminal processing produces two

smaller peptides with 22 and 20 amino acids that can be
measured in urine, but are not detectable in plasma or
present at only very low concentrations in healthy humans.
• These smaller peptides appear to lack ferroportin reg-

ulatory function.
• Circulating hepcidin is bound to α2-macroglobulin

(118).
• Unregulated renal excretion is the major pathway for

hepcidin clearance from the circulation, in addition to the
quantity removed by receptor-mediated endocytosis pri-
marily in hepatocytes and the macrophages of the liver,
spleen, and bone marrow (119, 120).
• Circulating hepcidin concentrations are primarily reg-

ulated by the interaction of four interrelated pathways:
-hepatocellular iron stores [bone morphogenic protein

(BMP)/sons of mothers against decapentaplegic (SMAD)]
-erythropoietic rate
-circulating iron concentration [human hemochromato-

sis (HME)/transferrin receptor (TfR)2]
-inflammatory cytokines [the janus kinase signal trans-

ducer and activator of transcription 3 (JAK/STAT)] (111)

Hepatocellular iron stores. The regulation by hepatocellular
iron is a multifactorial process. Increasing hepatocellular iron
stores promote the expression of BMP-6. In the presence of
hemojuvelin (HJV), a membrane-bound protein, BMP-6 acts as
an autocrine signal by binding to hepatocyte cell surface BMP-6
receptors. In this scenario, HJV acts as a co-receptor augment-
ing BMP-6 binding (39, 43). Transcription of the gene encoding
hepcidin (HAMP) is regulated by the SMAD and signal trans-
ducer and activator of transcription 3 (STAT3) pathways (121).

HJV expression is regulated by iron and hypoxia; both act
by inducing cleavage of HJV by furin to yield a soluble prod-
uct (sHJV). sHJV acts as an antagonist to BMP-6-induced hep-
cidin synthesis. In response to acute iron deprivation, HJV is
cleaved by matriptase-2 (type-two transmembrane serine pro-
tease, TTSP, also known as TMPRSS6), thereby attenuating the
BMP-6 signal, which then leads to decreased hepcidin produc-
tion. Hypoxia exerts control on hepcidin production by stabi-
lizing liver-specific hypoxia inducible factor 1 (HIF-1) which in-
creases the synthesis of matriptase-2.Hypoxia therefore reduces
hepcidin synthesis by decreasing BMP-6 by two mechanisms:
HJV antagonism by sHJV, and augmentation of martriptase-2
cleavage (122).

Erythropoiesis. The rate of production of red blood cells
(erythropoiesis) exerts an important effect on hepcidin produc-
tion. Increased erythropoiesis suppresses hepcidin synthesis.
The effect usually overrides the control exerted by iron stores.
It is therefore an important contributor to the iron overload,
which may be severe, in patients suffering from conditions
such as thalassemia major (122, 123). A putative regulator
called erythroferrone which suppresses hepcidin expression
was identified recently by Kautz et al. (124) in a mouse model.
It is produced by erythroblasts in response to erythropoietin.
Hepcidin suppression appears to require activation of the
JAK2-STAT5 signaling pathway and to be independent of the
canonical BMP-SMAD pathway (124). In patients who require
blood transfusions, iron overload is a consequence of both
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the additional iron administered parenterally in the transfused
blood and excessive absorption from the diet.

Circulating iron. Hepatocytes and developing erythrocytes ex-
press transferrin receptor 1 as well as a second transferrin re-
ceptor that is encoded by a separate gene, TfR2 (105, 125, 126).
The function of both TfR1 and TfR2 are affected by HFE pro-
tein. Transferrin carrying iron binds to both TfR1 and TfR2.
It displaces the HFE molecule from TfR1. The HFE molecule
is then available to interact with TfR2, producing a complex
that induces hepcidin transcription by BMP/SMAD signaling.
TfR2 functions as a sensor of iron bound to transferrin. TfR2
is expressed in hepatocytes, regulating hepcidin expression, and
in erythroid precursors, coordinating erythropoiesis with iron
availability (105, 127).

Iron, inflammation, and hepcidin. The reciprocal re-
lationships between nutrition and iron homeostasis, and
inflammation have been described recently (128). Text Box 10
(105, 111, 129, 130) provides a brief outline of the specifics of
this relationship as it pertains to iron homeostasis regulated by
hepcidin.

Text Box 10

Iron homeostasis, hepcidin, and inflammation
• Hepcidin contributes to innate immunity and is a ma-

jor component of the anemia of chronic disease (ACD) and
inflammation (129).
• Inflammatory cytokines, IL-2 and IL-6, stimulate hep-

cidin synthesis.
• IL-6 activates the JAK/STAT which stimulates the hep-

cidin promoter (105, 111).
• Endoplasmic reticulum stress also increases hepcidin

expression.
• ACD is characterized by:
-moderate severity
-stability over the course of the illness
-hypoproliferativ, and morphologically normocytic ery-

throcytes without an increase in the red blood cell distri-
bution width (RDW) (130)

-a modest decrease in erythrocyte survival
-sequestration of iron in the reticuloendothelial cells as-

sociated with a low serum iron and low total iron-binding
capacity (TIBC), considered to reflect the primary role of
increased hepcidin production (111)

Figure 1 is a graphic representation of our current un-
derstanding of the factors regulating hepcidin (131). Recent
studies have found that yet other signal transduction path-
ways are involved in the control of hepcidin synthesis, includ-
ing mammalian target of rapamycin (mTOR) and proliferative
rat sarcoma/rapidly accelerated fibrosarcomamitogen-activated
protein kinase (RAS/RAF MAPK) signaling, linking hepcidin
regulation to nutrient metabolism, cytokines, growth factors,
and cellular proliferation (132).

It is evident from this brief summary of our current un-
derstanding of systemic iron homeostasis that hepcidin is the
final common pathway for signals that orchestrate the control
of iron absorption and the delivery from stores. It is also clear
that hepcidin secretion is regulated by a complex, finely tuned

FIGURE 1 Factors regulating hepcidin. Fpn, ferroportin. Repro-
duced with permission from reference 131.

set of processes with multiple compensating factors, which be-
comes particularly relevant in pregnancy and development (see
below).

Cellular iron homeostasis

Individual cells possess an independent complex system for reg-
ulating iron import and export, and intracellular iron economy
and storage (99, 105, 129, 133). Iron uptake closely matches
physiological requirements. The steps for getting iron into and
transported within cells are outlined in Text Box 11 (99, 105,
126, 129, 130, 133–136).

Text Box 11

Iron transport at the cellular level
Getting in
• Transferrin-receptor 1 (TfR1) provides high-affinity

uptake of diferric transferrin by cells and is the dominant
route of iron uptake in immature erythroid cells and per-
haps most other cells (124, 126).

o Low-affinity cellular uptake of diferric transferrin by
other mechanisms in nonerythroid tissues has also been de-
scribed and its relative importance remains under investi-
gation.

o Transferrin binds to TfR1, with diferric transferrin
having a higher binding constant (105, 126, 129, 130)
than the monoferric form at the pH of extracellular fluid
(7.4).
• Apotransferrin does not compete significantly.
• The transferrin-TfR1 complex enters the cell by endo-

cytosis in clathrin-coated vesicles.
• The endosome is acidified by an ATP-dependent pro-

ton pump, reducing the pH to ∼5.5.
• The iron is released from transferrin and reduced

by 6-transmembrane epithelial antigen of the prostate 3
(STEAP3).
• The ferrous iron is transported across the endosomal

membrane into the cell by the DMT1.
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• The apotransferrin-TfR1 complex is returned to the
plasma membrane where apotransferrin dissociates from
TfR1 at the extracellular pH of 7.4 and re-enters the
plasma pool.
• Hepatocytes also import iron by TfR1-independent

pathways (99).
Once in
•Most of the cytosolic iron is transported across mito-

chondrial membranes by the transmembrane protein mito-
ferrin encoded by SLC25A37, for synthesis of heme by
incorporation into protoporphyrin IX (134).
• Smaller quantities enter iron-sulfur clusters in both the

mitochondrion and the cytosol.
• Iron is also incorporated into nonheme cytosolic en-

zymes or stored as ferritin.
• Emerging evidence indicates that there are complex

mechanisms that facilitate the distribution of iron within
the cell (135, 136).
• Some experimental evidence indicates that iron is

transferred from endosomes to the mitochondria by direct
contact rather than transfer through the cytoplasmic com-
partment (133).

Regulation of cellular iron homeostasis. Erythroid precur-
sors have been the focus of much research on cellular iron
uptake. However, it is assumed that all cells employ similar
regulatory mechanisms (137), although erythroid cells express
additional controlling factors that are related specifically to
hemoglobin synthesis (137). Iron acquisition is matched to cel-
lular requirements by control of cell surface TfR1 expression
by the iron regulatory protein (IRP)–iron responsive element
(IRE) system. IRP 1 and 2 sense the cell’s immediate iron re-
quirements. When there is a need for additional iron they be-
come bound to stem loop structures (IREs) in the 3′ untranslated
region of TfR mRNA, thereby preventing constitutive mRNA
degradation and increasing the quantity of TfR expressed on
the cell surface.More iron is imported. At the same time ferritin
synthesis is suppressed by the binding of the IRPs to IREs on
the 5′ untranslated region of ferritin mRNA. Less iron is incor-
porated into the cellular ferritin store. When iron in the cell is
sufficient, the process is reversed with downregulation of TfR
expression and increased storage in ferritin. Additional details
on iron homeostasis in erythroid cells are provided in Text Box
12 (138–141).

Text Box 12

Iron homeostasis in erythroid cells: iron supply and
hemoglobin synthesis
• The precise matching of iron supply to erythropoietic

requirements is a critical element of red blood cell matura-
tion presumably because of the potential for iron-induced
oxidative toxicity. Protoporphyrin IX synthesis is coordi-
nated with iron availability by the IRPs.
• The mRNA for δ-aminolevulinic acid synthetase 2, the

initial and rate-limiting enzyme in the heme synthetic path-
way, has an IRE in the 5′ region of its mRNA; IRP binding
inhibits heme synthesis.

• Globin synthesis is coordinated with heme synthesis
through translational control by the heme-regulated tran-
sitional inhibitor.
• Additional mechanisms [e.g., effect of TfR2 on ery-

thropoiesis (138), aconitase-associated control of erythro-
poieisis (139)] may have important roles.
• Reduced responsiveness of erythroid progenitors to

erythropoietin in iron deficiency (139).
•Developing erythroblasts synthesize ferroportin (FPN)

and can export iron. There are two FPN transcripts
(FPN1A and FPN1B).

o Unlike FPN1A, the transcript that is expressed by all
cells, FPN1B lacks an IRE in its 5′ untranslated region.
o FPN derived from both transcripts are responsive to
hepcidin and systemic iron requirements.
o It has been hypothesized that FPN1B expression en-
hances sensing of systemic iron status and facilitation
of restricted erythropoiesis in response to systemic iron
deficiency (140, 141). FPN1A predominates once cells
begin to produce hemoglobin.

• The developing red blood cell’s requirements are pri-
oritized. Ferroportin expression is suppressed and an ade-
quate iron supply for heme synthesis is ensured (140).

Specific role of macrophages. Dedicated macrophages in the
spleen, liver (Kupffer cells), and bone marrow have a special-
ized role in the body’s internal iron economy (142). After a life
span of ∼100–120 d in the circulation, red blood cells are re-
moved from the circulation by these macrophages. This pro-
cess involves the following two steps: 1) entry into an ery-
throphagolysosome where the red blood cell membrane is lysed;
and 2) catabolism of the heme by an enzymatic complex con-
taining NADPH-cytochrome c reductase, heme oxygenase 1,
and biliverdin reductase to yield iron, carbon monoxide, and
bilirubin.

Depending on the body’s immediate needs, iron is trans-
ported across the plasma membrane by FPN, oxidized from the
ferrous to the ferric state by ceruloplasmin, and then bound to
apotransferrin in the plasma, or incorporated into ferritin in the
cytosol for temporary storage.

Some erythrocytes are damaged in the circulation (intravas-
cular hemolysis) even in healthy individuals. This intravascular
hemolysis may be markedly accelerated in hemolytic anemias
and diseases that cause ineffective erythropoiesis. Hemoglobin
released into the plasma is rapidly bound to haptoglobin, a gly-
coprotein synthesized in the liver to form a complex that is
too large to be filtered by the kidneys. The iron is conserved.
The hemoglobin-haptoglobin complex binds to CD163 recep-
tors on macrophages and hepatocytes, and is then endocytosed
and degraded in lysosomes, releasing heme that is catabolized
as described above. Heme may be separated from globin in the
plasma. If this occurs, it is bound to another plasma protein,
hemopexin. The complex is again too large to be filtered by the
kidney. It is removed by macrophages in the liver and spleen
expressing the CD91 receptor and catabolized (143).

Iron storage and recycling by hepatocytes. In the liver, hep-
atocytes have a central role in controlling the body’s iron econ-
omy and are the main site for iron storage. They acquire iron
from both the systemic and the portal (newly absorbed iron)
circulations.Moreover they have the capacity to obtain iron via
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both TfR1- and TfR1-independent pathways (99). In addition,
iron derived from hemoglobin-haptoglobin, heme-hemopexin,
ferritin, lactoferrin, or non-transferrin-bound iron is recycled
through hepatocytes. The liver is also the primary source of
hepcidin.

Iron absorption

Body iron is controlled rigorously by the regulation of ab-
sorption in the duodenum and proximal jejunum. Iron excre-
tion is minimal and unregulated in human beings. It results
from loss from the gastrointestinal tract (putatively due to bil-
iary iron excretion, cellular desquamation, and perhaps micro-
scopic bleeding), in the urine and by the desquamation of skin
cells (144). In women additional losses occur as a result of
menstruation and the demands of pregnancy. The usual North
American diet contains ∼7 mg Fe/1000 kcal (98). A healthy
man with adequate iron stores utilizes ∼1 mg/d, but this can
be increased to ∼2–4 mg/d in iron deficiency and reduced to
0.5 mg/d if iron stores are high. Much more iron can be utilized
if supplemental iron is consumed (98). The rapidity with which
these adjustments occur is remarkable. Absorption of a second
dose of iron is blocked within 2–4 h of an initial dose (145). It is
convenient to describe the process of absorption by considering
four interrelated stages, which are described in Text Box 13 (18,
32, 34, 50, 104, 146–153).

Text Box 13
Stages of iron absorption

1. The luminal phase
• Most of the dietary iron is present in one of three

forms:

-Heme derived from hemoglobin and myoglobin in
meat and fish
-Soluble nonheme iron that is derived from all the other
iron in food and behaves as a common pool for absorp-
tion
-Iron that is insoluble in gastric juice and therefore not
absorbed (32, 34)

• Heme iron is well absorbed and enters mucosal cells
as the intact heme moiety.
• The absorption of all other forms of dietary iron

present in both meat and plant foods depends on their sol-
ubilization in gastric juice and reduction from the ferric to
the ferrous state.
• Absorption is markedly affected by meal composition.

Unidentified components of meat (thought to be partially
digested peptides), ascorbic acid, and to some extent other
organic acids promote absorption, whereas phytates, cer-
tain polyphenols, and some plant and milk proteins are
inhibitory.
• The mechanism of absorption for two types of iron,

ferritin and nanoparticulate iron, remains uncertain.

-Some investigators have suggested that ferritin iron,
an important iron source in both meat and vegetables,
crosses the brush border membrane as an intact and is
highly bioavailable molecule (146).
-Other studies suggest that iron is released from ferritin
in the stomach to join the nonheme common pool (40).

• Food fortification with iron nanoparticles could enter
the mucosal cell by mechanisms not available to the com-
mon nonheme pool iron (147).

2. Enterocyte uptake
• All forms of iron are predominantly absorbed in the

duodenum and upper jejunum.
• Heme iron crosses the brush-border membrane as the

intact iron porphyrin, although the transporter has not yet
been identified.
• Almost all of the nonheme iron is taken up by the

DMT1, which is a transmembrane protein encoded by the
Slc11a2 gene that mediates proton-coupled ferrous iron
uptake (148).
• Because most of the iron in the diet is ferric, reduction

to the ferrous form is required for binding to DMT1.

-Dietary components, such as ascorbic acid, promote
absorption in part by this mechanism.
-In addition, a brush-border membrane ferrireductase,
duodenal cytochrome b (DCYTB), may play some role
in facilitating reduction by electron transfer from intra-
cellular ascorbate (149). DCYTB is markedly upregu-
lated in iron deficiency and hypoxia and is thought to
play a major role under these conditions.

• Observations in both rodents and humans indi-
cate that DMT1 transports most of the nonheme iron
that enters mucosal cells (148, 150). However, other
systems may exist, because inactivation of intestine-
specific Slc11a2 causes severe iron deficiency, but is not
lethal.

3. Storage within the enterocyte and transport to the
basolateral membrane
• The processes responsible for the transport of intra-

cellular enterocyte iron are unknown.
• However, it is evident that all absorbed iron enters

a common pathway after the iron in heme is released by
heme oxygenase (151).
• The iron is then distributed as follows:

-to meet the requirements of intracellular compart-
ments, such as mitochondria, transferred to the baso-
lateral membrane for absorption into the portal circu-
lation; or
-to be stored within the enterocyte as ferritin when the
body’s demands are low.Most of the iron ferritin is lost
due to exfoliation of enterocytes (18).

4. Efflux across the basolateral membrane and binding
to transferrin
• Ferrous iron is transported out of the enterocyte

across the basolateral membrane by FPN1 (encoded by the
Slc40a1 gene). Like DMT1, intestine-specific inactivation
of this gene in mice causes severe iron deficiency but is not
lethal (104).
• Binding to transferrin in the interstitial fluid requires

that the iron be in the ferric form. Oxidation is mediated
largely by hephaestin, a membrane-bound multicopper fer-
roxidase (152). Ceruloplasmin in the interstitial fluid also
appears to play a role in this process (153).

Systemic regulators of iron absorption. In the absence of
infection or inflammation, iron absorption is stimulated when
body stores are low or erythropoiesis is increased. Finch (123)
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coined the terms “store regulator” and “erythroid regulator”
to describe these two processes. The “erythroid regulator” has
the dominant role and accounts for the nontransfusional iron
overload that occurs in such conditions as thalassemia major
in which absorption may continue to be enhanced despite a
progressive increase in the size of the iron store. Both mecha-
nisms are now known to be mediated by circulating hepcidin.
The relationship between iron stores, hepcidin concentrations,
and physiologic control of iron status by the “store regulator”
are described elsewhere. Hepcidin production is suppressed by
increasing storage iron. Hepcidin binds to FPN1 on the baso-
lateral surface of duodenal enterocytes, leading to its internal-
ization and degradation (113).

A new hormone named erythroferrone (ERFE) has been
identified that increases iron absorption by suppressing hepcidin
during stress erythropoiesis in mice (124). ERFE is secreted by
human erythroblasts in response to erythropoietic stimulation
by erythropoietin and appears to be a component of the “ery-
throid regulator.”

The overriding importance of the hepcidin/FPN1 axis in
preventing excessive iron absorption is illustrated by two sets
of observations. Virtually all inherited primary iron overload
disorders result from mutations that affect hepcidin or ferro-
portin (154). The recent discovery of ERFE suggests that iron-
loading anemias are also the result of hepcidin suppression in
the face of iron overload. Hepcidin has also been shown to
reduce enterocyte iron uptake by inhibiting DMT1 expression
(155) through ubiquitin-dependent proteasome degradation of
DMT1 in Caco-2 cells (156). In experimental animal models,
iron absorption has been shown to be increased in response to
oxygen deprivation (157).Hypoxia inducible factor 2α (HIF2α)
has been identified as a key transcription factor in this response
(158, 159). DMT1, Dcytb, and FPN1 have hypoxia response
elements within their promoters that activate transcription in
response to hypoxia (158–160).

Cellular regulators of iron absorption. Enterocytes also have
the complex cellular machinery found in erythroid precursors
that control their internal iron economy. These mechanisms en-
sure the safe handling of iron necessary for cellular metabolism
and regulate the transfer of iron to the systemic circulation, and
in particular afford protection against sudden iron surpluses in
the duodenal lumen. This protection may occur by downregula-
tion of DMT1 and incorporation of iron that crosses the brush
border membrane into ferritin (161). The control of iron im-
port and storage by the IRE/IRP system is described in detail
elsewhere in this review.

The regulatory mechanisms that control iron absorption,
storage, and export described for erythroid cells,are similar in
enterocytes but with the additional involvement of some specific
proteins, as follows: 1) the 3′ IRE of DMT1 mRNA stabilizes
the mRNA, leading to increased protein levels in iron deficiency
(162); 2) the IRE in the 5′ region of FPN 1 mRNA binds IRPs,
thereby inhibiting protein translation (145, 161); and 3) DcytB
and hephaestin mRNAs do not appear to contain IREs.

Control mechanisms are, however, even more complicated
as two splice variants of both the FPN 1 and DMT1 mRNAs
are present, one with and one without an IRE. Furthermore,
transcriptional regulation is also important. For a more detailed
description see references (145, 163).

There is debate regarding how well regulated iron absorp-
tion is in the neonate and infant. Animals models suggest
that DMT-1 and FPN-1 are developmentally regulated (164)
with achievement of full expression at the time of weaning (in

rodents).Whether this is present in humans is unknown. Several
stable isotope studies of iron absorption in term and preterm
infants have shown a surprisingly consistent 35–40% rate, a
finding that would suggest relatively limited active regulation
given the wide range of iron status found in this population
(114–116).

Placental iron transport

The placenta is a complex organ, which has many roles to
play, including nutrient transfer and waste disposal, and en-
docrine functions that are integral to its role as a regulator
of fetal growth and differentiation. The study of the placenta
is complicated by the available resources that can be used.
Most studies in humans utilize placentas from full-term infants.
The use of animal models presents a range of challenges, from
species differences in anatomy to differences in iron transport
and metabolism. These differences have been reviewed recently
(165). Text Box 14 (107, 148, 166–172) contains a summary of
the current understanding of placental iron transport and po-
tential adaptations to iron deficiency.

Text Box 14

Mechanisms of placental iron transport
• Diferric transferrin binds to the TfR on the apical sur-

face of the placental syncytiotrophoblast membrane (166).
This is a high-affinity binding process, with the Kd for di-
ferric transferrin being ∼10−9 M−1 (167).
• Following binding, the complex is internalized and is

incorporated into coated vesicles.
• The vesicles are acidified (168) and the affinity of di-

ferric transferrin for iron decreases.
• Although in most cells, iron is released and exits the

endosome through DMT1, in the placenta, DMT1may not
be essential for this purpose (148).
• Recent studies suggest that other metal transporters,

such as ZIP8, may fulfill this function (169).
• Following release into the cytoplasm of the syncy-

tiotrophoblast, iron is transferred to the basolateral side.
How this is accomplished is not known. It is unlikely to be
as a freely diffusible moiety, since ferrous (III) iron is very
insoluble at neutral pH, and ferric (II) iron is biologically
very active. Specific iron chaperones, e.g., PCBP1 which is
reportedly highly expressed in the placenta, have been sug-
gested.
• At the basolateral membrane of the syncytium, iron

effluxes through ferroportin in a similar fashion to that de-
scribed for the duodenal cell. It moves through the mem-
brane as Fe(II) and is oxidized by a copper ferroxidase
termed zyklopen (107).
• It then binds to fetal transferrin, and is carried to the

fetal liver and to the erythropoietic tissues.
• Irreversible changes in brain occur following prenatal

iron deficiency (170).
Adaptation to iron deficiency
• An increase in TfR expression at the apical surface of

the placental syncytiummembrane results in increased iron
uptake.

-Increases have been observed in DMT1 and zyklopen
expression, but no change in ferroportin mRNA levels.
The mechanism of regulation appears to be governed
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by the fetus. Fetal liver hepcidin correlates strongly with
iron levels, and also with TfR levels in the placenta.

• In contrast, maternal liver iron and hepcidin do not
correlate (171), suggesting that another signaling system
may be operating between the placenta and the maternal
liver.
• Recent suggestions for the signaling system have in-

cluded GDF15 and soluble hemojuvelin (172), but much
work remains to be done to demonstrate this.

Fetal iron

Fetal iron requirements change throughout pregnancy. In the
early stages of pregnancy, iron is needed to maintain growth
and differentiation of the fetus, so that although the amounts of
iron may not be very high, iron deficiency can result in signifi-
cant changes. It has been shown that the mid-pregnancy period
is particularly important (173). Using cultured embryos, iron
deficiency resulted in delayed growth and differentiation, and
an increase in malformations. Providing iron over the 10.5- to
12.5-d period in rats reversed these changes (term is ∼22.5 d in
the rat). Extending the work to in vivo studies, it was demon-
strated that restoring iron status in the mother following iron
deficiency in the early part of pregnancy only partly reversed
the developmental effects (174).

During early development, the fetus is entirely dependent
on maternal supplies to meet its iron requirements. In order to
maintain iron status in the fetus, at least to the maximum ex-
tent possible, the placenta has developed a series of adaptive
mechanisms, regulated partly by the same system as operates in
other cell types. In humans, most of the iron delivered to the fe-
tus comes from maternal transferrin (175), though recent data
suggest that heme may also be a source (176). Because of its im-
portance in the delivery of iron during pregnancy, the placenta
has been studied fairly extensively, so that the transfer has been
reasonably well elucidated.

The fetus will accumulate iron to the detriment of the mother
(176, 177). For example, in early studies, reducing iron in the
maternal diet of rats resulted in a significantly lower maternal
iron status as reflected by lower hemoglobin and hematocrit
(Hct) compared with control animals receiving iron-adequate
diets. In contrast, levels in the fetal liver dropped only by ∼30%
(174). Interestingly, this effect is strain specific, and other breeds
of rat are less capable of maintaining iron levels in the face of
nutritional stress (178).Other studies have shown different win-
dows of sensitivity for other physiological parameters. For ex-
ample, postnatal iron deficiency has been shown to result in per-
manent changes in hippocampal function in mice (179, 180),
although restoration at the end of pregnancy can reverse the
changes.

Iron homeostasis in the developing brain and nervous
system

Iron is essential for normal brain development and function
(181). The core functions of iron in the brain are listed in Text
Box 15 (182–188). Disruption of these processes by iron defi-
ciency lead to predictable and consistent structural, electrophys-
iological, and behavioral abnormalities both during the period
of iron deficiency and long after iron repletion (170, 188–191).

Text Box 15

Roles of Iron in the Brain
• Energy metabolism (182)
• Neuronal and oligodendroglial cell migration (183)
•Myelination (184)
• Monoamineregic and glutamatergic neurotransmitter

metabolism (185, 186)
• Regulation of genes related to myelin, synaptic plas-

ticity, and growth factors (187, 188)

Brain iron transport. The transport of iron across the blood-
brain barrier is not completely understood. Figure 2 shows an
overview of iron transport in the brain (192).

Some of the details of our current understanding of iron
transport in the brain are outlined in Text Box 16 (193–196).

Text Box 16

Evolving view of brain iron transport
Early view
• Early studies suggested that the transferrin-iron com-

plex was transcytosed intact across the vascular endothe-
lium (193).
• By this mechanism, ferric iron bound to transferrin

would be available to bind TfR-1 located on the neuronal
membrane with uptake via the Tfr-1/DMT-1 mechanism
present in red blood cells (and any other “terminal” cell).
• In this mechanism, one or two molecules of ferric

(Fe3+) iron are bound to serum transferrin.
• This mono- or diferric saturated transferrin binds to

TfR-1, a transmembrane homodimer, whose binding affin-
ity is greater for saturated holo(diferric)transferrin than for
unsaturated apotransferrin.

Evolving view
• Ferric iron is reduced and then transferred via the clas-

sical TfR-DMT-1 mechanism into the endothelial cell and
then extruded across the basal membrane via a ferroportin
and the multicopper oxidase mechanism to transferrin syn-
thesized in the brain (194, 195).
• At the basal (brain-facing) surface, ferrous iron is

transported to the brain via ferroportin.
• A multicopper oxidase (e.g., ceruloplasmin or hep-

haestin) is needed to convert ferrous iron back to its fer-
ric state so that endogenous brain transferrin will bind it
and deliver it to TfR-1 located on the neuronal membrane
for incorporation via the TfR-1-DMT-1 uptake mechanism
described above.
• The possibility that oligodendrocytes do not obtain

their iron via a transferrin mediated mechanism, but rather
by via ferritin binding of the Tim-2 receptor, has been pro-
posed (194, 196).

The mechanisms of iron transport to the central nervous sys-
tem remain areas of intensive investigation to better understand
the etiologies of deficiency as well as overload states (197). Even
as our understanding of neuronal iron transport evolves, it is
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FIGURE 2 Diagrammatic portrayal of the BBB
and the iron transport proteins believed to play
a role in iron movement into the brain. BBB,
blood-brain barrier; CSF, cerebrospinal fluid;
DMT1, divalent metal transporter 1; Frt, ferritin;
FrtR, ferritin receptor; MTP, metal transport pro-
tein or ferroportin; Tf, transferrin; TfR, transfer-
rin receptor. Reproduced with permission from
reference 192.

important to note that the uptake of iron via TfR-1-DMT-1 is
developmentally controlled during the late fetal/early neonatal
time period. For example, in the rat, hippocampal TfR-1 expres-
sion is minimal at postnatal day 5 (human developmental equiv-
alent of 32 wk of gestation) and increases to adult levels by post-
natal day 15 (human equivalent of 2–4 mo postnatal age) (198).
This increased expression coincides with a burst of hippocampal
metabolic activity characterized by increased glucose uptake,
neuronal differentiation (199), maturation of electrophysiology
(190), and upregulation of growth factors (200). The finding
of increased iron uptake during this time period underscores
the importance of iron in supporting neuronal metabolism and
mitochrondrial integrity, most likely through its direct role in
cytochromes (201).

Iron needs during critical periods of brain development.

The brain consists of multiple regions that have different de-
velopmental trajectories (202). The risk to any brain region or
nutrient-dependent process will be a function of the timing of
the nutritional insult (203, 204). The following will summarize
what is known about iron’s role in brain development from the
perspective of 1) brain monoamine metabolism, 2) brain energy
metabolism, and 3) myelin formation.

Iron and monoamine metabolism. In humans, the
monoamine neurotransmitter system begins its develop-
ment in mid-gestation and continues to have a period of rapid
development until ∼3 y of age. The multiple feedback loops
in the dopamine and serotonin systems make it difficult to
determine primary compared with secondary effects of iron.
A summary of the impact of iron on monoamine metabolism
is found in Text Box 17 (170, 205, 206). The observations
outlined point to a critical period during which iron is necessary
for normal brain monoamine metabolism development that
occurs at the developmental equivalent of late gestation in the
human. If correct, the information strongly supports the notion
that maintenance of maternal iron status is key to offspring
brain health and that post-hoc treatment of the iron-deficient
newborn or child will not result in normal development of this
neurotransmitter system, which is important for reward and
mood/affect.

Text Box 17
Iron, monoamine metabolism, and brain development
• The most direct effect of iron is likely to be on the

synthesis of all three monoamine neurotransmitters, i.e.,
dopamine, serotonin and norepinephrine.
• Iron acts through alteration of the iron-containing en-

zymes tyrosine hydroxylase and tryptophan hydroxylase
(205).
• Gestational and lactational iron deficiency alters as-

pects of dopamine and serotonin metabolism acutely dur-
ing the period of iron deficieny and long term after iron
repletion (170).
• Specifically, alterations are seen in the following:

-The neurotransmitters themselves
-Neuronal postsynaptic neurotransmitter receptors
-Neuronal presynaptic neurotransmitter reuptake
mechanisms (170)

• Timing is important in terms of preventing the long-
term sequelae.

-Treatment at or after postnatal day 7 (equivalent to
36–40 wk of human gestation) fails to prevent long-
term changes in monoamine metabolism (170).
-Treatment at postnatal day 4 (equivalent to 30 wk ges-
tation) appears to reverse the acute findings (206).

Iron and brain energymetabolism. Iron is found at the active
enzymatic core of cytochromes, which mediate electron trans-
port and oxidative phosphorylation. Energy availability is es-
sential for normal neuronal dendritic growth and differentia-
tion, as evidenced by increases in glucose metabolism and iron
uptake by brain regions during their growth spurt. A summary
of the evidence for iron’s role in brain energy metabolism is pro-
vided in Text Box 18 (179, 182, 185, 189–191, 200, 207–210).
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Text Box 18

Iron and brain energy metabolism
•Maintenance of brain energy status is affected by iron

deficiency via reduced cytochrome c concentrations (182)
and reduced cytochrome c oxidase activity (207), a reliable
marker of neuronal activity (208).
• Gestational/lactational iron deficiency anemia as well

as nonanemic neuronal iron deficiency alters phosphorus
utilization for ATP and lactate metabolism in the develop-
ing hippocampus (185, 209), suggesting significant effects
on neuronal energy metabolic balance.
• Disruption of energy metabolism in iron deficiency re-

sults in abnormal dendritic arborization, synapse forma-
tion, and expression of synaptic plasticity and growth fac-
tor genes (185, 189, 200, 209).
• Form follows function in that these abnormal den-

dritic arbors (in the hippocampus) have reduced electro-
physiologic function (190) and the animals exhibit altered
learning and memory behavior (179, 191, 209, 210).

As with the role of iron in monoamine development, a
critical period exists when iron is essential for hippocam-
pal neuronal development (postnatal day 10–25), after which
provision of iron does not completely prevent long-term gene,
metabolism, or structural and behavioral abnormalities (179).
The hippocampus has been extensively studied from the per-
spective of neuronal metabolism as a way of understanding the
role of iron sufficiency in learning and memory behavior. How-
ever, it is likely that other areas of the brain have different de-
velopmental trajectories and critical periods.

Iron andmyelination. Myelination in the human begins in the
late fetal period and extends at a rapid pace through the first
2–3 y (202). Myelin is the fatty sheath found on nerves that in-
creases conduction speed and efficiency, properties that are in
turn related to speed of processing for behavioral tasks. Hy-
pomyelination increases the latency between peaks of electro-
physiological activity in the auditory and visual systems. The
role of iron can be summarized as follows (211): 1) iron is
present in delta 9-desaturase as well as fatty acid elongases,
important enzymes in the synthesis of fatty acids found in
the myelin sheath; and 2) oligodendrocytes are highly active
metabolic cells when they are synthesizing myelin and thus are
dependent on adequate cytochrome activity.

In the rat model, iron-deficiency anemia (IDA) during gesta-
tion/lactation results in hypomyelination with significant alter-
ations in the fatty acid profile of the myelin and reductions in
myelin basic protein expression (187, 211).

Disorders of iron balance
Iron deficiency

The causes of iron deficiency are summarized in Text Box 19.
An inadequate intake of bioavailable iron (nutritional iron de-
ficiency) is the most common cause of iron deficiency and the
most prevalent disorder of iron balance worldwide. It occurs
primarily in individuals with increased requirements, especially
in early childhood, the adolescent growth spurt, the childbear-
ing years, and pregnancy. Pathological blood or hemoglobin loss

(which may be undetected unless appropriate laboratory tests
are carried out) and malabsorption due to diseases of the stom-
ach and proximal small bowel account for most of the other
cases (100). Genetic mutations of the TMPRSS6 gene are rare
causes, giving rise to the clinical entity called iron-refractory
iron-deficiency anemia (IRIDA), which is reviewed in reference
(212). At the individual level, especially in populations where
the prevalence of nutritional iron deficiency is low, establishing
the cause is essential (e.g., occult bleeding in the gastrointesti-
nal tract). In populations with a high prevalence of iron defi-
ciency, evaluation of bioavailable iron intake is most important,
although it may be necessary to assess the risk of exposure to
parasitic helminths that cause bleeding such as hookworm and
schistosomiasis.

Text Box 19
Causes of iron deficiency
• Inadequate intake due to:

-Habitual/discretionary inadequate intake of bioavail-
able iron
-Nutritional iron “insecurity,” i.e., inadequate access or
availability of bioavailable dietary iron (e.g., poor di-
etary diversity)

• Iron malabsorption due to:

-Celiac disease (hluten enteropathy)
-Chronic Helicobacter pylori gastritis
-Autoimmune atrophic gastritis
-Some surgical procedures involving the stomach or the
upper small bowel
-Iron-refractory iron-deficiency anemia (IRIDA)

• Accelerated physiological requirements.
• Increased requirements for growth:

-Premature infants
-Early childhood
-Adolescent growth spurt

•Menstruation.
• Pregnancy.
• Pathological blood loss:

-Bleeding from the gastrointestinal and genitourinary
tracts
-Parasitic infections notable helminth infections such as
hookworm and schistosomiasis
-Menorrhagia
-Intravascular hemolysis

• Blood donation.

The primary focus of the following sections will be nutri-
tional iron deficiency, which occurs when an individual con-
sumes insufficient bioavailable iron on a daily basis over an
extended period to meet requirements, despite maximal upregu-
lation of the physiological mechanisms for accelerating absorp-
tion. Iron deficiency is the only disorder of iron balance in which
nutrition has the primary role. Systemic iron overload occurs
as a result of pathological disorders that impair the regulation
of iron absorption, parenteral iron administration, or repeated
blood transfusion. Conditions that lead to organ-specific iron
accumulation are beyond the scope of this review.
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TABLE 2 Prevalence of anemia in infants and young children
(birth to 5 y of age) by region, 20051

Global region Prevalence (%)

Africa 64.6
Asia 47.7
Europe 16.7
Latin America 39.5
North America 3.4
Oceania 28.0

1Adapted with permission from reference 216.

Anemia. Anemia is the most evident consequence of iron defi-
ciency. It is associated with significant morbidity and has been
the focus for evaluating iron status. Pallor is often noted as a pri-
mary sign of anemia and patients may complain of symptoms
that result from the diminished oxygen-carrying capacity of the
blood, including weakness, fatigue, decreased physical work ca-
pacity, shortness of breath, and palpitations (100).However, the
body’s compensatory mechanisms for improving oxygen deliv-
ery to tissues are very effective if the onset of anemia is grad-
ual and symptoms may not be noticeable until the hemoglobin
is <80 g/L (213). Nevertheless, anemia is associated with sig-
nificant morbidity. Iron-deficiency anemia is correlated with an
increased risk for preterm delivery, low birth weight, and ma-
ternal and child mortality (214). Mental, motor, and emotional
development is adversely affected in children, and IDA may be
a contributory factor to heart failure (215).

The risk is particularly high in low-resource settings
(Table 2) (216). However, iron deficiency remains a pub-
lic health challenge in parts of the population even in the
United States. The data in Table 3 are based on NHANES
(2003–2006) (217). The global prevalence of anemia in 2010
was estimated to be 32.9%. Iron deficiency was the most preva-
lent cause (215).

The historically accepted model of nutritional iron deficiency
(218) proposed by Bothwell et al. (100) is based on the severity
of iron deficiency categorized by its impact on the erythron.
It emphasizes the need to recognize the early stages of iron
deficiency—before the appearance of frank anemia. In the event
of a sudden increase in iron requirements—e.g., as the result of
pathological blood loss—iron in stores can be mobilized within
a few days.On the other hand, if there is little storage iron avail-
able it may take months to repair the deficit by increasing ab-
sorption from a nonsupplemented diet. Three stages in the evo-
lution of uncomplicated nutritional iron deficiency are described
as follows (100):

— Storage iron depletion: iron stores are exhausted, but there
are no erythropoietic consequences, absent stainable bone
marrow iron, low serum ferritin (SF); normal values for
TSAT, red blood cell protoporphyrin, serum transferrin re-
ceptor (sTfR), and hemoglobin.

— Iron-deficient erythropoiesis: there is evidence of inade-
quacy in the iron supply for erythropoiesis, but no decrease

TABLE 3 Percentage of persons with iron deficiency (based on
the body iron model) from NHANES (2003-06) (217)

Children (age 1–2 y) 14%
Children (age 3–5 y) 4%
Females (age 12–19 y) 9%
Females (age 20–49 y) 9%

in the hemoglobin concentration sufficient to be detected
by the standards used to differentiate normal from anemic
states, absent stainable bonemarrow iron, low SF, low TSAT,
increased red blood cell protoporphyrin and sTfR, and nor-
mal hemoglobin

— Iron-deficiency anemia: measurable functional iron defi-
ciency (reduced circulating red blood cell mass), absent
stainable bonemarrow iron, low SF, low TSAT, increased red
blood cell protoporphyrin and sTfR, and low hemoglobin.

This model has played a critical role in developing our
approach to improved iron nutrition and the prevention of
iron-deficiency anemia. It appropriately focuses on anemia as
the overriding functional consequence of progressive iron defi-
ciency. The currently available biomarkers have been selected
to characterize the three stages in the evolution of uncompli-
cated nutritional iron-deficiency anemia. They provide a means
of establishing an accurate assessment of the severity of iron
deficiency at both the individual and population level. How-
ever, they may fail to identify other potentially important func-
tional consequences of iron deficiency that may or may not be
associated with anemia. Such nonspecific symptoms as muco-
cutaneous clinical findings such as koilonychia, angular stom-
atitis, and glossitis, as well as sideropenic dysphagia, have been
described in the past (100). However, these symptoms are rarely
encountered now and may well have resulted from the com-
bined effect of iron deficiency and other nutritional or environ-
mental factors. Pica is still encountered in some populations and
iron deficiency may be a contributing factor in patients suffering
from restless legs syndrome (219, 220).

The following sections are reviews of five other high-priority
functional outcomes including: 1) pregnancy outcome; 2) fetal
and infant neurologic development; 3) exercise capacity; 4) thy-
roid function; and 5) morbidity related to infectious disorders.

The effect of iron deficiency on the maturation of the cen-
tral nervous system has been considered in the greatest detail
because of the potential long-term consequences of iron depri-
vation during this critical period of the life cycle.

Effects of iron deficiency on pregnancy outcome. The eval-
uation of maternal iron status during pregnancy relies on the
same biomarkers described in the preceding section, but their
interpretation requires consideration of the evolving changes in
the amount and distribution of body iron during the course of
gestation. In this section, the underlying changes in iron home-
ostasis during pregnancy will be summarized for each trimester
and the corresponding effects on the principal biomarkers of
iron status described.

During pregnancy, iron is needed for the following: 1) the
growth of the fetus and placenta; 2) the increase in the maternal
red blood cell mass; 3) replenishing blood losses at parturition;
and 4) restoring basal iron losses.

The total iron requirement during pregnancy is of the order
of 1000 mg,with the exact amounts depending, in part, on body
weight, fetal and placental size, and the extent of the expansion
of red blood cell mass (221, 222).

The mother may remain iron replete if the iron requirement
can be met from the combination of the stores present at con-
ception and the amounts of dietary iron that can be absorbed
during pregnancy. Iron requirements in excess of these amounts
can lead first to maternal iron depletion, then to iron-deficient
erythropoiesis and finally to IDA. To avoid the development of
iron deficiency, a storage iron reserve of some 300–500 mg is
likely to be needed, in conjunction with a diet with abundant
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bioavailable iron (223, 224). After delivery, the iron that was
used in the expansion of the red blood cell mass,∼400–500 mg,
gradually becomes available for erythropoiesis or for replenish-
ment of stores.

Most of the evidence for the relation of biomarkers to body
iron status is indirect; bone marrow examination is seldom used
to assess iron status during pregnancy. However, one study ex-
amined marrow iron stores in Swedish women with uncom-
plicated pregnancies who were not anemic during their first
trimester. At about 12 wk of gestation, marrow iron stores were
present in almost 90% of the women. By ∼35 wk of pregnancy,
marrow iron stores were absent or present in only trace amounts
in >60% of the women who had been given 200 mg Fe as fer-
rous sulfate daily and in all the women who had been given
placebo (225).

The patterns of changes in the principal biomarkers of iron
status during pregnancy and postpartum are shown graphically
in Figure 3, derived from a study of apparently healthy Dutch
women (226). It should be noted that because pregnancy is an
inflammatory state (227–229), the potential confounding effects
of inflammation on the interpretation of these biomarkers must
be considered. In addition, the influence of obesity and weight
gain during pregnancy on iron homeostasis and biomarkers of
iron status has not been well characterized (230, 231). Gener-
ally, studies in initially iron-replete women given adequate iron
supplementation during pregnancy have been used to assess the
effects of pregnancy on biomarkers in the absence of iron defi-
ciency and to estimate iron requirements (223, 225, 232).

First trimester. A number of changes occur that affect iron
physiology, absorption, and status after conception and dur-
ing the first trimester. Text Box 20 (223, 233) contains a list of
some the key events. Using data derived from the Dutch study
described above (226), median concentrations of the principal
biomarkers of iron status in healthy women during the first
trimester of pregnancy are shown in Figure 3. The following
highlights what is known about specific biomarkers.

Text Box 20
Basics of iron biology in pregnancy: first trimester
• After conception, the arrest of menstruation decreases

iron losses to a basal level for much of the first trimester
(Figure 1).
•The iron requirement falls to∼0.8mg/d (223) and iron

absorption may decline.
• With a highly bioavailable diet, total (heme and

nonheme) iron absorption has been estimated at only
∼0.4 mg/d (233).
• Initially, a reduction in erythropoiesis may slightly re-

duce the circulating red blood cell mass and increase iron
stores (223).
• In the latter portion of the first trimester, fetal and pla-

cental growth accelerate and expansion of the plasma vol-
ume begins.

Hemoglobin.

— In the absence of iron deficiency, the circulating hemoglobin
concentration declines by ∼10 g/L during the first trimester
(234).

— The threshold for anemia decreases from 120 to 110
g/L in guidelines from the CDC (235) and WHO
(236).

— Modifications to the threshold are needed to account for the
effects of altitude and smoking (236).

— Other corrective adjustments (e.g., adjusting cut-offs,
different intervention strategies) have been proposed
(237).

— The optimal hemoglobin concentrations for func-
tional outcomes have not been determined (221, 222,
238).

Serum iron, ferritin, sTfR, and iron stores.

— During the first trimester, with expansion of the plasma vol-
ume, the serum iron begins to fall whereas the serum trans-
ferrin concentration, shown as TIBC in Figure 3, begins a
steady increase, resulting in a decrease in the serum transfer-
rin saturation (226).

— By the end of the first trimester, the SF concentration, an
indicator of body iron stores, begins a steady decline (239).

— SF concentrations are reduced as a result of hemodilution
in pregnancy and exhibit considerable day-to-day intraindi-
vidual variability (240).

— An SF concentration >70 µg/L before pregnancy or early in
the first trimester has been proposed as a means of identify-
ing women who will not need iron supplementation during
gestation (241). However, a variety of guidelines have been
published with respect to the concentration of SF that is best
to identify iron deficiency (242).

— The sTfR concentration remains stable (243–246) whereas
the sTfR index (the sTfR concentration divided by log SF)
begins to increase. The distribution of body iron stores,
estimated from SF and serum transferrin receptor concen-
trations (247, 248) among pregnant women examined in
NHANES, 1999–2006, was reported by Mei et al. (249).
During the first trimester, 6.9% of these women were iron
deficient, using the criterion of body iron index <0 mg/kg.
(Body iron index is defined as the logarithm of the ratio of
sTfR/ferritin. It provides a quantitative estimate of the size
of the body iron store; discussed in greater detail later in this
review.)

Erythrocyte protoporphyrin.

— Zinc protoporphyrin (ZPP) is reputed to be “the most
established biomarker of iron-deficient erythropoiesis”
(250).

— Measured as the ZPP/heme ratio (ZPP/H) by a hematoflu-
orometer, erythrocyte protoporphyrin is unaffected by the
hemodilution of pregnancy (251).

— With an adequate iron supply, erythrocyte protoporphyrin,
unlike sTfR, is also unaffected by increased erythropoiesis
during pregnancy (252).

— Erythrocyte protoporphyrin remains within the reference
range in iron-replete women during the first trimester (235,
246, 251–253).

Second trimester. A number of changes occurring in iron
homeostasis as gestation progresses are highlighted in Text Box
21 (223, 233).Median concentrations of the principal biomark-
ers of iron status during the second trimester of pregnancy are
again shown in Figure 3.
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FIGURE 3 Biomarkers of iron status during pregnancy and 6 wk postpartum in 31 apparently healthy Dutch women. The participants in this
study were >18 y old with an expected normal pregnancy based on a normal hematologic blood count, renal function, and liver enzymes at their
first visit. Iron supplements were not routinely prescribed and were reserved for those with hemoglobin concentrations <105 g/L and reduced
mean cell volume (<80 fL) in accordance with national guidelines. Data are shown as medians with the IQR. Asterisks represent the significance
in relation to first trimester values; analyzed with linear mixed models, *P < 0.05, **P < 0.001, ***P < 0.000. sTfR, soluble transferrin receptor;
sTfR-index, sTfR divided by log ferritin; TIBC, total iron-binding capacity. Reproduced with permission from reference 226.

Text Box 21
Basics of iron biology in pregnancy: second trimester
• Fetal and placental growth increase throughout the

second trimester.
• Both the red blood cell mass and plasma volume ex-

pand steadily with a greater proportional increase in the
plasma volume.
• Iron requirements steadily increase to ∼4 mg/d by the

end of the second trimester (223).
• Total iron absorption rises to an estimated 1.9 mg/d

from a highly bioavailable diet (233).

Hemoglobin.

— In the absence of iron deficiency, the circulating hemoglobin
concentration continues to decline, with the threshold for
anemia decreasing from 110 g/L in the first trimester to 105
g/L in guidelines from the CDC (235).

— WHO guidelines (236) continue to use a threshold for ane-
mia of 110 g/L.

Serum iron, ferritin, sTfR and iron stores.

— During the second trimester the serum iron continues to fall
as the transferrin concentration rises, and a further decrease
in the serum transferrin saturation is the result (Figure 3)
(226).

— Serum ferritin concentrations continue to decrease during
the second trimester in British women not receiving iron sup-
plements (232).

— In the available studies of sTfR during the second trimester,
concentrations remained stable or rose somewhat (226, 243,
244, 246). Because both functional iron deficiency and in-
creased erythropoiesis raise sTfR concentrations, the rela-
tive contribution of the two processes during pregnancy is
uncertain.

— In some studies, the increase in sTfR during pregnancy
seems more closely associated with erythropoietic activity
(244), but others suggest that iron deficiency is the predom-
inant factor (243, 246). With the decrease in SF, the sTfR
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index increases during the second trimester (226, 246). In
the pregnant women examined in NHANES 1999–2006,
the proportion with body iron index <0 mg/kg increased to
14.3% in the second trimester (249).

— In iron-replete women, erythrocyte protoporphyrin re-
mained within the reference range during the second
trimester (235, 246, 250–253).

Third trimester. As pregnancy moves toward its conclusion, a
number of processes continue with regard to the maternal and
fetal physiology to meet iron needs; these are highlighted in Text
Box 22 (223, 233). Again, median concentrations of the princi-
pal biomarkers of iron status in Dutch women during the third
trimester of pregnancy are shown in Figure 3. The following de-
scribes aspects of physiology relative to specific iron biomarkers.

Text Box 22
Basics of iron biology in pregnancy: third trimester
• Fetal and placental growth, together with expansion

of the red blood cell mass and plasma volume, steadily in-
crease to a peak in the latter portion of the third trimester.
•The overall increase in the red blood cell mass is∼35%

and in the plasma volume, ∼50%.
• The iron requirement rises to 6–7 mg/d and may be

even higher, 10 mg/d, during the last 6–8 wk of pregnancy
(223).
• Total iron absorption from a highly bioavailable diet

also increases to an estimated 5.0 mg/d (233), but is still
far below the calculated daily iron requirement.

Hemoglobin.

— The circulating hemoglobin threshold for anemia during the
third trimester is 110 g/L in guidelines from both the CDC
(235) and the WHO (236).

— In women given iron supplements, the hemoglobin concen-
tration in the third trimester rises from a nadir near the end
of the second trimester but is appreciably lower in those who
receive no supplemental iron (254).

Serum iron, ferritin, sTfR and iron stores.

— During the third trimester, the serum iron falls further as
the transferrin concentration continues to rise, resulting
in a continued decline in the serum transferrin saturation
(Figure 3) (226).

— In the Dutch study, SF decreased during the third trimester
(Figure 3) (226) as sTfR increased, resulting in a marked
increase in the TfR index.

— As in the second trimester, the relative contributions of func-
tional iron deficiency and erythropoietic activity to the in-
crease in sTfR have not been determined (226, 243, 244,
246).

— In the pregnant women examined in NHANES, 1999–2006,
the proportion with body iron index <0 mg/kg rose to
29.5% in the third trimester (249).

— In women supplemented with iron, erythrocyte protopor-
phyrin remains within the reference range during the third
trimester but increases in those with iron deficiency (251,
252).

Postpartum. Median concentrations of the principal biomark-
ers of iron status in Dutch women postpartum are shown in
Figure 3. Key points relative to iron biomarkers include the fol-
lowing: 1) at 24 h postpartum, the median hemoglobin concen-
tration was little changed from the third-trimester level but both
fluid shifts and the extent of blood loss at delivery will determine
individual values; 2) Delivery-associated inflammation is associ-
ated with increased concentrations of C-reactive protein (CRP),
hepcidin, ferritin, and the sTfR index (226, 228, 255–257); 3)
At 24 h postpartum, serum iron, transferrin, transferrin satu-
ration, sTfR, and erythrocyte protoporphyrin are little changed
from values in the third trimester (Figure 3); and 4) by 6 wk
postpartum, all the biomarkers of iron status in Figure 3 had
returned to levels not significantly different from those in the
first trimester, with the exceptions of sTfR and the sTfR index,
which remained elevated (226).

Potential biomarkers for maternal and fetal iron status. In
summary, the interpretation of iron status biomarkers at various
stages of pregnancy are derived from measurements in healthy
Western women considered to be iron sufficient. In general they
reflect maternal rather than infant iron status (177, 258). De-
termining iron needs by using functional criteria based on the
health of the infant and mother has been advocated as an al-
ternative approach (221, 222, 238). It is important to note that
the putative beneficial effects of improved iron status for the in-
fant have been based on comparisons between mothers receiv-
ing supplemental iron (usually with folic acid) and those given a
placebo. The results of this series of observations have been in-
consistent in different settings. Nevertheless some studies have
shown critical functional benefits for the infant (259, 260). It
will be important to correlate the results of current biomarker
measurements during the various stages of pregnancy with the
survival and health of the baby to determine whether they have
predictive value. The evaluation of newer, currently experimen-
tal biomarkers such as serum hepcidin and novel red blood cell
parameters will also be very valuable.

Effects of iron deficiency on fetal and infant neurological

development. Three periods of pediatric development are at
increased risk for iron deficiency; the fetus/newborn, children
aged between 6 mo and 2.5 y, and female adolescents, particu-
larly if they become pregnant. Although each show a wide range
of motor and cognitive deficits, the first two are the most vul-
nerable, with iron deficiency resulting in neurodevelopmental
alterations that persist despite iron repletion (261). Early stud-
ies demonstrated that deficits occur in iron deficiency without
anemia (262) or by fetal conditions that are characterized by a
shift of available iron into a polycythemic red blood cell mass at
the expense of maintaining brain iron sufficiency (263). These
findings in humans, supported by animal research in sheep, rats,
and monkeys, suggest that iron is prioritized to red blood cells
over other organs, including the brain, during fetal and early
postnatal life (264–266). Thus, screening for iron deficiency by
assessing anemia likely means that the brain has already been
affected prior to diagnosis (267).

In humans, behavioral deficits map directly onto the abnor-
mal brain processes (and their interactions) elucidated from
the animal models (181). These include general reductions in
intelligence, motor abnormalities, including activity levels and
coordination, disrupted sleep patterns, slower speed of process-
ing, altered affect and social interactions, and reduced learning
and memory capacity (181). Long-term persistence of some of
these abnormalities has been documented to adulthood (268).
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Because these long-term abnormalities exist in spite of relatively
prompt diagnosis and treatment of anemia, biomarkers that
index brain health independent of red blood cell iron status are
critically needed.

Establishing the functional consequences of the effects of a
nutrient deficiency on brain development can be challenging for
the following reasons: 1) nutrient deficiencies frequently have
their most profound effects on the brain when it is in its most
rapid growth trajectory, during the late fetal period and from 0
to 3 y of postnatal age (202, 203, 269); 2) functional assessment
of the brain at these ages is difficult because of the limited behav-
ioral repertoire of the fetus and young child; 3) the effects can
be relatively subtle, often affecting specific neurologic domains
and behaviors rather than global function; and 4) common nu-
trient deficiencies are rarely fatal and thus tissue-level “proof of
effect” is often not an option.

The features of the two general approaches typically used to
assess the brain consequences of early-life nutrient deficiencies
are highlighted in Text Box 23.

Text Box 23
Approaches to evaluating the impact of nutritional insults
on development
• Use of multidisciplinary assessments ranging from

molecular neuroscience through behavior to construct a
plausible biological proof.

-This approach can be driven top-down (i.e., from be-
havior to bench science) or bottom up.
-In either case the following are required: 1) develop-
mentally appropriate preclinical models; 2) physiologi-
cally appropriate degrees of nutrient deficiency; and 3)
a certainty as to the equivalency of animal behaviors to
human behaviors.

• Clinical studies: can be either observational/treatment
or prevention/supplementation studies.

-Observational studies evaluate developmental out-
come when a population with a specific nutrient deficit
is compared to a population without that specific nu-
trient deficit.

• The assumption is that all confounding variables that
can affect brain development (including other nutrient de-
ficiencies) will be equal between groups.
• Given that nutrient deficiencies tend to co-occur, this

goal can be difficult to achieve.

-Prevention/supplementation studies: the nutrient in
question is supplemented in one group and outcomes
are compared to a nonsupplemented control.

• This approach can be problematic due to issue af-
fecting rigor and reproducibility including, lack of base-
line status assessment, lack of sensitive and specific nutrient
biomarkers, and types and expectations regarding outcome
measures and their relevance to nutrition or nutrient-brain
interactions.

Human and animal studies strongly support the hypothesis
that early-life iron deficiency alters the brain, both acutely,
as long as iron deficiency persists, and chronically, well after
iron repletion. A comprehensive review of this topic is well

beyond the scope of this paper. However, several reviews of
the subject are worth considering in order to appreciate the
body of evidence that early-life iron deficiency is detrimental to
long-term brain health (77, 181, 270–272).

In considering nutritional interventional studies in children,
the following four key developmental neuroscience principles
must be followed in order to optimize the chances of obtaining
accurate information: 1) timing of the intervention; 2) clarity
regarding level of risk in target populations; 3) use of age-
appropriate testing tools; and 4) ensuring linkage between in-
terventions and assessment. The key features of these principles
are summarized in Text Box 24 (273–274). The following is a
summary of some additional details about the implications of
iron deficiency during development.

Text Box 24

Key principles for evaluating neurological outcomes
Timing
•The nutritional interventionmust occur at a time when

there is a demonstrably high demand for the nutrient in the
developing brain or brain region.
• The optimal timing for a particular nutrient is most of-

ten elucidated from developmentally appropriate preclini-
cal models.
• Must consider whether administration of a supple-

ment to a mother eventually results in accretion in the
developing fetal brain (e.g., in considering iron supple-
mentation during pregnancy, the driving force would be
demonstration of an effect on iron-dependent fetal re-
gional brain development) rather than influencing ma-
ternal hematologic status (although the two may well
coincide).

Level of risk in target population
• The target population in the study must have a signif-

icant rate or risk of deficiency.
• There is no evidence in developmental neuroscience

that further supplementation of any environmental factor
(including nutrients) beyond a state of sufficiency results in
“enhanced” brain development.
• Study populations cannot have a degree of deficiency

that is so great that a relatively low dose intervention has
no effect (273)
• Study populations should not have deficits of multiple

nutrients that affect brain development such that it is im-
possible to assess the role of a single nutrient such as iron
(274).

Age-appropriate testing tools
• Use neurodevelopmental test batteries that are appro-

priate to the proposed nutrient’s role in the brain at the
time that the supplement was administered.
•Global tests (i.e., Bayley Scales of Infant Development,

IQ tests) are often too generic and fail to detect neurodevel-
opmentally important differences in higher brain process-
ing, speed of performance, and subtle memory problems.
•Nevertheless, global tests are typically utilized in large-

scale studies because they are easily performed across mul-
tiple enrollment sites.
• More specific neural domain tests tend to be techni-

cally difficult and may also be expensive even though they
may be better designed to assess the specific nutritional
deficit-induced pathology.
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•The degree of neurodevelopmental deficit must be con-
sistent with the effect size seen in the developmentally ap-
propriate preclinical models in order not to misattribute a
large effect size to a nutrient that is likely, in fact, to have
a small effect.

Linkage between interventions and assessment
•Neurodevelopmental assessment batteries must be ad-

ministered as close to the intervention as possible in order
to avoid post-treatment confounding factors. These include
the following:

-Negative environmental (including nutritional) factors
-Positive factors such as neural plasticity in the brain
areas that were initially negatively impacted by the de-
ficiency

The vulnerable period of pregnancy, through infancy and
toddlerhood (181) will be considered separately because the
etiologies of iron deficiency and neurodevelopmental conse-
quences differ. In each case the pathophysiology leading to in-
creased risk of iron deficiency, the animal models that support
the hypothesized effects, and the human evidence for the dele-
terious neurodevelopmental effects will be examined.

Pathophysiology of iron deficiency in the fetus and
neonate

As detailed above, much is known about the maternal-fetal
transfer of iron. Evidence in humans points to prioritization of
iron to the fetus at the expense of the mother (176, 177). In
the fetus, evidence from humans (275, 276) and animal models
(264) indicate that interorgan prioritization favors red blood
cells over other organs, including the brain, the heart, and the
liver—in that order (264, 276).

A number of gestational conditions lead to a disruption of
the balance of fetal iron supply and demand and thus to fetal
brain iron deficiency (277–279). These include the following: 1)
severe maternal iron deficiency; 2) placental insufficiency (usu-
ally due to maternal hypertension); 3) maternal diabetes melli-
tus; and 4) maternal smoking.

The first two reduce available iron to the fetus, whereas the
chronic fetal hypoxemia associated with poorly controlled ma-
ternal diabetes increases fetal iron demand for compensatory
erythropoeisis beyond the capacity of the placenta’s transport
ability (166, 275, 280); for a review, see Nold and Georgieff
(281).

Studies have shown that brain iron concentrations are re-
duced by 40% in newborn iron-deficient infants of diabetic
mothers (276) and by 33% in newborn intrauterine growth-
restricted infants (282). Looking at ferritin concentrations, 65%
of infants of diabetic mothers and 50% of growth-restricted
newborns have a cord SF concentration <60 µg/L (277).

Iron in the liver is predominantly in the form of ferritin and
serves as a storage buffer for the fetus during periods of reduced
iron supply. Nevertheless, in humans, once liver iron concentra-
tions are<1500 µg/g dry tissue weight, brain iron concentration
falls precipitously (276). Based on data presented by Saarinen
and Siimes (283), a cord SF concentration of ∼40 µg/L in the
child (275, 284) would reflect liver iron concentration indicative
of potential risk for fetal/neonatal brain risk.

Preclinical models of gestational/lactational iron
deficiency

The degree of brain iron deficiency seen in human autopsy spec-
imens has been achieved in rat models of gestational/neonatal
dietary iron deficiency (186, 187, 191, 285, 286). Similar evi-
dence has been provided by genetic mutant nonanemic mouse
models that isolate the iron deficiency to single brain regions
(209). The totality of this evidence demonstrates the negative
effects of gestational/neonatal iron deficiency on regional brain
anatomy and function and is summarized in Text Box 25 (170,
184–191, 209, 210, 285, 287–292).

Text Box 25

Preclinical evidence of effect of iron deficiency on the brain
• Electrophysiology (190).
• Structure (189, 287).
•Metabolism (185, 288, 289).
•Neurotransmitter concentrations (170, 185, 186, 285,

290, 291).
•Myelination (184).
• Gene expression (187, 188, 209, 292).
• These regional cellular abnormalities are particularly

concentrated in the developing hippocampus and stria-
tum and result in abnormalities in behaviors dependent on
those regions (170, 191, 209, 210).

The affected behaviors of gestational/lactational iron defi-
ciency include abnormalities in hippocampus-based learning
and memory (170, 191, 209, 210, 293) and dopaminergically
driven behaviors (170, 294) as would be predicted by the
time/dose/duration paradigm (203). These preclinical studies
have demonstrated that the hippocampal, dopaminergic, and
myelin effects persist beyond the initial neonatal deficiency into
adulthood. It is also clear that only treatment at a time that is de-
velopmentally consistent with the third trimester of pregnancy
is effective in preventing those long-term effects.

Gestational/lactational dietary iron-deficiency anemia in the
rat has provided a convincing pathophysiologic model of the
human condition.Although the pathology evinced by this model
is due to reduced iron exposure, these models have been unable
to specifically distinguish the role of iron from that of anemia
(or the combination) in neurodevelopment (209).

The essentiality of iron to neurodevelopment was elu-
cidated recently through generation of two nonanemic
genetic mouse models: 1) transgenic mice that express
tetracycline transactivator-regulated, dominant negative
transferrin receptor (DNTfR1) in hippocampal neurons;
2) nonanemic Slc11a2(hipp/hipp) [double mutant, hippocam-
pal neuron-specific knockout of Slc11a2(hipp/hipp)] mice (72,
91). In these models iron uptake is disrupted in specific sites
(hippocampus) and at specific time (late gestation). The use
of these models demonstrated both a structural vulnerability
in the hippocampus and a critical period for the provision of
iron, which if missed, results in irreversible long-term neu-
rocognitive, structural, and genomic abnormalities (179, 209).
Functionally, these models show that the loss of learning and
memory capacity results specifically from the loss of hippocam-
pal neuronal iron uptake (179, 209). The fundamental role
of iron availability in learning and memory is also supported
by a dose-dependent increase in expression of hippocampal
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neuronal iron transporters with increasingly difficult memory
tasks (209). These models have also been used to demonstrate
that nonanemic iron deficiency, which is more prevalent in
humans than IDA, also disrupts brain development. Thus, the
available evidence indicates that iron is essential for fetal and
early postnatal brain development and function, and that iron
deficiency leads to abnormal brain development and function.

Human studies

The abnormalities documented in preclinical animal models
map directly onto the human behavioral and electrophysiologi-
cal abnormalities in iron-deficient newborns, thereby providing
a multilayered plausible biological proof for the important role
of iron in neurodevelopment. The challenge of such studies in
humans is linkingmeasures of themyriad of structural and func-
tion components of the developing nervous system to biomark-
ers of iron nutrition. The former may be referred to as “bioindi-
cators,” reflecting perturbations of specific structures/neural
systems as compared to sensitive and specific biomarkers of iron
nutrition/status (295).

Although data on the behavior of the iron-deficient new-
born humans is limited, the existing literature strongly impli-
cates nonanemic and anemic iron deficiency in the fetal and
neonatal period as neurodevelopmental risks to precisely the
systems that were rapidly developing at the time of the defi-
ciency (284, 296–299). Text Box 26 (177, 273, 294, 296, 297–
307) highlights some of the extant evidence as well as some of
the bioindicators that have been used.

Text Box 26

Impaired newborn iron status and neurodevelopment
• Infants with low cord ferritin (<76 µg/L) were almost

5-fold more likely to score poorly on fine motor skills,
and almost 3-fold more likely to have poorer tractability,
poorer language ability, and score worse on every subtest
than children with normal ferritin concentrations at age
5 y (296).
• Suggests a critical period for multiple brain processes

in the fetus and neonate.
• Several studies have evaluated the impact of maternal

iron intervention on general developmental outcome.

-Multiple studies show significant positive findings,
e.g., (299–302).
-Null studies have been reported with iron supplemen-
tation in pregnancy (273).

• Positive findings highlight the following:

-The importance of an appropriate dose of iron for
the degree of iron deficiency of the maternal-fetal dyad
(302).
-The importance of timing of the intervention was ap-
parent in a subsequent large placebo-controlled supple-
mentation trial in Nepal (302).

• Children of women originally randomized to placebo
during pregnancy had poorer outcomes (300). They subse-
quently received supplemental iron/folic acid (with or with-
out zinc) from 1 to 3 y of age.
• No effect was seen at age 7–9 y of age on neurocogni-

tive (including frontal lobe) testing (302). Thus, postnatal

iron supplementation was unable to counteract the prena-
tal effects of lower iron status.
• Studies of targeted brain areas and functions have used

several “bioindicators” (i.e., high-end techniques to target
functions in rapidly developing iron-dependent neural cir-
cuitry) including the following:

-Development of the hippocampus [rapidly developing
in the late fetal/early neonatal period in humans and
subserves recognition, e.g., discriminative memory be-
havior (303)], ID was associated with poor vocal recog-
nition (304).
-The persistence of learning and memory problems at
age 3.5 y. Performance was inversely proportional to
iron status at birth (305).
-Monoamine metabolism as reflected by increased risk
to infant temperament, potentially mediated by the de-
veloping dopaminergic system, has been documented
(297). The findings are important because temperament
is closely related to monoamine status (306). At birth,
infants with iron deficiency without anemia (294) show
profound short- and long-term changes in monoamine
metabolism.
-Myelin formation/function: auditory brainstem
responses were assessed as a reflection of speed
of processing and a potential index of myeli-
nation in infants at birth (298, 307). Results
indicated that iron deficiency early in the pe-
riod of myelination of the central nervous system
causes slower speed of processing along myelinated
circuits.

Effects of iron deficiency on infants and toddlers. Accord-
ing to the 2007–2010 NHANES survey, in the United States,
∼7% of children aged 1–5 y have iron deficiency (308) com-
pared to rates of IDA in regions of sub-Saharan Africa and
Southeast Asia that exceed 50%. The high rate of infant and
toddler iron deficiency and IDA around the world is due to
multiple coinciding and mutually exacerbating factors (181). As
with the fetus and neonate, iron requirements are high because
of the rapid rate of somatic growth.The red blood cell mass con-
tinues to increase with somatic growth and accounts for the vast
majority of total body iron demand (as hemoglobin), and also
myoglobin in growing muscles. In addition, any rapidly grow-
ing and differentiating organ, such as the brain, will continue to
have high demands. Tomeet this demand, the child relies onmo-
bilizing iron present as ferritin and the (relatively) expanded red
blood cell mass at birth, and from postnatal dietary iron intake.
Infants with low iron stores at birth are at greater risk for lower
stores at 9 mo of age; that risk is directly proportional to the
rate of growth between birth and 9 mo (309). The gestational
conditions that lead to low neonatal iron stores are discussed
elsewhere.

During the postnatal and infancy period the sources of di-
etary iron include various infant feeding options (e.g., human
milk, formula, animal milk), complementary foods (e.g., animal
meat protein, wet- and dry-pack cereals), leading eventually to
a mixed diet as available within the household. Throughout this
period infants/childrenmay also be exposed to iron supplements
with or without micronutrients (310).

As in adults, iron utilization from these sources can be
enhanced by ascorbic acid and inhibited by phytates and
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polyphenolic compounds (e.g., tea, coffee) in the diet. World-
wide, two significant pathologies contribute to the common
occurrence of negative iron balance: blood loss from intesti-
nal (usually parasitic) infections and the hepcidin-mediated
ACD/inflammation which limits iron absorption during periods
of infection and inflammation (181).

Unlike the fetus and neonate, there are no studies that quan-
tify the degree of brain iron deficiency in iron-deficient anemic
infants or toddlers. Similarly, no studies address whether iron is
prioritized to red blood cells over the developing brain as occurs
in the fetus and neonate. The presence of behavioral abnormali-
ties in nonanemic iron-deficient children suggests, however, that
this may well be the case (262).

Preclinical models of postnatal dietary iron deficiency. Vir-
tually all preclinical studies that induce iron deficiency in the
postweaning period (i.e., 21 d after birth in the rat) are designed
to simulate IDA in humans after 1 y of age. These models have
been used to demonstrate long-term effects on the monoamin-
ergic and myelin systems that persist into adulthood even af-
ter remediation of iron deficiency. Alterations in these systems
have been linked to functional abnormalities in neural circuits
that regulate mood, affect, social behavior, motor behavior, and
speed of processing (181). In summary, preclinical models pro-
vide mechanistic evidence to explain how postnatal dietary iron
deficiency affects brain development and related functional out-
comes. Text Box 27 (181–183, 186, 189–191, 298, 307, 311–
325) contains a summary of knowledge gained from preclinical
studies of iron deficiency.

Text Box 27

Preclinical evidence of functional consequences: infants
and toddlers

Monoamine
• Through its role in the activity of tyrosine hydrox-

ylase and tryptophan hydroxylase, iron is responsible for
the synthesis of dopamine and serotonin, respectively (186,
311).
• Iron deficiency reduces the concentration of dopamine

D2 receptors in the ventral midbrain and prefrontal cortex
(312).
• Studies have suggested that nonanemic iron deficiency

is a risk to brain development and function (313).
• Behavioral abnormalities in preclinical models are

consistent with disruptions of dopaminergic pathways and
mapwell onto the behavioral findings in humans (181, 191,
312, 314, 315).
• Studies in nonhuman primate models have docu-

mented the following differences in outcomes based on the
timing of iron deficiency:

-Prenatal iron deficiency in the rhesus monkey results
in a behavioral phenotype of hyperactivity and lack of
inhibitory control.
-Postnatal iron deficiency results in a hesitant, wary
phenotype (316–318).

• Given the role of specific iron-sensitive areas of the
brain and the role of the dopamine system in mediating
activity and anxiety (319), the preclinical studies strongly
support the hypothesis that an iron-dopamine link under-

lies the motor activity and anxiety behaviors seen in iron-
deficient children (315, 320, 321).

Myelin
• Iron is an essential factor in myelination and oligoden-

drocyte function via its role in:

-Fatty acid incorporation into myelin
-Oligodendrocyte proliferation (183, 322, 323)

• Iron deficiency may affect oligodendroglia synthesis
of myelin via cellular mitochondrial dysfunction caused by
reduction of cytochrome concentrations (182, 323).
• Iron deficiency in the preweaning and postweaning pe-

riods alters myelination in the rat, as demonstrated by:

-Reduced 2,3-cyclic nucleotide-3-phophohydrolase
(CNPase) activity
-25–35% reduction in myelin basic protein concentra-
tions (324)

• Abnormalities in myelination observed in these rat
models may be the underlying abnormalities in neural
speed of processing that can explain the auditory brainstem
evoked responses (298, 307) and visual evoked responses
(325) reported in iron-deficient children.

Cellular energetics and mitochondrial health
• Studies have established that iron exerts its influence

through its incorporation into cytochromes (182).
• Neurons (and glia) have high metabolic rates during

development, and thus are sensitive to reductions in iron
supply (286, 323).
•Neuronal iron deficiency results in changes in dendrite

structure (189) and lower electrical output (190)—both
are associated with poorer synaptic efficacy and memory
deficits. As noted above, iron-deficient oligodendrocytes
generate less myelin and also myelin with abnormal fatty
acid profiles (323, 324).

Human studies. A number of systematic review and data anal-
yses have been reported recently (270–272). Of particular rel-
evance is the series on risk factors to early childhood develop-
ment in The Lancet, originally published in 2007 and updated
in 2011 (271, 272).

Studies of the effect of postnatal iron deficiency’s effects on
neurodevelopment fall into two categories;

1) Larger-scale population-based studies that typically as-
sess general outcome of observation/treatment trials and
prevention/supplementation trials irrespective of initial
iron status.

• Prevention/supplementation trials are more likely to
have null or small effect-size results with respect to an-
swering the question of whether early life iron deficiency
causes neurodevelopmental abnormalities because the
sample populations are unselected.

• Small effect-sizes in such an unselected group of subjects
should be considered as evidence for a biologically rele-
vant effect.

2) Smaller-scale studies designed to elucidate the role of
iron in specific neurobehavioral abnormalities predicted
from preclinical models.

Overall, 20 of the 22 studies reviewed in the two Lancet
papers showed poorer functioning on general tests of cog-
nition, motor, and social-emotional capacity in children with
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iron-deficiency anemia (271–272). The consistency of this find-
ing across many study designs from multiple populations
around the world suggests a robust effect.

In infants, toddlers, and young children, general functioning
is typically assessed with broad-based standardized tests such as
the following: 1) Bayley Scales of Infant Development—these
provide information about mental and motor outcomes, each
normed to a mean of 100 with an SD of 15; 2) neuropatho-
logically specific tests can be behavioral or involve some type
of neuroimaging, and can include electrophysiology to assess
social-emotional function, speed of central neural processing,
learning and memory, and complex behaviors.

Both approaches can assess acute (i.e., while iron deficient)
and long-term (ie, after treatment and resolution) effects.

A number of studies have explored the effect of IDA on gen-
eral function. Some of the key findings are summarized as fol-
lows: 1) six observational/treatment studies of otherwise well-
nourished infants with IDA showed that iron-deficient infants
scored 6–15 points lower on mental developmental indexes
compared to iron-sufficient, nonanemic controls (326–331); 2)
five of the studies showed a lower motor index with a similar
effect size (326–329, 331); 3) recovery of neurobehavioral func-
tion with treatment was seen in two of the six studies (326, 328),
but not in the others; 4) in one of the cohorts followed for the
longest period of time (19 y), loss of IQ was noted over time
from 1 y to age 19. The slope of this loss was greater in children
who were chronically iron deficient between 12 mo and 3 y or
who did not correct their hematology within 3 mo of therapy
(181); 5) the results imply that critical periods of neurodevel-
opment exist that are dependent on iron sufficiency, a finding
supported by the preclinical models.

Selected studies of the effect of acute IDA on pathophysiolog-
ically plausible regional brain circuitry are highlighted in Text
Box 28 (209, 211, 262, 332–336).

Text Box 28

Effect of iron deficiency and IDA on regional brain circuitry
• Dopaminergic systems: spontaneous eye blink rate, a

dopaminergic function, was assessed in 19 iron-deficient
anemic 10-mo-olds (332).

-Compared to iron-sufficient controls and nonanemic
iron-deficient infants, the iron-deficient anemic infants
had significantly slower eye blink rates, consistent with
reduced dopamine function.
-A significant dose-response relationship between
social-emotional behavioral abnormalities and the de-
gree of iron deficiency exists. Infants with IDA have
poorer soothability, less positive affect, and less social
engagement than iron-sufficient infants, with nonane-
mic iron-deficient infants demonstrating intermediate
degrees of abnormalities (262).

• Hippocampus: electrophysiological evidence of hip-
pocampal dysfunction was provided in a study of 9- to 12-
mo-old infants with IDA and iron-sufficient controls (333).

-In a maternal face recognition paradigm, iron-deficient
anemic infants showed a maturational delay in recog-
nition memory (333).
-Part of the effect was mediated by social-emotional
status of the infants, consistent with the role of

dopamine in hippocampus-dependent memory func-
tion. These effects suggest that iron deficiency causes
hippocampal dysfunction during a period of rapid hip-
pocampal development that extends from birth to 18
mo of age in the human.
-These observations are consistent with preclinical
model studies that demonstrated that iron is essential
for normal hippocampal neuronal development, and
normal learning and memory function (209).

• Behavioral tasks were used to assess recognition mem-
ory.

-In 28 IDA, 28 iron-deficient and 21 iron-sufficient 9-
mo-olds (334).
-IDA infants showed poorer object permanence and
short-term memory than iron-sufficient infants.
-Iron-deficient infants demonstrated intermediate per-
formance to the other two groups, suggesting a dose-
response effect based on iron status.

• Electrophysiology: auditory brainstem evoked re-
sponses were utilized to assess the effect of IDA on speed
of central neural processing in 29 IDA 6-mo-olds and 26
iron-sufficient controls (325).

Central conduction time was longer in the iron-deficient
infants, indicating slower processing speed.

Because the delays were more prominent at 1-, 2-, and
4-y follow up (325), the authors concluded that the effect
likely was a permanent alteration in a primary process such
as myelination, rather than a developmental delay.
• Electrophysiology: visual evoked potentials were used

in 25 IDA compared to 25 iron-sufficient toddlers aged 6
to 24 mo (335).

Demonstrated longer latencies on visual evoked re-
sponses in IDA infants

A dose-response effect was shown between the dura-
tion of latency delay and the degree of IDA. The data from
the preclinical studies confirm significant alterations in the
myelination process with iron deficiency (211).

Because a period of rapid myelination exists between
36 wk gestation and 2 y in humans, the findings suggest a
vulnerable period precisely at the time that infants are at
risk of iron deficiency (336).

Prevention and supplementation trials. Results from pre-
vention/supplementation trials indicate a modest, but positive
effect of iron supplementation on neurodevelopment. As noted
above, a systematic review of these types of trials would be
expected to show variability in response because of several
factors that determine nutrient-brain interactions during devel-
opment. When enrolling unselected (for iron deficiency) sub-
jects, the baseline rate of iron deficiency, the severity of iron
deficiency, the timing of intervention, the dose of the interven-
tion relative to the degree of deficiency and the selection of the
proper bioindicator of neurodevelopment relative to the stage
of brain development when the deficiency occurred, all become
relevant factors in whether an effect will or will not be seen.

At least seven trials of postnatal iron supplementation of-
fer useful data and are characterized as follows: 1) two were
conducted in developed countries (337, 338); 2) five were con-
ducted in developing countries (339–343); 3) the trials did
not have the same study designs, in that other risk factors to
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neurodevelopment (stunting, other micronutrient deficiencies,
etc.) were present in four of the five trials set in developing
countries; 4) supplementation in some trials was with a multi-
micronutrient preparation, making isolation of the role of iron
in any findings more problematic; and 5) the risk of iron defi-
ciency also varied widely, even in the two trials in the developed
country settings.

In spite of these differences, all the trials in developing coun-
tries (where in some cohorts the risk of iron deficiency was
high and the degree of iron deficiency when present was large)
reported improved motor outcomes with iron supplementation
(339–343), as did one trial in a high-risk population in a de-
veloped country, England (338). Better cognitive/language out-
comes were present in two studies (342, 343),whereas improved
social-emotional development was seen in three (340, 341, 343).
Long-term follow-up of these cohorts will determine whether
these benefits are sustained.

Given its important roles in cellular metabolic processes, it
should not be surprising that an iron-deficient brain does not
perform optimally. Of greater concern are the long-term mor-
bidities conferred by early-life iron deficiency and the consis-
tent finding that prompt treatment of early-life iron deficiency
does not prevent long-term disability (in humans or in ani-
mal models). This failure to completely recover from brain iron
deficiency is unlike the finding in red blood cells, where
treatment resolves anemia with no apparent long-term conse-
quences. Additional aspects of the impact of early iron defi-
ciency on brain biology and human behavior are addressed be-
low.

From a neurodevelopment perspective, the failure to achieve
normal development after early iron deficiency suggests that
critical periods of brain development have been missed and
structure is permanently altered. Moreover, long-term dysreg-
ulation of critical synaptic and myelin gene expression in dam-
aged areas suggests the possibility that early-life iron deficiency
may exert epigenetic effects (187, 292). The long-term behav-
ioral abnormalities of formerly iron-deficient humans are com-
plex and confirm the ultimate interaction of altered major cen-
tral nervous system processes and brain regions affected by iron
status during development.

Iron is likely involved in many more biological processes in
the developing brain than are currently recognized. One exam-
ple might be the role of iron in the regulation of long-term gene
expression (187, 292). While future research will undoubtedly
add further evidence to the importance of iron, our current un-
derstanding presents an undeniable picture of its essentiality to
healthy brain development. The key task from both a clinical
and programmatic perspective is to use this knowledge to de-
velop better tools for providing care and programs that address
the importance of iron not just from a survival perspective but
with an acknowledgment of its critical role in human develop-
ment (344). “There is no convincing evidence that iron treat-
ment of young children with IDA has an effect on psychomotor
development or cognitive function within 30 days after com-
mencement of therapy. The effect of longer-term treatment re-
mains unclear” (344). The lack of a consistent response to iron
therapy once IDA is present is consistent with the premise that
prevention of IDA in the first place or earlier identification and
treatment may be necessary to recover neural function acutely
and prevent long-term effects.

Potential biomarkers for iron status during fetal and in-

fant development. As discussed in detail above, iron dis-
tribution is markedly different in early human development

compared to toddlers, children, and adults. Some key features
of fetal/neonatal iron as they pertain specifically to assessment
are highlighted in Text Box 29 (278, 345, 346).

Text Box 29

Key aspects of iron status during fetal and neonatal periods
• Transplacental iron transport to the fetus is highest in

the third trimester, averaging 1.35 mg/kg fetal body weight
per day (346).
• Fetal body iron reaches 75 mg/kg (70–80% in

hemoglobin, 10% in myoglobin and tissue enzymes, and
10–15% in stores).

Evidence for biomarkers
• A rise in SF from a median value of ∼45 µg/L at 14–16

wk to >100 µg/L at 39 wk has been observed (346).
• Serum iron and TIBC values also rise whereas ZPP/H

is inversely correlated with gestational age.
• On the other hand, sTfR levels do not appear to be

correlated with gestational age (278).
• Fetal hemoglobin is replaced by adult hemoglobin dur-

ing the first 6 mo of life.
• Iron is transferred from RBC containing fetal

hemoglobin to the storage compartment and then reuti-
lized for the synthesis of adult hemoglobin.
• In a study of 573 normal infants and children, a me-

dian SF concentration of 101 µg/L was reported at birth,
rising to 356 µg/L at 1 mo and then rapidly falling to
∼30 µg/L at 6–11 mo (345).

The biomarkers employed for evaluating iron status in adults
have been measured in the umbilical cord blood of premature
and full-term infants (Table 4) (277, 278, 346–348). However,
the studies contain relatively limited sample sizes and the val-
ues reported, although qualitatively similar, are generally not
consistent. Thus, infants are relatively polycythemic and have
high iron stores at birth, but become critically dependent on an
adequate supply of dietary iron by 4–6 mo. This dynamic flux
between the red blood cells and stores makes it very difficult to
estimate iron status precisely.

Screening for iron deficiency in the neonate and infant has, in
the past, been focused on the relationship between maternal and
infant iron status and the prevention of anemia in early child-
hood. Although these studies do address important aspects of
iron nutrition, they may fail to identify critical facets of neuro-
logic dysfunction because anemia is the end-stage state of iron
deficiency.

The developing brain can suffer the consequences of iron de-
ficiency in the absence of anemia. Prioritization of available iron
to developing red blood cells over other tissues during negative
iron balance has been reported in developing humans and ani-
mal models as well as infants born to diabetic mothers and af-
ter intrauterine hypoxemia and erythropoietin administration
(264, 275, 276, 349, 350). Brain iron deficiency, independent of
anemia, is responsible for long-term neurological deficits (179,
209, 351). Thus, early detection (and prompt treatment) of iron
deficiency-induced brain dysfunction should be the primary goal
of screening for early-life iron deficiency (Table 5) (181, 268,
352).

A need exists to generate serum biomarkers indexing brain
dysfunction in the pre-anemic stage of iron deficiency when it

BOND – Iron Review 1025S



TABLE 4 Reported biomarker values for umbilical cord blood1

Biomarker 26–28 wk 29–31 wk 32–36 wk 37–41 wk Reference

SF, µg/L 75 (44–117) — 90 (45–142) 171 (121–259) Sweet et al. (278)
131 (90–238) Sweet et al. (347)
134 (40–310) Chockalingam et al. (277)

101 Siimes et al. (346)
sTfR, µg/dL 10.3 (7.5–16.5) — 8.2 (5.4–12.5) 8.4 (6.4–10.6) Sweet et al. (347)

9.4 (6.7–10.8) Sweet et al. (278)
ZPP/H, µmol/mol 122 ± 34 103 ± 18 122 ± 34 — Juul et al. (348)

1Values are medians (ranges) or means ± SDs. SF, serum ferritin; sTfR, serum transferrin receptor; ZPP/H, zinc protoporphyrin/heme ratio.

is still possible to reverse it with iron treatment. Development
of such tools relies on knowing the relationship between cur-
rently available biomarkers and brain iron status, or bioindi-
cators reflecting iron-dependent brain function. Such tools do
not currently exist (other than perhaps in the neonate) because
brain iron status is typically unknown in at-risk children. MRI,
while sensitive enough to measure brain pathology and relate
it to iron overload (353), is not sensitive or specific enough to
detect brain iron deficiency.

The application of various “-omic” approaches (e.g., pro-
teomic, metabalomic analyses) have enabled identification of
potential indicators in the cerebrospinal fluid that can index
brain iron deficiency in nonhuman primates (354, 355), but no
studies have assessed such potential biomarkers in cerebrospinal
fluid in humans. Because of the obvious risk and invasive nature

of such an approach it is unlikely that using lumbar puncture to
diagnose brain iron deficiency in humans will become a clinical
tool.

Given the current inability to directly assess brain iron sta-
tus in infants and children, attempts have been made to relate
classical hematologic [e.g., hemoglobin, Hct, mean corpuscular
volume (MCV)] and nonhematologic (e.g., ferritin, TSAT, ZPP,
sTfR) indicators to putative brain iron status (as indexed by ab-
normal neurobehavior).

To date, two types of approaches have been used to link iron
to brain function/outcomes: 1) population-based iron biomark-
ers linked to neurological outcomes; or 2) studies in neonates
that attempt to more directly link peripheral iron biomarkers to
brain iron content. Examples of these approaches are included
in Text Box 30 (262, 276, 283, 284, 296, 343, 349, 356–358).

TABLE 5 Assessment tools for neurological function1

Iron-dependent Applicability
Assessment Modality neurologic process Behavior construct Other nutrients for field use Comment

Sensory evoked
response (ABR,
VEP)

Electrophysiology Myelination, synaptic
efficacy

Speed of processing Oxygen, iodine
(infection)

No Sensitive; rapid; need
equipment

Event-related
potentials

Electrophysiology Myelination, hippocampal
integrity, synaptic efficacy

Speed of processing;
recognition memory; implicit
memory

Glucose, protein,
oxygen, zinc, iodine

No Very sensitive, not
portable

T2-weighted MRI Neuroimaging Iron content None None No Detects overload, but
not ID

Standardized tests
(e.g., Bayley
scales)

Behavior Myelination, synaptic
efficacy, monoamine status

Global function (integration
of effects of brain-wide iron
deficiency)

Protein, fat, oxygen,
glucose, iodine

Yes Nonspecific; not
sensitive

A, not B Behavior Synaptic efficacy;
monoamines

Working memory Zinc, iodine Yes Trained tester

Actigraph Physiology Monoamines Spontaneous motor activity Protein, copper, iodine Yes Trained interpreter

Social-emotional
behavior scale

Behavior; survey Monoamines Frontal lobe Copper, iodine Yes Trained interpreter

INFANIB Physical exam Myelination Global Oxygen, iodine
(infection)

Yes —

Peabody
developmental
motor scale

Behavior Myelination monoamines Gross and fine motor Protein, fat, oxygen,
glucose, iodine

Yes Nonspecific

Optotrak Behavior Myelination monoamines Motor response Oxygen, iodine No Equipment and
trained interpreter

1ABR, auditory brainstem response; ID, iron deficiency; VEP, visual evoked potential.
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Text Box 30

Studies linking population-based biomarker cut-offs to
neurological outcomes
• Population cut-offs for hemoglobin, Hct, and MCV

were used in seminal early papers that demonstrated ab-
normal brain function as a function of IDA (343, 356).
• Lozoff et al. (262) chose to define nonanemic iron

deficiency as ≥2 abnormal nonhematologic values in the
context of a normal hemoglobin concentration and related
nonanemic iron deficiency to poorer neurobehavioral per-
formance.
• In none of these studies was it clear whether the re-

lationship of these peripherally measured biomarkers to
brain iron is linear or reflects a threshold for adverse out-
comes.
• No studies have assessed the positive or negative pre-

dictive value of specific cut-offs for these markers.
Studies in neonates: peripheral biomarkers and neuro-

logical outcomes
• An autopsy study of nonanemic newborn infants

demonstrated that a threshold response of brain iron con-
centration as a function of liver iron concentration oc-
curred when liver iron was <10% of normal (276), a find-
ing recently confirmed in the neonatal lamb (349).
• Calculations were made from a nomogram published

by Saarinen and Siimes (283) relating SF concentrations
to liver iron content to predict that the threshold ferritin
concentration for brain iron deficiency in the neonate was
35 µg/L (284).
• This value was tested as a cut-off to determine whether

it predicted brain function in neonates and was found to
differentiate those with normal recognition memory from
those with impaired recognition memory (284).
• Abnormalities in acute and long-term brain function

have also been documented in neonates with cord blood
ferritin concentrations <76 µg/L (i.e., the lowest quartile)
(296, 357), suggesting that even these neonatal ferritin cut-
offs are not reliable. The data also serve to emphasize that
the 5th percentile cut-off for a population biomarker may
not represent the level at which neurologic dysfunction
occurs.
•Recently,ZPP/H> 118 µmol/mol cut-off in cord blood

was associated with abnormal recognition memory task at
2 mo (358).
• No other hematologic or nonhematologic marker

measured in the peripheral blood or serum has been as-
sessed with respect to brain iron content.
•Whether a similar association, either linear or thresh-

old,with any of the common hematological indexes or iron
panel measures is present beyond the newborn period has
yet to determined.

Future research should concentrate on matching currently
available biomarkers of iron status with the time frames for
the development of iron-dependent neural systems for which
functional tests are available, e.g. myelination and monoamine-
driven behaviors. Examples of potentially relevant tests of neu-
rological function are listed in Table 5. Because prevention of
brain iron deficiency is the goal, the changes in the screening tool
ideally should occur before the onset of brain iron deficiency

and the clinical diagnosis of neurobehavioral effects due to brain
iron deficiency. Changes in these bioindicators of brain function
would likely occur well before the onset of anemia. Diagnosis of
brain iron deficiency can currently only be inferred clinically by
alterations to behaviors that are dependent on iron deficiency
(Table 5). Although these behaviors are not specific to iron defi-
ciency, if they are present within the context of supporting evi-
dence of IDA, they can be presumed to be due to iron-deficiency
effects on the brain (Table 5). Myelination affects the speed of
neurological processing and can be measured through sensory
evoked responses (typically auditory brain stem responses or vi-
sual evoked potentials). A continued search for novel biomark-
ers and alternative approaches to understanding the relationship
between nutritional iron status during pregnancy in infancy and
early childhood is also essential.

Effect of iron deficiency on work/exercise capacity. The
relationship between iron deficiency and work capacity was
analyzed in depth in two critical reviews that included both
animal experiments and studies in human volunteers written
by Haas and Brownlie (359) and McClung and Murray-Kolb
(360). They evaluated aerobic capacity, endurance, energetic ef-
ficiency, voluntary activity, and economic productivity. The fol-
lowing is a brief summary of their conclusions.

Aerobic capacity. Laboratory experiments in animals demon-
strated that hemoglobin values were inversely correlated with
aerobic capacity. The severity of the anemia had a direct pro-
portional effect, that was greater once the hemoglobin fell below
70 g/L. Laboratory studies in human volunteers yielded similar
results, demonstrating a strong causal relationship between the
severity of IDA and aerobic capacity. Iron deficiency without
anemia did not affect aerobic capacity. Field studies provided
further support for a causal relationship between IDA and aer-
obic capacity in manual laborers (359, 360).

Endurance capacity (maximum length of time a given

workload can be sustained). Studies using the rat as the
experimental model suggest that although aerobic capacity is
primarily dependent on hemoglobin concentration, effects on
endurance are mediated at least in part by reduced oxidative
capacity due to tissue iron deficiency (361, 362). A small
number of human experiments were, however, inconsistent and
failed to provide convincing evidence of an effect of tissue iron
deficiency on endurance capacity. Haas and Brownlie (359)
suggest that the discrepancy between animal and human studies
may well be attributed to experimental design.

Energetic efficiency (amount of physiological energy re-

quired to perform a specified amount of work). In the lab-
oratory, energy expenditure is measured by indirect calorimetry
and work by the use of a treadmill or a cycle ergometer. Field
studies employ practical surrogate parameters, such as heart
rate and tasks completed. Haas and Brownlie (359) concluded
that two of three human laboratory studies demonstrated that
iron deficiency impairs energetic efficiency even in the absence
of anemia.

Voluntary activity and economic productivity. A limited
number of human laboratory experiments, as well as two field
studies, suggested that iron deficiency with or without anemia
might have an important influence on human behavior that
could impact critical social activities such as childcare. Based
on published models (363–365), food fortification with iron is
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predicted to have an important beneficial economic influence at
the population level, but this has yet to be tested in human trials.

At least one report published after the reviews of Haas
and Brownlie and McClung and Murray-Kolb supports their
conclusions (366). Most of the studies involved trained ath-
letes. Iron supplementation of nonanemic iron-deficient women
(SF < 20 µg/L) improved muscle function (attenuation of the
rate of decrease in maximal voluntary static quadriceps con-
tractions) (367). Iron deficiency (sTfR > 8.0 mg/L) without ane-
mia impaired aerobic adaptation and endurance capacity in un-
trained women who participated in an aerobic training program
employing cycle ergometers (368, 369). Iron-depleted (SF < 20
µg/L) competitive nonanemic female rowers were reported to
be slower than those with normal iron stores (370). Iron sup-
plementation improved energetic efficiency (371).

In summary, IDA has a profound negative effect on work
capacity. Fortification with iron and other micronutrients may
provide significant economic benefits for individuals and soci-
eties (363, 365).

Biomarkers of iron deficiency for evaluating effects on

work capacity. It is evident that iron deficiency associated with
anemia may impair physical activity by affecting oxygen deliv-
ery and oxidative capacity resulting from iron deficiency at the
tissue level. The reported studies have used the described be-
low biomarkers that are applied to the evaluation of anemia.
The principles that have been discussed in evaluating anemia
should be applicable to exercise capacity. It will be necessary to
develop specific criteria that ensure both adequate hemoglobin
levels and tissue iron sufficiency.

Iron deficiency in relation to iodine utilization and thy-

roid function. Iodine deficiency, like iron deficiency, is a major
global public health problem and many women and children,
especially in the developing world, are at risk of both goiter
and iron-deficiency anemia. Iron deficiency with or without ane-
mia can have adverse effects on thyroid metabolism and can de-
crease the production of thyroid hormones. As discussed in the
BOND iodine review (2), iron deficiency is likely to exacerbate
iodine-deficiency disorders that include goiter, hypothyroidism,
impaired mental function, and cretinism.

The influence of iron deficiency has been evaluated in rela-
tion to goiter and poor tolerance to cold (a symptom of hy-
pothyroidism). In iron-deficient populations, it has been shown
that the efficacy of iodized oil or iodized salt programs to pre-
vent goiter can be blunted, and that the regulation of body tem-
perature on cold exposure can be impaired. Zimmermann (372)
has reviewed in depth the influence of iron status on iodine uti-
lization and thyroid function. A brief summary follows.

Mechanism of impairment in thyroid function in iron defi-

ciency. Humans (373) and rats (374) with IDA have decreased
plasma T3 and T4 concentrations due to decreased levels of
thyroperoxidase, a heme enzyme that catalyzes the iodination
of thyroglobulin and the coupling of the iodotyrosine residues
(93). These are the two initial steps of thyroid hormone syn-
thesis. Other mechanisms explaining how iron deficiency could
impair thyroid status have also been proposed. They include al-
terations to the thyroid hormone feedback system (375), which
responds to low plasma levels of T3 and T4, lower transforma-
tion of T4 to T3 in the peripheral tissue due to decreased 5′-
hepatic deiodinase activity (376), and nonspecifically through
anemia and lower oxygen transport (377).

Iron deficiency decreases the efficacy of iodine supple-

mentation. Supplemental iodine is less efficiently utilized for
thyroid hormone synthesis when a population has a high preva-
lence of iron deficiency. Zimmermann et al. (378) evaluated the
response to supplemental iodine in 109 goitrous children aged
6–12 y in the western Cote d’Ivoire. Fifty-three were not ane-
mic at the start of the study whereas 56 suffered from IDA
[hemoglobin (Hb) <110 g/L and SF <12 µg/L or sTfR >8.5
mg/L and ZPP>40 µmol/mol heme]. Each child received an oral
daily dose of 200 mg I as iodized oil for 30 wk. The prevalence
of goiter at 30 wk was 12% in the nonanemic group and 64%
in those with iron-deficiency anemia. T4 levels were also signif-
icantly higher in the nonanemic group at 30 wk. This study was
extended by providing an iron supplement (60 mg Fe as FeSO4

4 times/wk for 12 wk) to the children who suffered from iron-
deficiency anemia at baseline. The iron supplement corrected
the IDA in 50/56 children with IDA and the prevalence of goi-
ter at 65 wk was reduced to 20% (91). Similarly, in a 9-mo for-
tification trial in goitrous Moroccan children comparing dual
fortified salt containing both iodine and iron with iodized salt
alone (379), a significantly greater reduction in thyroid volume
and improvement in thyroid function was found in the group
receiving iron with the iodine. The prevalence of goiter and hy-
pothyroidism was significantly decreased in the children con-
suming the dual-fortified salt compared to those receiving the
iodized salt. These results suggest that a high prevalence of iron
deficiency in populations with endemic goiter will decrease the
effectiveness of many national iodized salt programs.

Iron deficiency decreases thermoregulation in response to

cold exposure. The initial studies on thyroid metabolism in
iron-deficient rats focused on thermoregulation. Rats with iron
deficiency anemia were shown to have lower T3 and T4 lev-
els than controls, and the normal increase in T3 and T4 seen
in iron-sufficient rats exposed to cold (4°C) was not found in
rats with IDA (374). Lower T3 and T4 levels, and lower rec-
tal temperatures, were also reported in anemic women (373);
however, when nonanemic and anemic women were subjected
to a cold stress, involving moving from a bath at 35°C to one
at 28°C for 100 min, there was no difference in the response
of thyroid hormones or rectal temperature. Treating the anemic
women for 12 wk with iron supplements corrected the anemia,
improved the rectal temperature at 100 min, and partially cor-
rected the thyroid hormone levels. It is likely therefore that in
severe cold, individuals with iron deficiency anemia will have
more difficulty in maintaining body temperature and a reduced
ability to tolerate cold.

Biomarkers of iron deficiency for evaluating effects on io-

dine utilization and thyroid function. The reported studies
used the biomarkers that are applied to the evaluation of ane-
mia as discussed elsewhere. The limited evidence available at the
present time suggests that they will be suitable for evaluating the
effects of iron status on thyroid function. However, further re-
search is needed to define adequate and optimal iron status for
normal iodine utilization and thyroid function.

Morbidity related to infectious diseases. As highlighted in
Text Box 31, infectious diseases continue to be a major scourge
of the global community (380). Although a comprehensive dis-
cussion of all infectious disease is beyond the scope of this re-
view, it is clear that the current landscape with regard to iron
and global health is complicated by a number of core issues.
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Text Box 31

Annual deaths (in millions)

Disease Deaths
Respiratory Infections 3.9
Malaria 1.3–3.0
HIV/AIDS 2.5
Diarrheal diseases 1.8
Tuberculosis 1.7
Neglected tropical diseases 0.5

Source: Center for Strategic and International Studies (CSIS) (380).

While HIV/AIDS, tuberculosis (TB), and malaria account for
∼16% of global mortality (381), a significant amount of at-
tention has been given to the relationships between iron status,
interventions, and malaria, primarily stimulated by a large ran-
domized clinical trial of iron supplementation in children (382).
The core issues are as follows: 1) the need to understand the
mechanisms to explain increased risk for morbidity and mor-
tality associated with iron supplementation; 2) how to assess
nutritional iron status in the context of infection and inflam-
mation; and 3) the relative risk-benefit associated with various
intervention options to prevent and treat nutritional iron defi-
ciency in the context of infections including malaria (383, 384).
The challenges associated with malaria exemplify some core is-
sues common to all infections and are illustrative of the key is-
sues with regard to biomarkers of iron in this context.

A review of the literature related to iron nutrition and these
diseases reveals several challenges to our ability to draw con-
clusions about a specific role of iron nutrition, or to develop
and implement safe and effective interventions to address iron
nutrition in these conditions.

Several recent studies have explored the connection between
HIV infection, anemia, and nutritional iron status (385–388).
Kerkhoff et al. (385) assessed iron status, including the mea-
surement of hepcidin levels, and reported that patients sur-
veyed suffered predominantly fromACD rather than IDA.Diouf
et al. (386) reported that diets containing micronutrient-
fortified lipid-based supplement improved anemia based on
measurement of hemoglobin; however, they did not include spe-
cific biomarkers of nutritional iron status. Zinc deficiency was
highly prevalent in this study cohort but the intervention did
not improve status despite reaching intake levels comparable to
DRI.Widen et al. (387) reported that antiretroviral therapy was
associated with anemia and changes in iron biomarkers (sTfR).
In a large observational study of HIV-infected adults in Tan-
zania, Petraro et al. (388) reported a high prevalence of ane-
mia and identified numerous independent risk factors including
BMI, CD4 count, and antiretroviral therapy. These authors dis-
cussed “iron-deficiency anemia,” although the only measures of
anemia were hemoglobin and MCV, with no other iron-specific
biomarkers nor any assessment of iron exposure.

In sum, these results reinforce the challenges of addressing
iron nutrition in the context of infectious diseases. Fundamen-
tally, there are several core concerns that can be categorized into
the following questions:

1) Our ability to determine whether biomarkers used to as-
sess iron nutritional status reflect iron nutrition or a phys-
iological response to the condition(s) in question. How
does the presence of inflammation (acute or chronic) in

these conditions affect the selection, use, and interpreta-
tion of biomarkers used to assess iron status?

2) Anemia is a common comorbidity of these infections:
how can we better understand the interactions among dis-
ease/comorbidities, treatment, and iron status?

3) If, in fact, evidence indicates nutritional iron deficiency,
what is the safest and most efficacious intervention to use
clinically or at scale?

4) How does the role of public health approaches to address-
ing iron deficiency at population levels impact on care of
individuals with infectious diseases?

There is no question that nutritional iron deficiency is com-
monly observed in populations with infectious diseases and
their comorbidities. The core issue is how to assess iron in the
context of infection, treatment, food insecurity/malnutrition,
and to develop safe and effective strategies to address these
complex problems. A concerted effort has begun to develop
solutions to these issues, particularly the relationships among
nutrition, disease, and inflammation. These efforts are focused
on improving approaches to iron status assessment, and more
specifically, the distinction between nutritional iron status and
anemia (48, 231). One application of these improved ap-
proaches would be their use byWHO to develop new guidelines
for both iron assessment and interventions.

Iron overload. Although much of the focus of this report has
been on the factors associated with and biomarkers employed
to assess iron deficiency, the I-EP concluded that iron overload
was an issue of sufficient public health importance to warrant
specific coverage. The following section is an overview of the
current understanding of the causes, public health significance,
and assessment approaches related to iron overload.

Causes of systemic iron overload. A classification of the
causes of systemic iron overload is shown in Text Box 32 (389,
390). The following section deals only with systemic iron over-
load which may potentially have a nutritional component. Rare
genetic disorders and conditions that cause localized iron over-
load are beyond the scope of this review.

Text Box 32

Systemic iron overload [adapted from Bacon et al. (389)
and Pietrangelo (390)]

Hereditary hemochromatosis
• HFE-related hemochromatosis (Type 1).
• Non-HFE-related:

-Juvenile hemochromatosis (Types 2A, 2B)
-TfR related hemochromatosis (Type 3)
-Ferroportin disease (Types 4A, 4B)

Secondary iron overload
Iron-loading anemias
• Thalassemia syndromes.
• Sideroblastic anemia.
• Chronic hemolytic anemia.
• Pyruvate kinase deficiency.
• Pyridoxine-responsive anemia.
Parenteral iron overload
• Transfusional iron overload (multiple red blood cell

transfusions).
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• Parenteral iron injections.
Chronic liver disease
• Porphyria cutanea tarda.
• Viral hepatitis, especially hepatitis C.
• Alcoholic liver disease.
• Nonalcoholic fatty liver disease/nonalcoholic steato-

hepatitis.
• Following portacaval shunt.

The ability of the gastrointestinal tract to limit absorption
even when large quantities of bioavailable iron are ingested is
remarkable. However, acute iron poisoning may occur in young
children who accidentally consume adult iron supplements (∼3
g is lethal in a 2-y-old) (391). On the other hand, there are very
few reports of chronic iron overload as the result of the con-
sumption of excessive quantities of iron in adults (392, 393).
Furthermore, in most cases it would be difficult to exclude other
factors such as liver disease, alcohol consumption, or an unrec-
ognized genetic component resulting from a polymorphism af-
fecting either hepcidin or FPN1 (392).Hepcidin suppression due
to accelerated erythropoiesis (thalassemias and other hemolytic
disorders; see Text Box 32) would also have to be considered.
Despite the frequent inclusion of diet as a potential primary
cause of chronic systemic iron overload in scholarly articles,
there is very little observational evidence to support this view,
with the sole exception of “African iron overload”, discussed
below. The types of hereditary hemochromatosis are summa-
rized in Table 6 (390).HFE hemochromatosis is by far the most
prevalent; 10–15% of Caucasian Americans are carriers of the
C282Y allele and 1 in 200–250 are homozygous for this autoso-
mal recessive condition. Another HFE mutation, H63D, occurs
in ∼20% individual worldwide (212). However, penetrance is
low. Clinically significant consequences of iron overload are ob-
served in only 28% of male and 1% of female C282Y homozy-
gotes (394, 395).

One ethnic group merits further consideration. An iron over-
load syndrome that occurs in South African Bantu men (origi-
nally called “Bantu siderosis”, also referred to as “African iron
overload”, “sub-Saharan iron overload”) was first described in
1929 (396). An excessive iron intake due to the consumption
of traditional beer brewed in iron drums was considered to be
the primary etiological factor (100). The beer had an average
iron concentration of 40 mg/L in a highly bioavailable form.
The alcohol content was low and many individuals would regu-
larly drink several liters a day. Fecal analyses demonstrated that
50–100 mg Fe/d was ingested from beer alone. However, subse-
quent studies conducted by Gordeuk et al. (397) suggested that
genetic factors are equally important in the people of south-
ern and central Africa. The most common phenotype appears
to be loss of function in SCL40A1 (FPN1) acting in an autoso-
mal dominant fashion (397, 398). The Q248H allele is the most
prevalent polymorphism in sub-Saharan Africa and in African
Americans. However, among African Americans the increased
risk of iron overload appears to be minimal (399), perhaps be-
cause the consumption of excessive bioavailable iron is a neces-
sary cofactor. It is nevertheless important to emphasize that the
putative genetic component of sub-Saharan iron overload has
not been identified with certainty at the present time.

Consequences of systemic iron overload. Iron is a highly re-
active metal. Free iron can alternate between the Fe3+ and Fe2+

redox states, resulting in the gain or loss of free electrons. As a

result harmful free radicals may be generated, causing damage
to lipid membranes,DNA, and various cellular organelles (400).
In addition, pathogens compete with body cells for iron; avail-
able iron may lead to increased pathogen virulence. The clinical
consequences of systemic iron overload that are most conspicu-
ous in patients with untreated HFE hemochromatosis are listed
in Text Box 33.

Text Box 33
HFE hemochromatosis: clinical phenotype

Nonspecific systemic symptoms
• Fatigue, malaise, lethargy.
•Weakness, weight loss.
Liver complications
• Fibrosis.
• Cirrhosis.
• Liver failure, ascites, encephalopathy.
• Hepatocellular carcinoma.
Heart complications
• Congestive cardiac failure due to iron deposition in

the myocardium.
• Cardiac arrhythmias.
Pancreas
• Diabetes mellitus.
Other endocrine complications
• Disruption of the hypothalamic-pituitary axis.
• Hypogonadism, amenorrhea.
• Hypothyroidism.
Joint Problems
• Arthropathy.
• Typically pseudogout in the metacarpophalangeal

joints of the hands.
• Other joints, especially hips and knees, may also be

affected.
Skin
• Increased pigmentation.
• Porphyria cutanea tarda.

The clinical manifestations of secondary iron overload re-
sulting from an iron-loading anemia such as thalassemia major
include those observed in severely affected patients with hered-
itary hemochromatosis. Children with untreated β-thalassemia
also suffer from severe anemia, marked hepatosplenomegaly,
and skeletal abnormalities due to expansion of the erythroid
elements in the bone marrow. Intercurrent infections, heart fail-
ure, and liver cirrhosis are the major causes of death in the first
two decades of life (401).

Current controversy related to the possible role of iron in

various conditions

Iron status and vascular disease. Sullivan (402) postulated in
1981 that ischemic heart disease occurs less frequently among
premenopausal women than in men of the similar age because
of differences in iron status. Interest in the possibility that iron
had a causative role was stimulated by the observations of Sa-
lonen et al. (403) who reported that high SF concentrations in
eastern Finnish men were associated with an increased risk for
myocardial infarction.Numerous subsequent studies have failed
to resolve the issue. In most cases iron status was defined by
SF assays. Vascular disease is known to have an inflammatory
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TABLE 6 Hereditary systemic iron-overload disorders1

Disorder Inheritance Laboratory markers Clinical phenotype

HFE hemochromatosis (type 1) Autosomal recessive TSAT ↑ early Primary hepatocyte iron loading, hepatic fibrosis/cirrhosis, liver cancer
SF ↑ Cardiomyopathy

Diabetes mellitus
Hypogonadism
Arthropathy
Skin pigmentation

Juvenile HJV hemochromatosis (type 2A) Autosomal recessive TSAT ↑ early Similar to HFE hemochromatosis, but early onset and accelerated
course, endocrine and cardiac disease more prominent than hepatic
involvementJuvenile HAMP hemochromatosis (type 2B) Autosomal recessive SF ↑

TFR2 hemochromatosis (type 3) Autosomal recessive TSAT ↑ early Similar to HFE hemochromatosis
SF ↑

FPN1 loss of function (type 4A) Autosomal dominant SF ↑ Predominant macrophage iron loading in the liver, spleen, and bone
marrow

TSAT often normal Later parenchymal iron accumulation with mild liver disease
May have mild anemia

FPN1 gain of function (Type 4B) Autosomal dominant TSAT ↑ early Similar to HFE
SF ↑

1FPN1, ferroportin 1; HAMP, gene encoding hepcidin; HFE, human hemochromatosis; HJV, hemojuvelin; SF, serum ferritin; TFR2, transferrin receptor 2; TSAT, percentage
transferrin saturation; ↑, increase. Adapted with permission from reference 390.

component (404). Raised SF values may therefore merely reflect
its properties as an acute-phase protein (APP), a conclusion that
is supported by the absence of a significant association between
vascular disease and either HFE hemochromatosis or “African
iron overload.”

Iron and the metabolic syndrome. Diabetes mellitus is one
of the most common complications of all iron overload states.
The etiology is complex. Genetic factors, iron deposition in the
liver, direct damage to the pancreas, and insulin resistance may
all play a role (405). Patients need appropriate clinical manage-
ment. The relationship between iron status, and both obesity
and the metabolic syndrome has been characterized using vari-
ous iron biomarkers. Increased SF values are commonly encoun-
tered in the presence of the metabolic syndrome (406).However,
transferrin saturation is not significantly increased and hepatic
iron overload, if present, is mild based on MRI (407). Iron is se-
questered in macrophages. Hepcidin levels are raised and iron
absorption decreased (408–412). The interaction between iron
homeostasis and obesity has been reviewed recently (413, 414).
Hyperferritinemia and hypoferremia is considered to be a con-
sequence of hepcidin-induced iron sequestration in the reticu-
loendothelial system and the acute-phase ferritin response to
inflammation. There is still considerable controversy about the
potential role iron as a causative factor, but high-intensity blood
donation which would be expected to markedly reduce the iron
load was not associated with a decrease in the prevalence of
the metabolic syndrome (415). Higher SF levels are also asso-
ciated with type 2 diabetes. Once again, serum iron and trans-
ferrin saturation are not increased, suggesting that the rise in SF
is an inflammatory response (416). Nevertheless, the relation-
ship with iron status and the potential role of iron needs further
study.

Iron and cancer. The overall risk for hepatocellular carci-
noma in patients suffering from hemochromatosis is 6–10%.
It is preceded by the development of liver cirrhosis and is
responsible for 25–45% of all premature deaths associated

with hemochromatosis (417). There is some evidence to sug-
gest that iron status may be related to other cancers, but
more research is needed to establish a causal role (418).
The most convincing evidence suggests a relationship between
high red meat intake and colon cancer. However, if there
is a causal relationship, whether the critical factor is iron,
heme, or some other meat ingredient has not been estab-
lished.

Iron and infection. With the exception of Lactobacilli and
Borrelia burgdorferi, all microorganisms require iron to survive
(419). They compete with their hosts for available iron. The
body’s ability to withhold iron is considered to be a component
of the innate immune response (420). Recent studies suggest
that mild iron deficiency may provide a modest degree of pro-
tection against falciparum malaria, but more research is needed
to establish the significance of these observations. On the other
hand, several investigators have concluded that “African iron
overload” increases the risk of chronic infectious disorders, par-
ticularly tuberculosis and HIV disease. These observations deal
with patients who have significant organ damage, making it dif-
ficult to be sure of the specific role of iron overload. Moreover,
SF, which may be confounded by the presence of inflammation,
has often been used as the critical biomarker (421). Neverthe-
less, it seems likely that iron toxicity is a contributory factor.
Similarly, iron overload is considered to be a contributory risk
factor for bacterial infections which are a major cause of death
in patients with thalassemia (422).On the other hand, infections
are not a characteristic complication for most patients suffer-
ing from HFE hemochromatosis although the virulence of cer-
tain organismsmay be increased; these includeVibrio vulnificus,
Yersinia enterocolitica,Escherichia coli, and Listeria monocyto-
genes (423–426).

Biomarkers of iron overload. The diagnosis of iron overload
is made in the clinical setting in patients who exhibit charac-
teristic symptoms and signs or individuals considered to be
at risk because of a family history of hemochromatosis or a
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TABLE 7 SF and TSAT levels: 50th and 95th percentile values (95% CI) for SF and 50th and 90th percentile values (95% CI) for TSAT
for selected age groups for the total US population (NHANES 1999–2002)1

Sex, age (y) SF 50th (µg/L) SF 95th (µg/L) TSAT 50th TSAT 90th

F 12–19 26.0 (24.0, 27.0) 76.0 (70.0, 85.0) 19.8 (18.4, 20.9) 32.9 (31.0, 36.6)
F 20–39 32.0 (30.0, 35.0) 126 (110, 146) 21.4 (19.8, 23.3) 38.4 (35.0, 31.1)
F 40–59 53.0 (46.0, 57.0) 228 (201, 243) 21.5 (20.5, 22.5) 34.8 (32.0, 37.6)
F ≥60 86.0 (80.0, 93.0) 391 (349, 445) 22.3 (21.1, 23.6) 35.4 (31.8, 37.9)

M 12–19 42.0 (40.0, 54.0) 142 (125, 154) 25.8 (24.3, 26.9) 42.8 (36.3, 50.4)
M 20–39 134 (125, 142) 382 (344, 406) 27.1 (25.7, 28.4) 45.9 (43.7, 48.8)
M 40–59 150 (138, 168) 500 (434, 574) 26.8 (25.4, 28.9) 41.6 (39.8, 43.2)
M ≥60 134 (125, 147) 552 (493, 623) 25.9 (24.7, 27.3) 41.7 (39.4, 43.8)

1SF, serum ferritin; TSAT, percentage transferrin saturation. Adapted with permission from reference 429.

hematological disorder that leads to secondary iron overload.
Stainable bone marrow iron is an important research tool and
also occasionally employed in the clinical setting. It is, how-
ever, an invasive procedure and not applicable to population
surveys or the evaluation of intervention strategies. Moreover,
it is important to note that bone marrow iron evaluation
may be misleading in HFE hemochromatosis where the iron
excess is present primarily in parenchymal cells, particularly
hepatocytes.

SF and TSAT are used in combination by clinicians in
the workup of individuals with clinical findings or a family
history suggestive of hemochromatosis (389, 427, 428). How-
ever, screening of the general population is not recommended
by either the American College of Physicians or the American
Association for the Study of Liver Disease.

Investigators whose main focus is nutrition have usually em-
ployed upper levels for SF as the criterion of iron overload. The
values chosen have varied, but one commonly quoted source
gives levels of >200 µg/L for adult males and >150 µg/L for
adult females as constituting “severe risk for iron overload”
(218). Based on these criteria, >5% of men in the United States
over the age of 30 y would be at risk [SF: 382 µg/L (95% CI:
344, 406 µg/L), 500 µg/L (95% CI: 434, 574 µg/L), and 552
µg/L (95% CI: 493, 574 µg/L) respectively for men aged 20–
39, 40–59, and ≥60 y]. Similarly, >5% of apparently healthy
women over the age of 40 y would be at risk [SF: 228 µg/L
(95%CI: 201, 243 µg/L) and 391 µg/L (95%CI: 349, 445 µg/L)
respectively for women aged 40–59 and ≥60 y] [Table 7 (429)].

It is highly unlikely that a sizeable proportion of middle-
aged and older Americans are at risk for clinically significant
iron overload.McKinnon et al. (430) reinforced this conclusion
based on a survey of 1188 adults living in Busselton, Australia
and also reported a direct correlation with BMI and a significant
increase in SF levels between 1995 and 2005. They proposed a
change in reference ranges to accommodate demographic and
biomedical influences. The North American Hemochromato-
sis and Iron Overload Screening (HEIRS) Study also employed
higher cut-off values (>300 µg/L for men and >200 µg/L for
women) (431).

The I-EP has concluded that if the recommendations for
cutoff levels published in the 2001 UNICEF/UNU/WHO guide
for program managers (218) are used, SF values employed
as the sole measure of iron status are of limited to value
as a marker of increased iron stores in population surveys
and the planning of intervention strategies. It is possible that
higher SF cutoff levels would improve the evaluation of the
risk of iron overload in population studies. However, the I-EP
proposes that an alternative tactic based on the approach
used by clinicians be considered. The first step would be to

determine the prevalence of a genotype or phenotype (based
on biomarkers) that is likely to explain the high SF values in
the target population. The following groups are identified in
Text Box 34.

Text Box 34

True iron overload
Hereditary Hemochromatosis
Phenotype: SF↑,% TSAT↑ (with the exception of FPN1

loss of function, SF ↑, % TSAT often normal).
Iron-loading anemias
Abnormal globin genotype(s) causing thalassemia syn-

dromes in most cases.
Phenotype: SF↑, % TSAT ↑.
Inflammation
Infection and inflammation.
Phenotype: SF↑, % TSAT ↓.
Obesity/insulin resistance/type 2 diabetes
Phenotype: SF ↑, % TSAT ↓.
Older men and postmenopausal women.
Phenotype: SF ↑, % TSAT, no trend or ↓.
Liver disease
Complex phenotypes: SF ↑, % TSAT ↑, abnormal liver

enzymes.

True iron overload. An increase in TSAT preceding the pro-
gressive rise in SF is characteristic of the clinical pheno-
type of HFE hemochromatosis, juvenile HJV hemochromato-
sis, juvenile HAMP hemochromatosis, TFR2 hemochromato-
sis, and FPN1 gain-of-function ferroportin disease. The one
exception is FPN1 loss-of-function ferroportin disease, which is
characteristic of “African iron overload.” TSAT is often normal
in the face of increased SF. Iron intake does not appear to play
a significant role in the rate of iron accumulation in the com-
mon form of iron overload in Caucasians. In the HEIRS study,
dietary iron intake was analyzed in 213 patients who were ho-
mozygous for HFE C282Y.No significant relationships between
SF and dietary heme iron content, dietary nonheme iron con-
tent, or supplemental iron use were discovered (432). On the
other hand, as described above, iron intake is considered to be
an important factor in “African iron overload.”

Thalassemia syndromes are prevalent in many parts of the
world, including the Mediterranean region, Africa, and South-
east Asia. Patients with severe anemia who may or may not
be transfusion dependent require management by healthcare
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TABLE 8 Iron absorption in Thai women who are heterozygotes for HbE, α-Thal 1, or B-Thal and in compound heterozygotes for
HbE/B-Thal1

Normal Hb HbE Trait α-Thal Trait B-Thal Trait HbE/β-Thal

n 25 26 18 27 9
Age, y 32.7 ± 7.8 32.1 ± 8.4 32.8 ± 11.3 36.7 ± 9.8 36 ± 10.3
Weight, kg 47.8 ± 7.3 53.5 ± 6.3 50.8 ± 8.8 50.4 ± 8.4 45.4 ± 10.0
Hb 13.0 ± 1.0 12.4 ± 1.2 11.6 ± 1.0 11.1 ± 0.7 6.9 ± 1.4
SF, µg/L 15 (1–148) 23 (3–112) 28 (1–142) 52 (2–236) 877 (206–4040)
TSAT 30.7 ± 7.8 34.1 ± 10.2 30.4 ± 6.8 32.5 ± 7.0 77.8 ± 16.6
% absorption2 8.7 (3.2, 23.4) 7.5 (3.4, 16.7) 5.6 (2.8, 11.3) 4.5 (2.0, 9.7) 10.5 (4.6, 23.9)

1Values are means ± SDs or means (ranges) unless otherwise indicated. α-Thal, α-thalassemia; B-Thal, β-thalassemia; Hb, hemoglobin; HbE, hemoglobin E; SF, serum ferritin;
TSAT, percentage transferrin saturation. Adapted with permission from reference 436.
2Geometric mean (–SD, +SD).

professionals. However, the carrier states for these disorders
that are far more prevalent in the population are of most
concern to nutritionists. The potential risk for inducing iron
overload in thalassemia carriers depends on the type of tha-
lassemia. Consequently, information about the prevalence of
the various thalassemia syndromes must be taken into account
when considering fortification or supplementation interven-
tions.

Urinary and serum hepcidin levels are markedly decreased
in β-thalassemia major and β-thalassemia intermedia (433,
434). They are also suppressed in hemoglobin E β-thalassemia,
which is the most common severe thalassemia syndrome
in Asia and β-thalassemia trait (435). On the other hand,
Zimmermann et al. (436) measured iron absorption in 78
Thai women who were heterozygous for α-thalassemia 1, β-
thalassemia, hemoglobin E, or were compound heterozygotes
for hemoglobin E (HbE)/β-thalassemia. Twenty-five women
with a normal globin genotype served as controls (Table
8). SF levels were significantly higher in women with α-1
thalassemia trait, β-thalassemia trait, and HbE/β-thalassemia.
The increase was likely to be clinically important only for
HbE/β-thalassemia. Absorption was appropriately downreg-
ulated in those with α-1 thalassemia or β-thalassemia trait,
but not in HbE/β-thalassemia volunteers. The I-EP differs
to some extent with the conclusion drawn by Zimmermann
et al. (436) (that absorption was not adequately downregu-
lated), and suggests that a more plausible conclusion would
be that absorption was appropriately downregulated in α-1
thalassemia and β-thalassemia heterozygotes, but that the bal-
ance between stores and absorption was reached at a slightly
higher level of storage iron in the case of the β-thalassemia
trait. Nevertheless, the report does support our proposal that
the potential risk for iron overload in populations where tha-
lassemia syndromes are prevalent should be based on biomark-
ers that describe the prevalence of carrier status, particularly for
β-thalassemia as well as compound heterozygosity.

Inflammation. The inflammatory phenotype is not indicative
of iron overload. It is induced by the combination of two patho-
logical processes. SF is increased directly, independent of iron
storage status, because it behaves as an acute-phase reactant.
The quantitative relationship between SF and iron stores is dis-
turbed. In addition, the release of iron from stores is downreg-
ulated, resulting in increased storage iron and, if of sufficient
severity and duration, anemia. The inflammatory component of
obesity, insulin resistance and type 2 diabetes, and aging may
be important contributors to the demographic and biomedical
variation for whichMcKinnon et al. (430) recommend reference
range adjustments.

The anemia of infection/inflammation, often referred to as
the “anemia of chronic disease,” is an acquired condition in
which disordered iron homeostasis, due primarily to increased
hepcidin secretion, has a central role. Increased SF, and a fall in
the levels of serum iron, serum transferrin and TSAT are char-
acteristic laboratory findings (437).

The relationship between iron status and obesity/insulin re-
sistance/type 2 diabetes has been discussed previously in the
section dealing with the consequences of iron overload. The
preponderance of evidence suggests the increased SF is a man-
ifestation of the associated subclinical inflammatory state and
therefore not necessarily indicative of increased risk for the
consequences of iron overload.

The phenotype in older men and postmenopausal women
is also characteristic of a low-grade inflammatory state
affecting a significant proportion of apparently healthy indi-
viduals. SF and TSAT values abstracted from a report by the
US CDC based on data collected in NHANES 1999–2002 are
shown in Table 7. It is noteworthy that SF values rise pro-
gressively in the 95th percentile for men and postmenopausal
women whereas there is no significant trend in TSAT. At the
50th percentile there is little, if any, increase in SF.

Liver disease. The assessment of liver disease is complex and
beyond the scope of this review. Evaluation by health profes-
sionals is required. However, there is one disorder that could
affect the design of nutrition interventions. Hepatitis C is preva-
lent in some countries such as Mongolia. Patients with hepati-
tis C may accumulate excessive quantities of iron in the liver.
Some studies have demonstrated that hepcidin production is
downregulated by the hepatitis C virus (438, 439) and that iron
removal by phlebotomy (440–442) may be beneficial and im-
prove the response to treatment with interferon. More research
is needed.

In summary, information about the prevalence of genotypes
that put individuals at risk for iron overload may provide the
most useful information when considering dietary manipulation
or supplementation to improve iron status at the population
level. Careful analysis of the impact of the inflammatory pheno-
types that lead to increased SF levels in the absence of significant
iron accumulation will also be essential.

Currently available biomarkers
for evaluating iron nutrition

Biomarkers of iron nutrition and nutritional iron deficiency may
be categorized as follows based on the aspects of iron nutrition
that they address:
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1) Intake (exposure) and excretion: Several established meth-
ods for measuring daily iron consumption are described below.
The greater challenge is the determination of bioavailability. As
outlined above, the diet always contains more iron than is re-
quired to meet the requirements of almost everyone. However,
for myriad reasons discussed previously, the majority of the iron
is not absorbed. Biomarkers of bioavailability therefore play a
critical role in determining the adequacy of exposure. Biomark-
ers of exposure and bioavailability are discussed in the following
section.

Iron excretion is not regulated in human beings. Excessive
iron loss is most commonly the result of diseases that cause
blood loss, the excretion of heme in the urine as consequence
of intravascular hemolysis, or bleeding into the lung. Iron ex-
cretion has been measured experimentally in adults using both
radio-isotopes (144, 443) and in toddlers and pregnant women
using stable iron isotopes (444).

2) Status: Biomarkers of iron status were developed to char-
acterize the stages of increasingly severe degrees of iron defi-
ciency that would occur in an individual whose iron intake
does not meet his or her requirements. As indicated above,
three stages are generally recognized: storage iron depletion,
iron-deficient erythropoiesis, and IDA. Currently available
biomarkers make it possible to categorize the severity of iron
deficiency in individuals. They are also employed in population
studies to determine the prevalence of iron deficiency and to
differentiate between iron-deficiency anemia and anemia due to
infection and other factors.

Estimation of iron intake

The only available biomarker for iron exposure is the measure-
ment of dietary (and supplement) iron intake. The information
can be used to assess the risk of iron deficiency, and data may
also be collected in order to compare the average iron intakes of
different groups or to compare intakes between areas/countries.
Other reasons for measuring iron intake are to rank individ-
uals within a group and to assess the individual’s usual in-
take, information that is often used in studies of nutritional
epidemiology.

Accurate measurement of dietary iron intake is hampered
by several factors, including the quality of food composition
data, food fortification practices, supplement use, contami-
nation iron, and inappropriate choice of methodology. Text
Box 35 (445) provides the summary of the systematic re-
view conducted by the EURRECA (European Recommenda-
tions Aligned) project on dietary intake methodology related to
micronutrients.

Text Box 35

Findings from systematic review on dietary intake method-
ology conducted by EURRECA (445)
• The systematic review identified 79 studies that met

the inclusion/exclusion criteria.
• FFQ was the most frequently used intake assessment

method.
• Dietary record (DR) or 24-h recall were used as refer-

ence methods.
• Serum ferritin (biomarker of status, for validating in-

take data) was used as a reference method in 2 studies.
•When the FFQ was compared with the DR:

-Long-term intake (DR ≥7-d) correlation 0.49.
-Short-term intake (DR <7-d) correlation 0.45.

• Using a weighted DR as the reference method im-
proves the correlation with FFQ.
•When the FFQ was compared with the 24-h recall:

-Long-term intake (7 × 24 h recall) correlation 0.45.
-Short-term intake (<7d × 24h recall) correlation 0.48.

A recent consultation sponsored by EURRECA (445) con-
cluded that although obtaining an accurate measurement of
dietary iron intake is challenging, a 7- to 10-d weighed food
records (i.e., where the respondent is asked to weigh and record
all foods and beverages at the time of consumption) including
both weekdays and weekends (when dietary patterns may dif-
fer) is the “gold standard” for estimating iron intake.

In recent decades considerable effort has been invested in
developing FFQs that give a reasonably accurate measure of
average long-term intakes of nutrients. This information is re-
quired for nutritional epidemiology where associations between
diet and various health endpoints are sought. Furthermore, as
it can take many months for biomarkers of iron status to reach
a steady state in response to changes in dietary intake, short-
term (acute) measures of intake may not be appropriate and
measures of usual intake may be the preferred approach. Sup-
plemental Table 1 is a summary of selected studies used by the
I-EP to evaluate the relative utility of available methods for as-
sessing dietary intake in specific population groups.

Conclusions

The method of choice for determining iron intake depends
on the question(s) being asked. Key considerations include the
following: 1) day-to-day and seasonal variability; 2) between-
subject and within-subject variance; 3) quality of food compo-
sition tables; 4) skills and experience of fieldworkers and indi-
viduals tasked with coding food diaries; 5) selection of foods
and validation of FFQs; 6) respondent burden, compliance; 7)
changes in dietary patterns initiated by dietary assessment; and
8) resources available

Duplicate diets (i.e., when a duplicate portion of all food and
drink consumed throughout the day is weighed and put aside for
chemical analysis) are the most accurate method as they avoid
any errors introduced from food table calculations. However,
they are generally only used for metabolic balance and other
small-scale research studies on iron metabolism, as they do not
necessarily generate representative data. A 7-d weighed record
is the next most accurate option but requires good compliance
from the subjects, and significant resources, primarily for field-
workers to organize data collection and subsequent coding of
the diaries, so this method is not suitable for large-scale stud-
ies. If the mean iron intake of a population, rather than that
of individuals, is required, then FFQs are an acceptable tool.
They sometimes overestimate (446–448) and sometimes under-
estimate (447, 449) iron intake, and this is possibly a function of
the number of food items included since Heath (450) reported
a less close agreement between diet record and FFQs when us-
ing 206 compared with 630 food items (451). They should be
validated and, if necessary, calibrated against another (more
accurate) method. Portion sizes need to be established, and
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tailored for the population group (452). Typical serving sizes
can be found in reference databases [e.g. UK (453), USA (454),
Europe (455, 456)]

Translating food consumption data into iron intake
estimates

Whenever possible, local or regional food composition
databases should be used to convert food intake into iron in-
take. The quality of the data is of overriding importance in that
it should reflect the average and up-to-date iron content of the
majority of foods in the diet. In industrialized countries, the con-
sumption of processed and fortified foods has dramatically in-
creased over the last 2 decades and this introduces many po-
tential errors into the calculation of iron intake. The skill of
food coders is critical as they often need to select codes for
foods that closely represent any that are not listed in the food
database, including assumptions about recipes and ingredients.
Iron-fortified foods do not always contain the quantity of iron
on the label as an “overage” may be added during processing
to ensure the concentration in the final product meets the label
declaration.

The EuroFIR (European Food Information Resource) Food-
EXplorer (457) is an innovative interface, which allows its users
the simultaneous search of more than 25 national food com-
position databases. Users have access to a wide range of data,
linking foods and nutrients through harmonized data descrip-
tion (LanguaL), standardized component and value descrip-
tion through the use of thesauri (standard vocabularies), and
associated nutrient value information. The search facility in-
cludes options to search for food name, food groups, and the
most commonly used LanguaL food description, as well as the
powerful and unique ability to compare the component values
between foods from the several countries. The results can be
downloaded as a standard Food Data Transport Package. Data
in the EuroFIR FoodEXplorer includes >25 European coun-
tries as well as datasets from Australia, Canada and the United
States, but access is limited to EuroFIRmembers.Other publica-
tions/databases include the following: United States (458) and
Australia/New Zealand (459).

Estimation of iron bioavailability

As discussed previously, for the purposes of this review, bioavail-
ability is defined as the extent to which iron is absorbed from
the diet and used for normal body functions. In nutritional stud-
ies, it is customarily estimated by using an iron isotope to label
the test food or iron compound and then determining the per-
centage of the ingested dose present in the circulating red blood
cell compartment after 14 d. At this time red blood cell utiliza-
tion of iron for hemoglobin synthesis is 80% in adults and 90%
in infants and young children (460). The appropriate correction
is made to derive an estimate of absorption. The term “relative
bioavailability” is often applied to iron compounds being eval-
uated as potential food fortificants or dietary supplements. Cus-
tomarily, this is a direct comparison between the test substance
and ferrous sulfate given in the same meal (and ferrous sulfate is
assumed to have a value of 100%). Adequate bioavailability is
generally considered to be a vital component of iron nutrition,
and poor bioavailability a critical contributor to the worldwide
prevalence of nutritional iron deficiency. The majority of peo-
ple consume sufficient iron to meet their physiological needs.
However, absorption is limited because of the effects of dietary
components, in particular phytates and polyphenols in cereal-
and legume-based diets. Biomarkers of bioavailability there-
fore have considerable practical importance for the design of

intervention strategies aimed at improving iron nutrition. Heme
iron is virtually always well absorbed. However, most food iron
is present as non-heme forms. Bioavailability is markedly af-
fected by meal composition. Several indirect methods for esti-
mating bioavailability have been developed over the past half
century and calibrated against human isotopic absorption stud-
ies (461).

In vitro methods. Dialyzability: Miller et al. (462) demon-
strated that there was a direct correlation between nonheme
iron absorption measured by isotopic methods in human volun-
teers and the meal content of soluble low-molecular-weight iron
complexes after simulated digestion in vitro. Briefly, mixtures of
foods are homogenized and exposed at 37°C to pepsin at pH
2 (simulated gastric digestion). After 2 h, dialysis (6000–8000
molecular weight cutoff semipermeable membrane) is used to
adjust the pH to intestinal levels, pancreatin and bile salts are
added, and digestion continues for another 2 h. Finally the quan-
tity of iron that diffuses across the membrane is measured.

The model provides important information about factors
that affect food iron absorption. However, although it makes it
possible to screen large numbers of samples rapidly, it has sev-
eral limitations. Results are based on the assumption that iron
destined for absorption is always bound to small-molecular-
weight complexes. There are exceptions to this general rule. The
results have qualitative value, but are unreliable for determin-
ing the magnitude of such effects. Furthermore, it has proven
difficult to achieve uniformity between results for different lab-
oratories. Therefore this biomarker is no longer widely used as
a screening test for potential bioavailability, and has been super-
seded by the Caco-2 cell model.

Caco-2 cell assays: Caco-2 cells are a commercially available
immortal cultured cell line that was isolated from an adeno-
carcinoma in a 72-y-old Caucasian man. The cells proliferate
rapidly in vitro and can be induced to undergo spontaneous dif-
ferentiation to develop some of the characteristics of small in-
testinal enterocytes. Under appropriate culture conditions they
form a monolayer with tight junctions and brush border mi-
crovilli that express a number of digestive enzymes as well as
the known iron transporters. The measurement of in vitro iron
bioavailability has been refined by exposing monolayer cultures
to food digestates prepared in a manner similar to that de-
scribed above for dialysis (463). Large numbers of samples can
be tested over periods of a few days. Although the results de-
rived from this biomarker may be more precise and consistent
than those from dialysis, they also have several limitations. The
results predict the direction of response for all major nonheme
iron absorption modifiers, but not necessarily the magnitude.
Importantly, good quality cell culture facilities and experienced
operators are essential. The Caco-2 cell method should be con-
sidered as an initial screen for new potential iron fortification
products. However, it will always be necessary to test promis-
ing compounds in human absorption trials. The usefulness of
in vitro models to predict the bioavailability of iron and zinc is
reviewed in a consensus statement from the HarvestPlus expert
consultation (461).

Animal models. Although several animal models have been
used for studying iron absorption, the only standardizedmethod
that has seen widespread use is the Association of Official
Analytical Chemists (AOAC) Rat Hemoglobin Repletion As-
say (464–466). Briefly, weanling rats are fed an iron-deficient
diet until they develop IDA and are then switched to the
test diets. Iron absorption is derived from the increase in red
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blood cell mass calculated from the change in body weight and
hemoglobin concentration of the experimental animal.

The method has most often been used to evaluate iron com-
pounds being considered as food fortificants and gives a simi-
lar classification of iron compound bioavailability as in humans
(467). It should however be noted that the rat does not respond
to inhibitors and enhancers in the same way as humans and is
not a good model to measure iron bioavailability from human
diets (468).

Algorithms. Algorithms have been developed to estimate di-
etary iron absorption based on dietary data, including the form
of the iron and the meal content of known enhancers and in-
hibitors of iron absorption.Monsen et al. (469) were the first to
suggest this approach. However, they only considered the form
of the iron (heme or nonheme) and the content of the two ma-
jor enhancing factors, ascorbic acid and animal tissue (meat, fish
or poultry). Nevertheless their original models are the basis for
the bioavailability values employed by the FAO/WHO in cal-
culating RNIs (78). Since this time several more comprehensive
algorithms that consider the effect of important inhibitors have
been published. One of the most comprehensive was developed
by Hallberg and Hulthen (470). They utilize all the dietary fac-
tors that have been shown to affect nonheme iron absorption
in a quantitative model that includes interactions. In addition,
adjustments are made for iron status, so that bioavailability is
estimated for an individual with a 40% reference absorption.
Although beyond the scope of this review, the importance of es-
timated bioavailability in calculating iron requirements has been
covered in detail elsewhere (471, 472). Armah et al. (473) pub-
lished a similar algorithm based on the US diet in 2013. These
newer algorithms attain greater precision, but the methods still
have several important shortcomings. It is frequently difficult to
obtain accurate semiquantitative data for the consumption of
iron and the major enhancers and inhibitors of absorption, and
the data upon which they have been based is nonheme iron, so
assumptions about heme iron intake (and absorption) need to
be added to the model. Furthermore, results of algorithms devel-
oped for one population group may not be representative when
applied in a different setting. Finally, the results tend to under-
estimate bioavailability and there may be a 3-fold variation in
estimates using different algorithms (474). Therefore most pro-
gram planners employ the FAO/WHO absorption levels based
on a qualitative description of the diet.

Human bioavailability measurements. Studies using radio-
labeled iron in human volunteers are regarded as the gold stan-
dard for determining iron bioavailability and estimating absorp-
tion. Several methods, categorized according to their increasing
complexity and precision, are available as described below.

Iron tolerance measurements. The method lacks sensitivity
and can only be used for high doses (≥10 mg) of iron. The
plasma iron concentration is measured at intervals (usually six
samples at hourly intervals) after the ingestion of the iron com-
pound of interest following an overnight fast. The rise in the
plasma iron level is used as a measure of absorption by cal-
culating the area under the curve (100, 475) or applying a
compartmental model (476). Results are most often expressed
as relative bioavailability with respect to FeSO4 (or another
well-absorbed iron compound) by repeating the procedure with
an equivalent quantity of this iron on a different day.

Isotopic absorption studies. Data obtained from isotopic
studies are the basis of our understanding of food and forti-
fication iron bioavailability. These iron bioavailability studies

measure the utilization of the absorbed iron for hemoglobin syn-
thesis and use this to estimate iron absorption. Earlier experi-
ments utilized radioisotopes, but they have been supplanted by
stable isotopes to eliminate the potential risk of exposure to ra-
diation (477).Radioisotopes are added in trace amounts.On the
other hand, milligram quantities of stable isotopes are required.
As a consequence, stable isotopic methods are most suited to
iron fortification studies. When used to investigate dietary fac-
tors, multiple meals are essential to avoid large increases in iron
intake. The major limitation of the isotopic approach in general
is the dependence on assays based on single meals or in some
cases a limited number of meals on different days (478). Inves-
tigators may select meals that exaggerate the effects of bioavail-
ability modifiers. It may therefore be difficult to predict dietary
bioavailability because the effects of the absorption modifiers
are often attenuated when the whole diet consumed over ex-
tended periods of time and the interaction between modifiers
are considered.

Field trials. Field trials are costly and time consuming, but
they provide the most accurate and reliable information about
the potential impact of proposed fortification or supplementa-
tion programs. It is essential that they include a control arm
because the iron status of the target group may change over
time. This is particularly important for young children. The trial
period should be ≥6 mo (60, 479). Iron status biomarkers, in-
cluding hemoglobin, SF, sTfR, and ZPP, are used to measure the
change in iron status between baseline and the end of the trial.
Recent reports suggest that the most accurate estimates can be
obtained by using the sTfR/SF ratio to calculate body iron in-
dex (248, 480). If this is done, it is also possible to estimate the
bioavailability of the iron fortificant or supplement based on
the change in body iron and the quantity of supplementary iron
consumed.

Estimation of dietary bioavailability in a population.
Bioavailability is a critical factor for estimating recommended
nutrient intakes for iron and zinc (78). It has, however, proven
difficult to obtain accurate values at the population level. As
outlined above, algorithms may be misleading or difficult to ap-
ply because of incomplete dietary data. The WHO/FAO there-
fore employed a pragmatic qualitative approach to calculating
dietary bioavailability by assigning one of three bioavailability
levels depending on a general description of the diet (5%, 10%,
or 15%) (78). On the basis of intake data and isotope studies,
iron bioavailability has been estimated to be in the range of 14–
18% for mixed diets and 5–12% for vegetarian diets in subjects
with no iron stores, and these values have been used to generate
dietary reference values for all population groups (26). Dainty
et al. (481) recently proposed a new methodology. A full proba-
bility approach was used to estimate dietary iron bioavailability
based on calculated requirements, estimated daily intake, and
the distribution of SF values in the population sample. Subse-
quently, further refinements were made to the model using data
from 2 nationally representative studies of adults in the UK and
Ireland and a trial in elderly people in Norfolk, UK, and an in-
teractive tool was published (482). An accompanying editorial
(483) concluded that the model is likely to be widely used in
populations for whom reliable dietary iron intake and status
data are available. The method has several potential advantages.
Results are based on direct observations in the target population
sample. There is no need to analyze dietary data for enhancing
and inhibiting factors or heme content: total iron intake is the
only value that is required. The fortification level necessary to
achieve a designated SF level can be estimated. There are, how-
ever, some significant constraints. The iron requirements and
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dietary intake must be in a steady state for at least a year. The
method is therefore not suitable for children, pregnant women,
or immediately after the onset of menopause. Finally, the inves-
tigators only analyzed data from adults eating a Western diet
and employed SF as the biomarker for iron storage status. The
approach should be evaluated in populations traditionally con-
sidered to be consuming low bioavailability diets. It would also
be desirable to examine the use of body iron or the sTfR/SF ratio
instead of SF alone.

Biomarkers of iron status and anemia risk

Iron stores and storage depletion. The bonemarrow is a ma-
jor iron storage site. All of this iron is available for erythro-
poiesis. The lack of iron only becomes a limiting factor once
this supply is exhausted. The absence of stainable bone marrow
iron is generally regarded as the gold standard for the diagnosis
of iron deficiency. The invasive nature of the procedure makes
it unsuitable for most epidemiological studies. It has, however,
been an invaluable biomarker for the definitive identification of
iron deficiency in a few well-designed field investigations in set-
tings where the etiology of anemia is complex. It also remains an
important option for diagnosing complicated anemias in hospi-
tal patients (484).

The source of erythropoiesis in the fetus is the liver un-
til late in the third trimester when there is a liver-bone mar-
row “switch.” At approximately the same time, a liver-kidney
“switch” for erythropoietin synthesis occurs. Thus, the interpre-
tation of stainable iron in the neonate depends on gestational
age and the timing of the switches. Consequently, due to both
the changing physiology and the invasiveness of the procedure,
stainable bone marrow iron is not typically utilized to determine
neonatal iron status.

Serum ferritin. Although SF is an important biomarker of iron
status, it represents only a minute fraction of the body’s ferritin
pool. Most of the ferritin iron is intracellular, with the highest
concentrations being found in in cells that store iron and can
also process heme (hepatocytes and specialized macrophages).

Structure and function of ferritin. The iron storage protein
ferritin has a similar structure in animals and plants. The fer-
ritin molecule consists of a protein shell with a molecular mass
of ∼500 kDa composed of 24 subunits. The protein shell en-
closes a core of ferric-hydroxy-phosphate that can hold up to
4500 atoms of iron (485). Ferritin molecules acquire and re-
lease iron in concert with physiological needs. The mechanism
of uptake and release of iron is still unclear. It is known that
iron uptake requires an oxidizing agent and release a reducing
agent. A range of isoferritins is found in various human tissues
depending on the specific combinations of the 2 types of subunit,
H and L (486). H-Rich isoferritins predominate in heart muscle
and in red and white blood cells, whereas L-rich isoferritins are
found primarily in liver, spleen, and placenta.

Ferritin is a soluble protein, but can degrade into insoluble
hemosiderin. Both ferritin and hemosiderin provide a store of
iron that is readily available to meet functional requirements.
Normally most of the iron stored in the body (∼1 g in men and
less in children and premenopausal women) is stored as ferritin
but the proportion as hemosiderin increases with iron overload.

The uptake of iron into ferritin serves a second vital function.
It prevents oxidative damage to tissues. Free iron could generate
highly reactive free radicals that could damage DNA, oxidize
cholesterol, or damage tissue proteins. Ferritin synthesis is in-
duced by the presence of iron. The initial response is regulated

by translation rather than by transcription (487). The transla-
tional control mechanism involves the 5′ IRE of ferritin mRNA.
The eventual degradation of ferritin remains largely a mystery
although studies with rat liver cells indicate that the half-life of
the ferritin molecule is ∼72 h (487).

SF is a measure of the amount of iron in body stores if there
is no concurrent infection or inflammation. When the SF con-
centration is >15 µg/L, iron stores are present. Values <12–
15 µg/L are generally considered to be indicative of depleted
iron stores. The SF measurement is widely available, well stan-
dardized and, in a subject with anemia, a low SF is diagnostic of
IDA (488). In otherwise healthy individuals, SF concentration is
directly proportional to the size of the iron store, with 1 µg/L
SF corresponding to 8–10 mg storage iron in an adult (488).
Although SF has been shown to give a larger and more consis-
tent response to iron interventions than ZPP or sTfR (489), it is
an APP and is increased independent of iron status by acute or
chronic inflammation. The SF level is therefore difficult to inter-
pret in settings where infectious diseases are common. It is also
unreliable in patients with malignancy, hyperthyroidism, liver
disease, and heavy alcohol intake (490).

SF resembles liver or spleen ferritin immunologically and is
recognized and quantified by monoclonal or polyclonal anti-
bodies raised against these ferritins. The extent to which SF is
saturated with iron is variable and can be influenced by phys-
iological conditions such as inflammation and iron overload.
Iron saturation of ferritin in normal serum was reported to
be 24% (491) but it is much less in iron overload. Ferritin
appears to enter the blood plasma by secretion from hepatocytes
or macrophages after synthesis on membrane-bound polysomes
and glycosylation, or via direct release from damaged cell mem-
branes. The 3 factors controlling SF levels are synthesis, release
from the cells, and clearance from the plasma. Abnormalities
occur in synthesis and release, but not in clearance. Many cells
contain ferritin-binding proteins and injected spleen ferritin is
rapidly taken up by the liver (492).

Normal ranges of serum ferritin. It was only after the de-
velopment of sensitive immunoradiometric assays that ferritin
was detected in the serum or plasma of normal individuals (493,
494). These early assays have been supplanted by enzyme-linked
immunoassays using colorimetric and fluorescent substrates or
by antibodies with chemiluminescent labels. The SF assay is
available for routine analysis using automated immunoassay an-
alyzers.

SF concentrations are normally within the range 15–
300 µg/L and are lower in children than in adults. Mean values
in women before menopause are lower than in men, reflecting
women’s lower iron stores caused by menstruation and child-
birth. In women after menopause, SF concentration increases
but remains lower than in men. The changes in SF concentra-
tion from birth to old age reflect changes in the amount of iron
stored in the tissues (495). In normal individuals, there is a close
relationship between the total amount of iron removed by phle-
botomy and the SF concentration (496). The SF concentration is
relatively stable in healthy persons and a reduction in the level
of storage iron is the only known biological cause of low SF
concentrations. In patients with IDA, a number of studies have
been used to establish the threshold of 12–15 µg/L as indicative
of iron deficiency (497) and this cut-off is the cornerstone for
using SF in clinical practice to identify iron deficiency . Higher
concentrations of SF may be related to infection, inflammation,
adiposity, and alcohol consumption (490).
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Iron supply

Serum iron, TIBC, percent transferrin saturation. Iron in the
circulating plasma and extracellular fluid is bound to transfer-
rin. Serum iron and transferrin saturation values have a circa-
dian rhythm with most individuals exhibiting a morning peak
and evening nadir. In the morning, transferrin saturation is
∼35% (range 20–55%). The pattern may be reversed in people
who are awake at night and sleep during the day.When absorp-
tion and release from stores is insufficient to meet functional re-
quirements, the serum iron level falls and the transferrin concen-
tration (customarily expressed as the TIBC) is increased (100).
The serum iron level, TIBC, and transferrin saturation are there-
fore all indicators of the adequacy of the iron supply to develop-
ing red blood cells and other tissues. The iron supply to develop-
ing erythrocytes is suboptimal when the transferrin saturation
falls below 15% in iron-deficient, but otherwise healthy, indi-
viduals (139, 498). However, unlike iron deficiency, in infection
and inflammation both plasma iron and the TIBC are reduced.
Transferrin saturation is the biomarker that is employed most
widely in nutrition studies as an indicator of iron deficiency; it
is also one of the indicators in the “ferritin model” employed by
the NHANES surveys in the United States (the “ferritin model”
comprises three indicators, SF, transferrin saturation, and red
blood cell protoporphyrin) (499).

As with adults, serum iron concentrations vary throughout
the day in newborns, infants, and toddlers. Because of the high
variation in serum iron and transferrin concentrations, percent
transferrin saturation is not used as a biomarker of iron status
in newborns. In the past it was employed once postnatal enteral
feedings and growth had been established; percent transferrin
saturation can then be useful in infants with parameters similar
to those for adults indicating the presence of deficiency.

Erythrocyte protoporphyrin. Ferrochetalase catalyses the ter-
minal step in heme synthesis, which converts protoporphyrin IX
into heme by the insertion of ferrous iron.Zinc is an alternative
metal substrate and ZPP is a normal metabolite that is formed
in trace amounts during normal heme biosynthesis (500, 501).
Erythrocyte ZPP is not increased with simple iron depletion, the
stage of iron deficiency when iron delivery to the erythroid mar-
row is preserved. When the iron supply can no longer meet ery-
thropoietic requirements, erythrocyte ZPP rises progressively,
providing an index of the severity of the functional iron defi-
ciency.

Using results of bone marrow examinations as the criteria
for stages of iron deficiency, erythrocyte ZPP has been shown
to provide a sensitive and specific measure of uncomplicated
functional iron deficiency (iron-deficient erythropoiesis and
IDA) (502). ZPP levels are established while red blood cells
are maturing and then remain unaltered for the mature red
blood cells lifespan (∼3–4 mo). Consequently, red blood cell
ZPP is a measure the average iron availability to the ery-
throid marrow during the preceding 3–4 mo. While increased
erythrocyte protoporphyrin is an early indicator of iron de-
ficiency, the result is not specific. Levels are also increased
with chronic lead poisoning, the anemia of inflammation,
β-thalassemia trait, α-thalassemia trait, hemoglobin E dis-
ease, and some sickle cell carriers (503–505) and other less
widely discussed xenobiotic compounds (e.g., lead and other
metals, hexachlorobenzene, halogenated aromatic hydrocar-
bons, pesticides, sulfides, and dihydropyridines) that disrupt
heme synthesis (506). Nevertheless, values >150 µmol/mol
heme are highly suggestive of iron deficiency, usually with
anemia, rather than thalassemia (504). Other cut-off values to

distinguish between functional iron deficiency and thalassemia
or hemoglobinopathy carrier status have been proposed (502).

ZPP levels have been assessed in studies of preterm infants as
a marker of potential iron deficiency (348, 507). Standards for
preterm and term newborns have not been formally established.
A value >80 µmol/mol heme has been used as an indicator of
iron deficiency in multiple studies of toddlers (262).

Reticulocyte hemoglobin and proportion of hypochromic

circulating red blood cells. Reticulocyte hemoglobin content
(reported as CHr, Ret-He, RHE, RHCc by different hematol-
ogy analyzers), the proportion of hypochromic red blood cells,
the ratio of microcytic to hypochromic red blood cells, as well
as various parameters of reticulocyte volume can be measured
by modern hematology analyzers (508, 509). These measures
may be helpful in the evaluation of anemia in the clinical set-
ting. For example, CHr is considered an optional approach to
establish iron status in young children with anemia (510, 511).
This group of methods has also been applied extensively to the
management of iron status and the prediction of responsiveness
to intravenous iron and erythropoiesis-stimulating agents in pa-
tients with chronic kidney disease (512). However, their appli-
cation to the evaluation of nutritional anemia, particularly in
limited-resource countries, is constrained by the cost of purchas-
ing and maintaining the necessary analytical equipment.

Serum transferrin receptor. Kohgo et al. (513) were the first
to identify TfR1 in the plasma by immunoassay. It is a single
polypeptide chain with a molecular mass of 85 kDa, being a
truncated fragment of the TfR1 monomer produced from cleav-
age by a serine protease (514). It circulates in the plasma bound
to transferrin and is usually called the soluble or sTfR. It can
also be called the plasma transferrin receptor. sTfR concentra-
tion is closely linked to cellular iron demands and the erythroid
proliferation rate (515). When intracellular iron supply is re-
duced, cell surface TfR1 expression is upregulated in order to
acquire more iron. It is downregulated when there is sufficient
iron. Parallel changes in the concentration of sTfR occur.

The main source of serum sTfR is bone marrow erythroid
precursors (516). Once iron stores are exhausted, soluble TfR
values rise progressively as hemoglobin concentrations fall in
adults undergoing phlebotomy (517). By calculating the induced
iron deficit, Skikne et al. (517) demonstrated that the sTfR level
provides a quantitative estimate of the size of the induced iron
deficit in iron-deficient adults. sTfR concentrations have also
been shown to correlate with the severity of iron deficiency
in young children (518) and with the evaluation of iron sta-
tus based on stainable bone marrow iron (519–521). How-
ever, sTfR concentrations are also affected by the rate of ery-
thopoiesis (515, 522, 523). When iron supply is not limiting,
the sTfR level can be used to monitor bone marrow erythropoi-
etic activity (524).

When sTfR was measured in 12 nonanemic women aged
23–30 y on 15 consecutive days under standardized conditions
the day-to-day variation was 8.1%, and there were no signifi-
cant differences across the menstrual cycle. The conclusion of
this study was that one blood sample was sufficient to measure
sTfR (525). Although not typically used in newborns, infants,
and toddlers, the developmental trajectory of plasma TfR has
been studied (526, 527). Serum TfR increases during the first 4
mo of life and then remains relatively stable during the first year
in breastfed infants (528).

A number of lifestyle and environmental factors have been
reported to affect sTfR. Lower sTfR values were observed
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among smokers in a cross-sectional study (529). Although high
consumption of alcohol is associated with liver damage and
changes in iron metabolism, sTfR values in alcoholics were re-
ported to be independent of weekly alcohol intake, age, dura-
tion of consumption, length of abstinence, time of last drink,
and liver function tests (530). sTfR and sTfR/log ferritin in-
dex were unaffected by oral contraceptive use (531). In a study
examining iron status and nutrient intake in 28 highly active
(>12 h purposeful physical activity per week) and 28 sedentary
young women it was reported that although the active women
had higher iron and similar heme iron intakes, they had higher
sTfR, sTfR/log ferritin index and lower ferritin concentrations
than the sedentary women (532). It is not possible to draw con-
clusions about the etiology of the raised sTfR from this study
but other published literature in the field indicates that high lev-
els of physical activity are associated with lower iron status. In a
cross-sectional study that compared the iron status of 234 obese
adults with that of 172 nonobese adults attending an outpatient
clinic, the obese patients had a higher prevalence of iron defi-
ciency defined by sTfR and serum iron but not by ferritin (533).
The authors suggest that the hypoferraemia of obesity is due
to both true iron deficiency and inflammatory-mediated func-
tional iron deficiency. By measuring serum hepcidin in obese
premenopausal women, Tussing-Humphreys et al. (534) were
able to investigate the reason for iron depletion in obesity. They
postulated that hepcidin is expressed in response to obesity-
related inflammation rather than changes in iron status, and
concluded that the iron deficiency of obesity is a true body iron
deficit rather than maldistribution of iron due to inflammation.
These observations suggest that sTfR is an accurate biomarker
of iron status in obese and overweight individuals. Finally, a sys-
tematic review of the relationship between obesity and hypofer-
raemia (535) included 25 studies of which 10 examined iron
status in free-living obese individuals and 15 reported baseline
iron biomarkers from bariatric surgery candidates. Nonobese
subjects were used as controls in only 40% of the studies and
sTfR was measured in only a few of the more recent studies.
When reported, sTfR was slightly (and hepcidin was markedly)
elevated in the obese subjects, but it was not possible to draw
definitive conclusions due to insufficient data.

A large (n = 221) cross-sectional study demonstrated that
men with altered glucose tolerance had significantly increased
sTfR and ferritin values compared with normal controls (536).
There was a negative correlation between SF and sTfR. Insulin
sensitivity and glucose tolerance status were negatively corre-
lated with sTfR.

sTfR concentrations are affected by erythropoietic rate.
When iron supply is not limiting, sTfR levels are proportional
to bone marrow erythropoietic activity (524). The evaluation
of suspected IDA in the clinical setting must include informa-
tion on conditions that impact erythropoiesis. The prevalence
of some thalassemia traits may complicate the interpretation
of sTfR levels in population surveys. sTfR concentrations are
raised in carriers of α0- and β-thalassemia trait. Nevertheless,
sTfR may still be informative if diagnostic criteria are adjusted
to differentiate between iron deficiency and thalassemia traits
(537–539).

sTfR/SF ratio. The sTfR/SF ratio has been shown to be more
reliable than either parameter alone for the identification of iron
deficiency (540). The sTfR/SF ratio proved to be the best pre-
dictor of absent bone marrow iron in a large population of
schoolchildren with severe anemia and a wide variety of dis-
eases including bacteremia, hookworm infection, HIV disease,

and vitamin A and B12 deficiencies (541).However, the practical
utility of the sTfR/SF ratio for detecting iron deficiency in the
presence of inflammation is still unclear. The sTfR/SF ratio has
also been shown to be the most sensitive indicator of a change
in iron status following iron supplementation (542).

Iron-deficiency anemia: hemoglobin, Hct, MCV, mean cor-

puscular hemoglobin, mean corpuscular hemoglobin con-

centration, RDW. The circulating red blood cells represent
the largest and most accessible functional compartment for
iron. The measurement of hemoglobin is both an important
screening tool for detection of iron deficiency and an impor-
tant criterion for determining severity. The Hct or packed
cell volume was fairly widely employed in the past. How-
ever, it provides no additional information if hemoglobin val-
ues are available. The sensitivity of hemoglobin as a screen-
ing test for iron deficiency is low because there is consid-
erable overlap in the in the hemoglobin concentrations of
healthy individuals and those with mild or moderate iron de-
ficiency. Specificity is also poor since other causes of ane-
mia are prevalent in Africa, Asia, the Mediterranean region,
and to some extent South America. The most important are
other nutritional deficiencies, particularly vitamin A deficiency,
infectious diseases (particularly malaria, HIV disease, and tu-
berculosis), and inherited red blood cell disorders (particularly
the thalassemia syndromes and hemoglobin E disease).

Changes in the red blood cell indexes [reduced MCV
and mean corpuscular hemoglobin (MCH) and increased
RDW] are characteristic, but relatively late indicators of
iron-deficient erythropoiesis. Reliable results are provided
by automated instrumentation. However, they lack speci-
ficity. Several algorithms that allow iron deficiency to be
distinguished from other causes of microcytic hypochromic ane-
mia have been published (543, 544). They have not, however,
gained widespread acceptance. Measurement of reticulocyte in-
dexes, including the hemoglobin content of reticulocytes (CHr)
and the reticulocyte hemoglobin equivalent (Ret He) provide
earlier indicators of functional iron deficiency, but require spe-
cific models of hematology analyzer and are generally not used
in field studies.

Hemoglobin concentrations are higher in newborn infants
(130–180 g/L) than in older infants, toddlers, and children
(>110 g/L) (545). A newborn with a hemoglobin concentration
<130 g/L is considered anemic, although the etiology of anemia
is much more likely to be due to blood loss or hemolysis than
to iron deficiency. Iron-deficiency anemia at birth is extremely
rare because of the active transport of iron from mother to fe-
tus even in the face of significant maternal deficiency (177). In-
fants undergo a “physiologic anemia” in the first 6–8 wk. By
6 mo of age, hemoglobin norms are the same as older children
and adults (>110 g/L). The MCV is higher in newborn infants
due to the presence of fetal hemoglobin. Thus, the utilization
of low MCV as an indicator of iron deficiency is problematic.
The RDW is also elevated in neonates as the relatively larger red
blood cells containing fetal hemoglobin (t1/2 = 60 days) are re-
placed by smaller cells containing hemoglobin A. Standards for
hemoglobin, Hct, MCV,MCH concentration, and RDW after 6
mo of age have been published by the CDC (234, 546).

Implications related to inflammation for the interpretation

of biomarkers of iron status. The evaluation of iron status
in countries where infectious disorders, particularly recurrent
childhood infections, parasitic illnesses, HIV disease, and tuber-
culosis, are prevalent is complicated by the behavior of SF as an
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acute-phase protein. Low-grade inflammation is also common
in older people in all countries, confounding the use of SF as a
biomarker of iron status. On the other hand, sTfR concentra-
tions are less influenced by inflammation than SF (547), making
it potentially a more robust measure of iron deficiency than SF
in individuals suffering from infectious and inflammatory dis-
orders, the ACD, and in the elderly (540, 548–551). However,
some prevalent infectious disorders, particularly malaria, may
be associated with increased sTfR levels because of changes in
eythropoietic rate (552).

The systemic response to infection or tissue damage is a series
of events known as the acute-phase response (APR). The local
reaction is inflammation. The systemic APR may be induced by
infection, inflammatory disorders (e.g., obesity, diabetes, malig-
nancy) as well as physical trauma. At the metabolic level, the
APR comprises the increased production (positive) or reduction
(negative) of a numerous APPs prior to the full activation of
the immune response. The main purpose of the APR is to pre-
vent damage to the tissues by removing harmful molecules and
pathogens. The changes in the levels of APPs reflect changes in
their production by hepatocytes, which in turn are regulated by
cytokines such as IL-1, IL-6, and tumor necrosis factor α acting
in a complex network (553). The implications of the APR and
inflammatory response to nutrition and vice versa was the focus
of a collaboration between NICHD and BMGF called Inflam-
mation and Nutrition Science for Program/Policy and Interpre-
tation for Research Evidence (INSPIRE) (128).

For the purposes of this review, it is important to acknowl-
edge that biomarkers used to assess iron nutrition, particularly
SF (increased in inflammation) and transferrin (decreased in in-
flammation), are APPs influenced by the APR, which thus af-
fects their selection, use, and interpretation. The case of SF of-
fers an opportunity to explore the current efforts to address this
challenge. The patterns by which APP rise and fall with inflam-
mation have been studied and evaluated with the aim of using
concentrations of other relevant markers of inflammation to ac-
count for the influence of inflammation on SF values to yield a
value that would reflect only nutritional iron status. The timing
of the increase, the extent of the rise and the period over which
the concentrations of different APPs are elevated varies consid-
erably depending on the specific APP and the type of infection
or inflammatory disorder (128, 554, 555).

Northrop-Clewes (554) reviewed several studies to
compare the responses reported for SF and inflammatory
markers, including α-1-acid glycoprotein (AGP), CRP, α1-
antichymotrypsin (ACT), haptoglobin, and fibrinogen, to
infection or trauma (556). SF increased from its initial value by
an average of ∼2.5-fold, peaked at 4 d and was still elevated at
6 d. AGP had a similar pattern to SF and increased on average
2-fold, peaked between 2 and 4 d and was still elevated at 6
d. On the other hand, both CRP and ACT rise and fall more
rapidly than SF. The average increase in CRP was ∼3-fold,
the peak value occurred at day 2. After 6 d the CRP was
approaching baseline. ACT increased ∼2-fold, peaked at 2 d
and had decreased somewhat at day 6, but less so than CRP.
Haptoglobin and fibrinogen were still rising at day 6.

The potential of using SF to quantify iron deficiency in pop-
ulations with widespread infections and inflammation has been
the focus of considerable recent effort. A partnership between
the WHO and CDC has convened a working group to ad-
dress the use of SF as a biomarker for population surveillance.
Those deliberations are being informed by collaboration be-
tween NICHD, CDC, Bill & Melinda Gates Foundation, and
the Global Alliance for Improved Nutrition (GAIN) called the

Biomarkers Reflecting Inflammation and Nutritional Determi-
nants of Anemia (BRINDA) Project. Both projects have been
informed by the INSPIRE Project. INSPIRE included an effort
to identify potential approaches to account for the impact of the
APR/inflammation on selection and interpretation of biomark-
ers.

Text Box 36 (294, 490, 557–559)outlines the primary ap-
proaches that were identified by the INSPIRE consultancy and
are now being evaluated by both BRINDA and the WHO/CDC
efforts.

Text Box 36

Potential approaches to account for inflammation
• Ignore inflammation
Comment: the redistribution of the biomarker of inter-

est without a real change in the total body content of the
micronutrient results in a distorted measurement of the mi-
cronutrient status.
• Exclusion of the sample with elevated biomarkers of

inflammation
Comment: not useful in areas of high infection burden

and other acute and chronic inflammatory disorders, e.g.,
parts of sub-Saharan Africa. as this approach could sub-
stantially decrease sample size and could lead to an atypi-
cal residual sample which would bias the results especially
if subjects with iron deficiency are more susceptible to in-
fection.
• Change cut-off values
Comment: as the rise and fall of ferritin in response to

infections and inflammation is variable and time depen-
dent, the sensitivity of diagnosis would be expected to be
low (490).
• Standardization (to calculate the prevalence of mi-

cronutrient deficiency in those with and without inflamma-
tion, then calculate a weighted prevalence estimate using a
“standard” prevalence estimate of inflammation).

Comment: too many uncertainties regarding preva-
lence and type of inflammation and differences in
biomarker/APP response: temporal, direction (up or
down), and magnitude.
• Correction factor approach, e.g., Thurnham et al.

(557)
Concerns: differences in inflammatory response in

terms of developmental biology (infants compared with
adults, pregnancy, etc.), temporal changes in context of
acute comparedwith chronic infection (APP selection; CRP
compared with AGP), and differences in relationships of
nutrient biomarkers to inflammatory markers (294, 558,
559).
• Statistical options/regression modeling
Comment: current focus of both WHO and BRINDA

projects.

These projects involve both systematic reviews of the rele-
vant extant literature and de novo analyses of existing datasets
to explore the biomarker/inflammation relationship. The Text
Box 37 (560–565) summarizes some of the key findings of the
BRINDA project specific to the intersection of iron biomarkers
and inflammation.
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Text Box 37

Summary of BRINDA Aims and Key Findings (560–565)
Aim 1: Identify risk factors of inflammation as defined

by the positive APPs): CRP and AGP
• Inflammation as indicated by elevated CRP and AGP is

common in population-based nutrition surveys of women
of reproductive age (WRA) and preschool children (PSC).
• Factors associated with elevated CRP differ from those

associated with AGP.

-A consistent positive relationship was observed be-
tween CRP and obesity among WRA
-A consistent positive relationship was observed be-
tween AGP and stunting in PSC

• Variability in the factors associated with CRP or AGP
suggest the need to measure these APPs directly to under-
stand inflammation in populations.
• Elevated CRP or AGP could not be predicted by so-

ciodemographic covariates
Aim 2: Assess the relationships between inflammation

and biomarkers of iron status and compare adjustment
approaches in pursuit of more accurate assessment of mi-
cronutrient status of populations

Ferritin
• The association with CRP/AGP was consistent in al-

most all data sets, and in both PSC and WRA.
• The strength of correlation ranged widely between

countries and tended to be stronger in children than in
women.
• No clear cutoff (threshold) for CRP or AGP at which

there was a change in the relationship between inflamma-
tion and ferritin was found.

BRINDA conclusion
• The regression correction is proposed as an improve-

ment to the correction factor approach to account for the
full range and severity of inflammation.
• Adjusting for malaria in addition to CRP and AGP

did not significantly change the estimated prevalence of de-
pleted iron stores.

sTfR:
• Association with AGP was stronger and more consis-

tent than association with CRP in both PSC and WRA.
BRINDA conclusion
• The regression correction approach should be used to

adjust TfR for AGP to account for the full range and sever-
ity of inflammation.
• The effect of adjusting the prevalence of iron-deficient

erythropoiesis (i.e., elevated TfR) for CRP was minimal
and inconsistent across surveys and therefore not recom-
mended.
• In most countries, adjusting for malaria in addition to

AGP did not significantly change the estimated prevalence
of iron-deficient erythropoiesis.

Body iron index
• There was a slight positive association with CRP and

AGP in both PSC and WRA.
BRINDA recommendation
• Body iron index is affected by inflammation and

should be adjusted when estimating the prevalence of

low body iron index, particularly in children living
in areas with a high prevalence of inflammation and
infections.
• Malaria does not appear to have an additional effect

on body iron index that is independent of inflammation.
Aim 3: To assess factors associated with anemia

amongst PSC and WRA, and to estimate the proportion
of anemia associated with iron deficiency
• In both PSC and WRA, the proportion of anemia as-

sociated with iron deficiency depended on the underlying
prevalence of infection/inflammation.
• The proportion of anemic individuals with concomi-

tant iron deficiency varied by the burden of infections
in the country and ranged from 30% to 58% in PSC
and from 35% to 71% in WRA. Inflammation was as-
sociated with anemia in countries with high infection
burdens.

Analytical Considerations

The physiologic aspects of the biomarkers of iron deficiency
were described in the previous section. This section provides an
overview of the analytical aspects, of the tools andmethods used
to ensure the quality of the measurement, and of preanalytical
considerations that are relevant to sample collection, processing,
and storage because they may affect the measurement results for
these biomarkers. In addition to the presence of stainable iron
in the bone marrow, iron status biomarkers can be categorized
into hematological (red blood cell parameters) and biochemical
indicators (mainly serum-based parameters, but also erythro-
cyte protoporphyrin). Most analytical methods that measure
these biomarkers are well established and widely used in clini-
cal practice, program evaluation, and research settings. They are
relatively simple analytical techniques compared to techniques
used to measure other nutrients in biological samples, yet there
are remaining issues with regards to assay comparability and
standardization. This section summarizes the advantages and
disadvantages of common analytical methods used to measure
whole-blood-based (Table 9) and serum-based (Table 10) iron
status indicators.

Stainable bone marrow iron

The Prussian blue stain (potassium ferrocyanide) is used to stain
bone marrow aspirates or biopsies. Most of the stainable iron
is hemosiderin located in macrophages. Roughly half of the
nucleated erythroid precursors also contain small cytoplasmic
iron granules (sideroblasts). The amount and distribution of the
stainable iron provides a semiquantitative estimate of the size of
body iron stores (566). The evaluation of bone marrow requires
an experienced observer and careful attention to detail. Absent
bone marrow iron may be reported in aspirates that contain in-
sufficient bone marrow stroma for adequate evaluation (567).
Iron contamination may occur if acid-washed glassware and
slides are not used. Iron may be leached out of biopsy specimens
during decalcification. Finally patients who have received some
types of parenteral iron such as iron dextran that are processed
in macrophages may have stainable bone marrow iron despite
being iron deficient because the iron is in a form that is not
easily mobilized (568). In malarial regions, hemozoin (malarial
pigment) in the bone marrow may be misidentified as storage
iron (521).
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Hematological parameters

Hb. Hb measurements, used to assess anemia in an individ-
ual or in populations, are well standardized and provide good
precision (Tables 9 and 11). The accepted reference method
for the determination of Hb in human blood is the photomet-
ric determination of hemiglobincyanide (cyanmethemoglobin)
(569). This method reliably measures all Hb variants except
sulfhemoglobin. Red blood cells are lysed and potassium fer-
ricyanide, which oxidizes Hb to methemoglobin, is added.
Methemoglobin combines with potassium cyanide to form
cyanmethemoglobin. The brown color is measured spectropho-
tometrically. The end point of the reaction is stable and the
reaction is linear to ≥20 g/dL. However, reagents for cyan-
methemoglobin are light sensitive and poisonous. This method
is the benchmark against which all other methods are evalu-
ated. It is the basis for Hb measurements on most automated
cell counter analyzers and for hand-held “screening” devices. In
this field-appropriate technology, whole blood is collected into
a disposable cuvette containing reagent in dried form for Hb
measurements and cyanmethemoglobin or azidemethemoglobin
is measured with a simple, portable, dedicated photometer.

The HemoCue is one such portable device that has been
used worldwide to assess anemia rates in various populations.
For tips on how to use the HemoCue instrument, how to col-
lect a valid specimen, and how to avoid common mistakes, the
reader is referred to the Micronutrient Survey Toolkit (570) and
a manual published by Helen Keller International (571). Differ-
ent HemoCue models are available (B-Hb, Hb-201, and Hb-
301); the two newer models (Hb-201+ and Hb-301) no longer
require the use of a control cuvette due to an internal self-test.
The Hb-301 additionally offers an extended temperature range
(10–40°C) for the storage of cuvettes compared to the previous
models (15–300C). This latest model measures absorbance of
whole blood at an Hb/BbO2 isobestic point with turbidity com-
pensation and does not require hemolysis of the sample. The
instrument is factory calibrated against the reference method
from the International Council for Standardization in Haema-
tology (ICSH), needs no further calibration, and has no active
reagents in the cuvette.Using venous blood from adult volunteer
donors, good comparability of the B-Hb and Hb-201 models
was demonstrated (572), but systematic differences between the
Hb-301 (2.6% higher) and Hb-201 models were found (573).
The exposure of cuvettes for all three models to elevated tem-
perature (37°C) for up to 3 wk had only minimal effects (<1%)
on Hb results (572). However, exposing the Hb-201 cuvettes to
moisture and elevated temperature caused them to fail within
minutes, whereas the Hb-301 cuvettes withstood those condi-
tions for 3 wk (573). The largest source of error with this tech-
nique is the use of improperly collected capillary samples. This
issue is discussed in the preanalytical factors section.

Hematocrit. TheHct does not offer new or additional informa-
tion about anemia beyond Hb and unless the value is needed as
a measure of packed cells to normalize other blood-based mea-
surements, measuring the Hct in the field is probably not worth
the effort. Field assays are often unreliable because of difficul-
ties encountered in calibrating portable centrifuges. Automated
cell counter analyzers provide calculated Hct results as part of
the complete blood count profile (Table 9).

Other red blood cell parameters. The MCV, MCH, and
RDW are also part of the complete blood count profile ob-
tained from automated cell counter analyzers, but are no longer
commonly used in the diagnosis of iron deficiency. As indicated

above, measurement of reticulocyte indexes (CHr and Ret He)
require specific models of hematology analyzers and are gener-
ally not used in field studies.

Biochemical indicators

Erythrocyte protoporphyrin. Porphyrin compounds fluoresce
in the red portion of the spectrum when excited by light at a
wavelength corresponding to their Soret absorption maximum.
ZPP can be measured directly by either reflective fluorescence in
a hematofluorometer or after extraction of the zinc moiety using
ethyl acetate and hydrochloric acid. The free erythrocyte proto-
porphyrin (FEP) is measured by conventional fluorometry at an
excitation/emission wavelength of 405/620 nm (Table 9). Both
FEP and ZPP should be interchangeable with the term “erythro-
cyte protoporphyrin” (EP). The 1996 National Committee for
Clinical Laboratory Standardization (NCCLS) EP testing guide-
line (574) and an article by John Beard (575) discussed these two
analytical approaches in detail as well as the variety of reporting
units and equations used to convert units. The main advantage
of the chemical extraction method is that it does not require
freshly collected blood. However, the procedure is complex and
requires chemicals that pose safety hazards. These may be some
of the reasons why it is no longer widely used.

The simpler hematofluorometer method has been employed
more often in the recent past, particularly to screen for elevated
EP values as a result of iron deficiency or lead poisoning in chil-
dren. This method has several advantages for field studies: the
instrument provides a direct estimate of the ZPP/H, only a drop
of capillary or venous blood is required, the volume of the sam-
ple need not be measured, and neither processing nor anticoag-
ulation is required. The excitation light at 415 nm is focused on
the bottom of a drop of blood on a horizontal glass slide at an
angle of 37° to the vertical. The light emitted from the sample
at 596 nm is collected below the sample and is proportional to
the ZPP/H. Calibration standards are supplied by the manufac-
turer. While this direct approach is attractive for studies in low-
resource settings, two factors limit its use.Most importantly, the
instrument requires frequent recalibration to ensure appropri-
ate alignment of the filters and mirrors if it is transported under
unfavorable conditions. It has to be shipped back to the manu-
facturer for this to be done. A secondary concern is interference
by non-porphyrin fluorescent compounds, such as bilirubin, ri-
boflavin, and certain medications, that may be present in the
plasma. The accuracy of the estimate can be improved by using
saline-washed erythrocytes. Continued problems with calibra-
tion, sources of bias, and discrepancies in results between the
major manufacturers of these instruments have complicated the
use and interpretation of ZPP/H assays.

Serum iron, TIBC, and transferrin saturation. The serum
iron pool represents the amount of ferric iron (Fe3+) that is in
transit through the circulation bound to transferrin. Three as-
say results are customarily reported together, namely the serum
iron (SI), the transferrin concentration, usually reported as the
quantity of iron that can be bound to transferrin (TIBC), and the
TSAT (= SI × 100/TIBC) (575). The utility of SI and TSAT as
screening tools for iron deficiency is, however, limited by the cir-
cadian variation, the confounding effects of infectious diseases,
and many other clinical disorders.

Analytical methods for SI are either based on colorimet-
ric principles (manual assay or using automated analyzer) or
direct assay by atomic absorption spectrophotometry (100,
576) (Tables 10 and 11) (577–579). The former approach
is available in most clinical laboratories, whereas the latter
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TABLE 11 Available reference materials and proficiency testing programs for iron status indicators1

Indicator Reference materials Selected list of PT8 programs

Hemoglobin NIBSC IS 98/708 (dilute solution of hemiglobincyanide produced from bovine blood;
49.8 µmol/L [803.3 mg/L]; consensus value)

CAP Hematology and Clinical Microscopy Survey

Serum iron NIST SRM 937 (iron metal); NIST SRM 3126A (iron standard solution) CAP Chemistry Survey and Cal V/L Survey; UK NEQAS

Serum ferritin NIBSC RM 94/572 (human plasma, freeze-dried; recombinant; 6.3 µg/ampoule;
consensus value)

CAP Chemistry Survey and Cal V/L Survey; UK NEQAS

Serum soluble transferrin
receptor

NIBSC RR 07/202 (human serum, freeze-dried; recombinant; 21.7 mg/L and 303
nmol/L [free sTfR monomer]; gravimetric/spectrophotometric value assignment)

CAP Soluble Transferrin Receptor Survey

1Referencematerials found online (577, 578). Cal V/L, Calibration Verification and Linearity Survey; CAP, College of American Pathologists; IS, international standard; NIST, National
Institute of Standards and Technology; PT, proficiency testing; RM, reference material; RR, round robin; SRM, standard reference material; sTfR, serum transferrin receptor; UK
NEQAS, United Kingdom National External Quality Assessment Service. Adapted with permission from reference 579.

approach is mostly available in research laboratories. Both ap-
proaches are well-established procedures that have been avail-
able for decades. In 1998 the NCCLS approved standards for
the determination of serum iron, TIBC, and TSAT and provided
a detailed description of the colorimetric manual laboratory
procedures (580). While rigorous elimination of iron contam-
ination has been a critical concern for the manual colorimetric
assay, this has not been a problem with the use of automated
analyzers.

The concentration of serum transferrin can be measured ei-
ther directly by immunologic methods or by the use of the TIBC
as a proxy measure of transferrin (100, 576). The TIBC assay
is identical to the SI assay, but applies an additional step (satu-
ration of iron-binding sites of the transferrin molecule with ex-
cess iron) followed by the removal of the unbound iron. Most
clinical analyzers actually measure the unsaturated iron bind-
ing capacity (UIBC) because it is more easily automated; the
TIBC concentration is then calculated by summing SI and UIBC
concentrations. This works well for the detection of iron deple-
tion when SI concentrations are low and UIBC concentrations
are high; however, in the presence of iron overload the mea-
surement of very low UIBC concentrations may result in rela-
tively high method imprecision. In an interlaboratory compar-
ison study, Blanck et al. (581) found no significant differences
in SI, TIBC, or UIBC results among methods [and low within-
method variation for SI (CV<3%)] regardless of the chromogen
used to form the color complex with iron (ferine or ferrozine)
and whether the automated methods were corrected for copper
and protein.

Serum ferritin. The measurement of SF is a well-established
routine procedure carried out by clinical laboratories (Tables 10
and 11).To allow for high sample throughput,most laboratories
use fully automated immunoassays for which several manufac-
turers produce commercial kits for various analyzer platforms.
If a laboratory does not have access to a clinical analyzer, a man-
ual ELISA can be used (492, 582). Commercial kits from several
manufacturers are available for this type of assay. While proce-
dures for the analysis of ferritin in plasma or serum (583, 584)
spotted onto filter paper have been published, they have been
only rarely utilized. Procedures for the storage and transport of
dried plasma or serum spots are more convenient than those
for frozen samples; however, a centrifuge (and electrical power)
is still needed. While ferritin can be measured in dried blood
spots, its usefulness is diminished by the release of much higher
ferritin concentrations from hemolyzed erythrocytes (585).
Worwood (490) discusses potential pitfalls in the analysis of
SF, including different isoferritin forms, the “high-dose hook”

effect, interference by non-ferritin proteins, and antibodies to
some animal proteins. None of them seem to cause notewor-
thy issues with current assays.Generally, ferritin assays compare
reasonably well across methods, with a CV of 10–15% (586);
however, an improvement in comparability would be desirable.
Agreement among laboratories performing the same method is
good (CV <10%) (586).

Serum transferrin receptor. Immunoradiometric assays and
ELISAs were initially developed for the measurement of
sTfR. They were later followed by latex-enhanced immunoas-
says (nephelometry and turbidimetry) and more recently by
fluoroimmunoassays and immunofluorometric assays (530)
(Tables 10 and 11). While microplate ELISA assays have been
employed for >20 y, commercial kits that can be used on fully
automated clinical analyzers have only been available more re-
cently (587, 588). The usefulness of commercial assays has been
severely limited by several factors.The various assays express re-
sults in different units (mg/L and nmol/L). There is poor agree-
ment between different kits. An international reference stan-
dard has been available since 2010 but its use has been limited
due to commutability questions. The poor comparability across
assays (589) is likely to be due to manufacturers using differ-
ent calibrators (TfR isolated from human placenta, not com-
plexed to transferrin; sTfR extracted from serum either in free
form or complexed with transferrin), different antibodies (mon-
oclonal or polyclonal), and even different reporting units (mg/L
and nmol/L) (530). Standards derived from placental TfR have
produced higher TfR assay values than standards isolated from
serum (590). This lack of commutability, and the relatively high
reagent cost, are some of the reasons why sTfR measurements
have not been widely adopted in clinical practice. Methods for
sTfR measurement using dried blood spots have been reported
(585, 591).

Measuring several iron status indicators in one assay. Er-
hardt et al. (592) have developed an inexpensive and sensitive
sandwich ELISA assay that allows the combined measurement
of ferritin, sTfR, CRP, and retinol binding protein in ∼50 µL of
serum or plasma. It is a convenient option for evaluating iron
and vitamin A status and, at the same time, accounting for the
effect of infection or inflammation. The current assay also in-
cludes the measurement of AGP, a sensitive acute-phase reac-
tant that captures the response to inflammation over a longer
time period (4–5 d) compared to CRP (1–2 d). This assay has
been successfully applied to numerous micronutrient surveys in
low-resource settings where the specimen volume was insuffi-
cient to conduct several conventional assays. The assay has the
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TABLE 12 Cutoff values for erythrocyte protoporphyrin, serum ferritin, and transferrin
saturation by stages of iron status and by population group (218)

Population group

<5 y of age ≥5 y of age

Erythrocyte protoporphyrin
Iron overload Normal Normal
Normal iron status Normal Normal
Iron depletion Normal Normal
Iron deficiency with or without anemia >70 g/dL RBC >80 µg/dL RBC

>2.6 µg/g hemoglobin >3.0 µg/g hemoglobin
>61 mmol/mol heme >70 mmol/mol heme

Serum ferritin, µg/L
Severe risk of iron overload No cutoff >200 (adult males)

>150 (adult females)
Depleted iron stores in the presence of infection <30 No cutoff
Depleted iron stores <12 <15

Transferrin saturation, %
Iron overload >60–70
Iron deficiency anemia <16

following shortcomings: 1) the interassay variability is generally
higher than that of commercial fully automated assays, necessi-
tating the use of a daily “adjustment factor” derived from the
analysis of a material with a known value; 2) the assay has not
yet been reliably transferred to laboratories in low-resource set-
tings; and 3) some of the antibodies used in the assay are no
longer commercially available. However, given that this assay
is a desirable and promising platform for future applications,
the CDC is evaluating modifications of the assay to incorpo-
rate currently commercially available antibodies and improve
its ruggedness in the hopes that it will allow successful tech-
nology transfer to low-resource settings. PATH in collaboration
with Quansys Biosciences have recently developed a commer-
cially available multiplex ELISA assay for simultaneous quan-
tification of iron (serum or plasma ferritin and sTfR), vitamin
A, and inflammation status markers (593). The reagent costs
for this assay are lower than purchasing separate commercial
kits for each indicator and processing time and specimen vol-
ume are reduced. However, the performance of this assay re-
quires the following further improvements: 1) to the calibra-
tion system by using purified or recombinant antigen cocktails
instead of a commercially available control that does not pro-
vide optimal concentration ranges for each indicator; 2) to the
precision—currently the interassay CV for ferritin is 9.3–14.1%
and for sTfR 7.3 –13.5%; and 3) to the correlation of this assay
with conventional ELISA assays—satisfactory correlation was
obtained for ferritin (r = 0.951), but the correlation was too
low for sTfR (r = 0.606). Furthermore, this assay will have to
be compared to established methods for which the performance
with reference materials is known and acceptable.

Interpretation of data and cutoff values
(Tables 12 and Table 13)

There are three stages in the development of iron-deficiency ane-
mia: iron depletion, where the amount of storage iron is re-
duced (low SF); iron-deficient erythropoiesis, which represents
restricted iron supply to the bone marrow and thereby mild tis-
sue deficiency (transferrin saturation is reduced, sTfR and EP are
increased); and finally IDA, where iron-containing functional
compounds including Hb are underproduced (low Hb). In situ-
ations of chronic disease, anemia can develop without an initial
iron deficiency, so-called ACD. In the presence of iron overload,

indicators of storage and transport iron are elevated (high SF
and transferrin saturation).

A recent WHO Vitamin and Mineral Nutrition Information
System (VMNIS) document provides a summary of cutoff val-
ues for Hb for the diagnosis of anemia and assessment of sever-
ity by population group (236). This document also provides ad-
justments for altitude and smokers. The older WHO guide for
program managers provides cutoff values for Hct for the same
population groups as well as for EP and ferritin for children
<5 y of age and persons ≥5 y of age and for TSAT (218). Be-
cause of large assay differences in the measurement of sTfR
(589), the manufacturer’s assay-dependent cutoff values have
been used. The Ramco enzyme immunoassay, the first com-
mercially available sTfR kit assay, reported a normal range in
healthy volunteers of 2.9–8.3 mg/L (594). Mei et al. (595) de-
rived cutoff values (97.5th percentile in a defined healthy refer-
ence population) for two vulnerable US population groups using
data from NHANES 2003–2010 as 6.0 mg/L for children 1–5 y
and 5.3 mg/L for nonpregnant women 15–49 y. The NHANES
data were produced using the Roche Tina-quant sTfR assay,
which yields values that are on average 30% lower than those
from the Ramco assay (587).

Since the inception of NHANES in 1971, special focus was
dedicated to monitoring the iron status of the US population
(596). Each NHANES has included a battery of hematologic
and biochemical indicators of iron status (597). Since NHANES
II (1976–80), models that employed multiple biochemical iron
status indicators have been used to define iron deficiency in the
population (598). In 1980, the ferritin model, also known as the
three-indicator model, was developed and applied to NHANES
III (1988–94) as well as to the first few years of the continu-
ous NHANES survey beginning in 1999. In this model, partic-
ipants who had two out of three abnormal iron status indica-
tors (SF, transferrin saturation, and erythrocyte protoporphyrin)
were categorized as iron deficient. Reference data for various
hematological and biochemical iron status indicators measured
in persons 1 y and older during NHANES III have been re-
ported as part of a National Center for Health Statistics Se-
ries 11 report (599). Reference data for biochemical indicators
measured in persons ≥1 y from NHANES 1999–2002 were in-
cluded in the CDC’s National Report on Biochemical Indicators
of Diet andNutrition in the US Population 1999–2002 [the First
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TABLE 13 Relationships between biomarkers and iron status

Iron status
Sustainable bone

marrow iron
Serum
ferritin

Transferrin
saturation

Erythrocyte
protoporphyrin

Serum transferrin
receptor Hemoglobin

Iron-deficiency anemia Absent Low Low High High Low
Iron-deficient erythropoiesis Absent Low Low High High Normal
Iron depletion Absent Low Normal Normal Normal Normal
Normal iron status Normal Normal Normal Normal Normal Normal
Iron overload Normal or increased High High Normal Normal Normal

Nutrition Report (429)]. Starting in 2003,NHANES limited the
population of interest to children (1–5 y) and women of child-
bearing age (12–49 y). Furthermore, the measurement of serum
sTfR was introduced, which allows the evaluation of iron status
by the body iron model (248). Reference data for ferritin, sTfR,
and body iron for children and women of childbearing age were
reported as part of the CDC’s Second Nutrition Report (600).

While SF is the most sensitive index of iron status as long
as residual iron stores are available, this biomarker does not
reflect the severity of the depletion as it progresses; sTfR con-
centrations, on the other hand, continue to rise with increasing
functional iron deficiency. Because of the reciprocal changes in
ferritin and sTfR, the ratio of sTfR/SF is a valuable measure
of the extent of iron deficiency (517). At least three different
approaches have been used to calculate this ratio. With each
approach, cutoff values to interpret the ratio are different. Fur-
thermore, the ratios are derived from different sTfR assays and
there is confusion in the scientific community as to what assay
data can be used with which ratio.

sTfR index. The sTfR index is calculated as the ratio of
sTfR/log SF and was introduced by Punnonen et al. (601) as
a parameter for the identification of persons with depleted iron
stores. A subsequent review article presented cutoff values for
the sTfR index (mg/L) to distinguish between ACD (<1) and
IDA (>2) or both conditions (>2) (602). A recent prospective
multicenter clinical trial compared the diagnostic accuracy of
sTfR and the sTfR index for differential diagnosis of ACD and
IDA using the automated Access Beckman Coulter instrument
(540). The authors found that the sTfR index was superior to
sTfR and use of all three parameters in combination more than
doubled the detection of IDA from 41% (SF alone) to 92% (fer-
ritin, sTfR, and sTfR index). The cutoff value for IDA or a com-
bination of IDA and ACD was >1.03 mg/L. The authors claim
that the sTfR index has higher sensitivity/specificity than the
sTfR/ferritin ratio. The interpretation of the sTfR index is as-
say dependent. The proposed cutoff values for the sTfR index
derived from the Access Beckman Coulter instrument can only
be used by other methods if those methods generate compara-
ble sTfR and ferritin results to results generated by the Access
Beckman Coulter instrument.

Body iron index. The logarithm of the ratio of sTfR/SF is lin-
early related to body iron stores expressed as mg per kg body
weight, as derived from a phlebotomy study (14 healthy adults
aged 24–46 y, 6men and 8women) in which iron status and iron
deficit were assessed. The formula for this relationship [using
both sTfR (Ramco-related assay) and SF in µg/L] is as follows:
body iron (mg/kg) = –[log(sTfR/SF) – 2.8229]/0.1207 (248).
The investigators who developed this methodology coined the
term “body iron” and it has gained widespread acceptance in
the literature (517). However, for many readers it is confusing

because “body iron” is not a measure of the quantity of iron
in the individual’s body. It provides a quantitative estimate of
the size of the body iron store when iron is present in the store
(values >0 mg/kg) or the size of the functional iron deficit that
would need to be corrected before iron could again be accu-
mulated in the store in an individual who is iron deficient (val-
ues ≤0 mg/kg). Some investigators have proposed that the term
“body iron index”might be more appropriate. The I-EP has de-
cided to use this term. Other terms, such as “total body iron”
and “total body iron stores,” have also been frequently used in
the literature and TBI is often used as an abbreviation.

Advantages of the body iron index estimate include the fol-
lowing. It is conceptually easy to interpret. The results provide
a distribution of quantitative estimates for individuals in a pop-
ulation sample and do not depend on dichotomous assignments
based on cutoff values. It is possible to estimate the quantita-
tive impact and bioavailability of a fortification or supplemen-
tation intervention based on the change in body iron stores
and the cumulative consumption of supplemental or fortifica-
tion iron. Finally, the method has been adopted for NHANES
surveys that will provide a useful database for the comparative
evaluation of future surveys. The major limitation is that the
body iron stores equation derived from the phlebotomy study
has only been validated using the in-house ELISA sTfR assay
developed by Flowers et al. (516), which is putatively equiva-
lent to the Ramco sTfR assay. To enable the use of body iron in-
dex in NHANES, the CDC established the relationship between
the Roche assay used in NHANES and the Flowers assay in a
method comparison study: Flowers sTfR = 1.5 × Roche sTfR
+ 0.35 mg/L (587). The CDC also showed that the Roche and
Ramco sTfR assays compare similarly to the Roche and Flow-
ers assays, which indirectly demonstrates the equivalence of the
Flowers and Ramco sTfR assays (587). Data from other sTfR
assays that produce different results from either the Ramco or
the Roche assay cannot be directly used on the body iron index
equation. It is generally assumed that a body iron index value of
0 should be the criterion for defining iron deficiency. However,
consideration should be given to revising this definition for the
following reasons:

— An optimal iron supply may depend on the presence of a
small amount of storage iron, i.e., the immediate return of
iron derived from hemoglobin processing in macrophages
may not be quantitatively complete.

— Cogswell et al. (247) used NHANES 2003–2006 data to
compare the estimated prevalence of iron deficiency in US
women aged 12–49 y based on calculated body iron index
with that derived for the ferritinmodel. The estimated preva-
lences of iron deficiency based on the ferritin model were
15.6% and 15.7% for women aged 12–19 and 20–49 y re-
spectively. However, only 9.3% and 9.2% of women respec-
tively had body iron index values <0. Had they employed
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a higher cutoff, say 2 mg/kg, the prevalence values for the
body iron index and ferritin models would have been com-
parable. Examination of their figure describing the relation-
ship between anemia prevalence and the distribution of body
iron index values provides some support for this suggestion.
Approximately 20% of women with a body iron index of
0 are anemic. However, anemia prevalence approaches zero
at body iron index values >∼2 mg/kg, suggesting the iron
deficiency is the most important cause of anemia in this pop-
ulation and that a small iron store is necessary for optimal
erythropoiesis.

“Simple” ratio of sTfR to ferritin. In a phlebotomy study,
Skikne et al. (517) also calculated the ratio of TfR to ferritin
(µg/µg). The ratio increased from <100 in those with am-
ple iron stores to >2000 in those with significant functional
iron deficiency. A rise >500 occurred when stores were fully
depleted (iron stores of 0 mg/kg). This approach has been
adopted by several investigators (245, 603, 604). The advan-
tage of this measure is that the calculation is simpler than for
body iron. As with the other two measures, the interpretation
of this ratio is again assay dependent because the cutoff value
for depleted stores has been established with the Ramco assay.

Laboratory infrastructure

While two of the iron status indicators,Hb andZPP, can bemea-
sured quickly and inexpensively in the field, the fieldwork can be
expedited and errors minimized if a venous whole blood sam-
ple is collected during the day, stored on cold packs in a shipper,
and all the laboratory work is conducted at the end of the day
in a centralized laboratory using a minimum number of instru-
ments and fewer analysts. While one team can centrifuge the
red-top tubes to obtain serum for biochemical measurements,
the other team can conduct Hb and ZPP measurements as re-
quired. Sixty samples collected during the day by three or four
teams can be processed in 2–3 h with two well-trained and or-
ganized assistants. It is therefore important to have at least one
back-up HemoCue instrument for every three field teams and
one back-up hematofluorometer, should the primary machine
fail or not work properly.

All other biomarkers require at the minimum a midlevel lab-
oratory infrastructure that guarantees uninterrupted electrical
power supply for a freezer, refrigerator, and the operation of
analytical instrumentation, including a water purification sys-
tem that provides deionized water. Protection of specimens from
direct sunlight and artificial light is highly recommended for
EP testing. Manual ELISA assays require several pieces of in-
strumentation, but they are comparatively less expensive than a
clinical analyzer. They comprise a microplate reader; microplate
washer (recommended); a vortexer; a balance accurate to at
least two, preferably three decimal points (0.001 g); and various
adjustable air displacement pipettes including an eight-channel
pipettor and a repeater pipettor. The throughput of the ELISA
assay can be greatly enhanced by the use of a liquid handler to
automate the various pipetting steps including the dilution of
serum samples. A barcode scanner can speed up sample log-in
and avoid transcription errors.

Automated analyzers are relatively expensive and most ana-
lyzers operate on a closed-channel basis, allowing only reagents
from one particular manufacturer to be used. Furthermore, the
laboratory is limited to conducting regular simple instrument
maintenance, while a certified service engineer takes care of re-
pairs and more complex maintenance, often as part of an an-
nual service agreement. Calibrators and reagents are typically

purchased from the manufacturer in a ready-to-use form. They
require minimal handling.

Quality assessment

Overview. Quality assessment (QA) helps to ensure accurate
and high-quality laboratory results through full staff participa-
tion by avoiding mistakes, ensuring consistent performance and
data integrity, and offering opportunities for training. The basic
components of a QA system include the following: 1) internal
quality control (QC) through the use of bench and blind QC
samples; 2) external QA via participation in proficiency test-
ing (PT) programs; 3) equipment monitoring and maintenance;
4) documentation of policies and procedures; 5) proper staff
training; and 6) laboratory audits. However, methods must be
validated (for accuracy, precision, sensitivity, and ruggedness)
and verified periodically (verification of assay calibration, veri-
fication of pipette and instrument accuracy) before the quality
and consistency can be monitored. For a more detailed descrip-
tion of each QA system component, an example of a minimum
QA system for a low-resource setting as well as instructions for
the preparation, characterization and use of QC materials, the
reader is referred to the Survey Toolkit for Nutritional Assess-
ment, Laboratory and Field section, Quality Control and Qual-
ity Assurance subsection, developed by the CDC and hosted by
the Micronutrient Initiative (570).

While commercial kits typically supply QC materials and
manufacturers will require information on how the assay is
performing with the commercial QC material if involved in
troubleshooting, the user should keep in mind that frequent
lot changes on the commercial QC material may prevent an
assessment of assay shifts over time. The only way to know
whether an assay fluctuates or shifts over time is to analyze
well-characterized materials in every assay or at least period-
ically. In-house preparation of large batches of QC pools has
two advantages. It is more cost efficient and it facilitates close
monitoring of assay performance. It is advisable to prepare two
(normal and abnormal) or three (low, medium, and high) levels
of QC pools, characterize them over the course of 20 individual
analytical runs to establish target values and assay-associated
variability, and then include them in every analytical run to-
gether with the unknown samples to judge whether the run is
within the pre-established control limits.

Participation in PT programs is recommended for good
laboratory practice to allow external verification of results.
Such participation is a requirement for the laboratory to be
in compliance with certain laboratory certifications. However,
PT programs have their limitations. Most PT programs use
method means to evaluate laboratories, making it difficult
to identify methods with unsatisfactory performance or even
monitor method shifts over time due to the lack of a stable
reference point. Because PT programs require large sample vol-
umes, must test a range of concentrations, and because it is dif-
ficult and expensive to distribute actual pooled human serum
on a regular basis, PT samples are often modified (e.g., adding
preservatives or other additives, supplementing materials with
nonnative forms of analyte, using animal plasma or outdated
human plasma from blood banks), potentially changing their
behavior in the assay compared to fresh-frozen samples. This
may lead to commutability problems with PT materials (605).
Noncommutability is when an assay responds differently to pro-
cessed samples compared to native, nonprocessed samples. As
a result, information gained from the PT program may not be
used to adjust assays.
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Biomarker-specific issues. The availability of an accepted
ICSH reference method for Hb measurements (569) and corre-
sponding ICSH reference material since the 1970s (606) made
it possible to calibrate most hemoglobinometers and automated
blood cell counters throughout the world. The reference mate-
rial is available through the UK National Institute of Biologi-
cal Standards and Control (NIBSC) as the WHO International
Standard 98/708 and through the European Community Bu-
reau of Reference as CRM 522 (Table 11). The ICSH also rec-
ommended a reference method and a simpler “surrogate ref-
erence”method for the measurement of Hct or packed cell vol-
ume, both of which are fully traceable to the ICSH reference Hb
method.

While no formal standardization programs exist for SF or
iron/TIBC, most methods for these biomarkers produce reason-
ably comparable results and the assays display generally good
accuracy, precision, and linearity. This is likely to be due to the
inclusion of these analytes in many PT programs, some of which
are available from State Department of Health PT programs
(e.g., New York State Department of Health Wadsworth Cen-
ter), and the availability of international reference materials for
many years (Table 11). Thorpe (607) has reviewed the devel-
opment, role, and availability of international biological refer-
ence materials for the diagnosis of iron deficiency and anemia.
The author discusses the difficulties in standardizing immuno-
based methods due to the heterogeneity of the antibodies used
in the assays, the technical difficulties in producing a standard
preparation that is identical to the circulating serum form, and
the absence of physicochemical reference methods to establish
“true” concentrations. These issues were addressed in a study
conducted by Blackmore et al. (586) to assess the traceability
of various ferritin assays to the three WHO international stan-
dards developed over the years. While four out of five methods
recovered all three international standards within acceptable
limits (100% ± 10%), one method significantly over-recovered
each of the internal standards (124–155%), despite giving SF
results that were comparable to the other methods for five na-
tive serum samples. This may be explained by the antibodies
employed in each of the assays having different epitope speci-
ficities or properties.

No reference material has been available for sTfR assays
until recently. Several years ago the WHO commissioned the
production of a reference standard and because of the diffi-
culties in purifying sufficient quantities of sTfR, efforts were
focused on employing recombinant sTfR, which has a slightly
shorter molecular structure than serum sTfR. This WHO Ref-
erence Reagent (07/202) was evaluated by five manufacturers
of commercial kits. Although the dose-response plots demon-
strated acceptable parallelism with commercial in-house stan-
dards and serum samples, there was poor agreement with the
measured values for sTfR in the kits, even between kits ex-
pressing sTfR concentrations in the same units. In 2009, the
NIBSC made available this WHO Reference Reagent with a
value assigned based on a theoretical extinction coefficient and
the molecular weight (21.74 mg/L or 303 nmol/L) (589). If
the commutability of this material can be confirmed in an on-
going commutability study, it could be used by manufactur-
ers or researchers as a calibrator for immunoassays. While a
full standardization of manufacturer assays may take several
years, intermittent steps of assay harmonization through a set of
well-characterized reference samples may allow users to “cali-
brate” their assays to a common basis and therefore produce
comparable results across laboratories, instruments, and as-
says.

Preanalytical factors

Overview. Because each method, analyte, and laboratory may
have specific sample handling requirements, it is best to discuss
details with the laboratory that will perform the analyses at the
time of study planning. In general, the iron status biomarkers are
quite stable. If the blood sample cannot be centrifuged within
1–2 h of collection, it should be kept cold and protected from
light, but freezing should be avoided to prevent hemolysis (vacu-
tainers should not be in direct contact with frozen cold packs).
Frozen serum samples should be shipped on dry ice to avoid
thawing. For long-term storage, serum samples should be kept
frozen at ≤−40°C.

Biomarker-specific issues. Preanalytical factors influencing
whole-blood-based indicators of iron status are summarized in
Table 14 (290, 608–611). Because the within-person biologi-
cal variation of Hb and Hct is very low (<3%), one sample
is considered sufficient to estimate the biomarker concentration
with 95% confidence and 20% accuracy (608). As Hb measure-
ments only require small sample volumes, the use of capillary
blood samples is common. However, this can lead to inaccurate
or variable results if the capillary sample is not collected prop-
erly (e.g. “milking” the finger; use of the first drop of blood).
Using 33 paired venous and capillary blood samples collected
into a microtainer, Whitehead et al. (573) found no significant
differences in mean Hb concentrations. Pooled capillary blood
produced comparable results to the second and third, but not
the fourth drop of blood (3.3% lower) (573). Others have also
reported that pooled capillary blood samples can be reliably
used, whereas single drop measurements, as recommended by
the manufacturer, may result in slightly different results (609).
Delays in Hb measurement (Hb-201 HemoCue® model) for up
to 3 d did not affect values (≤2%) if the venous or capillary
blood was kept cold (610).However, blood could only be stored
for 1 d at 20–23°C prior to Hb measurement with the Hb-301
model (573).

The three main serum-based iron status indicators have dif-
ferent preanalytical requirements, particularly when it comes
to variables related to the subject (Table 15) (240, 608, 611–
614). Data from several thousand US adults participating in
NHANES 2003–06 showed no difference in SF, sTfR, or body
iron index whether samples were collected from fasted (≥8 h
after the last meal) or nonfasted (<3 h after the last meal) in-
dividuals (615). On the other hand, fasting is usually recom-
mended for the measurement of serum iron, particularly in the
clinical setting. Moreover day-to-day (∼30%) and diurnal vari-
ations (10–20%) within a person are quite large (575, 611).
Fasting may be less important in population studies and in
fact NHANES has not used fasted serum samples to measure
serum iron. Dale et al. (616) have examined diurnal variation
of serum iron, iron-binding capacity, and ferritin concentrations
and found that although significant differences among mean
values for the collection times were noted, no consistent diurnal
variation was seen and the between-day variation was similar to
the within-day variation. The authors concluded that the prac-
tice of restricting iron specimen collection to a specific time of
day does not improve the reliability of the test result.

Serum sTfR has a relatively small within-person variation
(CVw ∼12%). One sample is generally considered sufficient to
estimate the biomarker concentration with 95% confidence and
20% accuracy (240). The CVw for SF is largely dependent on
the population group (∼10–15% for males or elderly women,
∼25% for young women) (240, 608). A higher number of sam-
ples has therefore been recommended for SF [3 for males, 4
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for young women (240)] and serum iron [7 for elderly women
(608)] to account for the larger CVw for these two analytes.
However, pragmatic considerations frequently limit the number
of samples that can be collected in population-based surveys and
intervention studies.

It has been recommended that the method imprecision
should be less than one-half of the CVw. Although this can be
achieved with currently available methods for SF and iron, it is
only achievable for sTfR with fully automated assays on clini-
cal analyzers. Manually conducted ELISA assays typically have
a method CV of ∼10% (492, 581, 587). Serum-based iron sta-
tus indicators generally have good storage stability and can also
withstand some delays in whole-blood processing as long as the
sample is refrigerated (612, 613).

One preanalytical variable that has large influence on iron
status indicators in general and SF (being a positive APP) in
particular is the confounding effect of infection and inflamma-
tion. Using NHANES 2003–06 data from women aged 20–49 y,
Haynes et al. (615) found that SF concentrations were 24%
higher in women with elevated CRP concentrations (≥5 mg/L).
On the other hand sTfR concentrations were only slightly higher
(4%). Body iron index also showed a positive association with
inflammation, but the difference in body iron index between
women with and without inflammation was smaller than for
ferritin (12%).

Future directions and new biomarkers

Throughout this report the I-EP has identified critical research
gaps and directions for research. These are highlighted in Text
Box 38. The I-EP also wants to acknowledge the potential of
several new biomarkers.

Text Box 38
Future directions and research priorities
• Improved understanding of the relationship between

iron status and physiology as impacted by both life stage
and factors such as inflammation and infection.
• Improved understanding of the relationship between

maternal iron status during pregnancy and birth outcome
including cognitive and motor development in the infant.
To address this need the I-EP highlighted the following
areas:

-Assessment tools to distinguish between physiological
response and nutritional need.
-Need to match currently available biomarkers of iron
status with the time frames for the development of iron-
dependent neural systems for which functional tests are
available, e.g. myelination, monoamine-driven behav-
iors.
-Need for bioindicators reflecting relevant functional
outcomes (e.g., neurological, cognitive, and behavioral
development) that can be used along with appropriate
iron biomarkers.

• Advance our understanding of the effect of genotype
on risk of iron deficiency.
• Enhanced understanding of the nature and health im-

plications of nutrient-nutrient interactions (iron-zinc, vita-
min A etc.).

• Better understanding of the specific role and how best
to assess iron status in various infectious diseases (malaria,
HIV, TB, diarrheal disease) and noncommunicable diseases
(e.g., cancer).
• Approaches for the assessment of iron overload:

-Giving consideration to the context of inflamma-
tion and life stage as the interpretation of currently
designated upper limits of the most commonly used
biomarker (SF) is impacted by both, particularly in
older men and postmenopausal women.
-Better tools to assess iron overload for population
screening.
-Because iron overload resulting solely from excessive
iron consumption is rare in the absence of an identifi-
able hepcidin or ferroportin abnormality, an alternative
approach to address risk of iron overload was proposed
by the I-EP and needs to be evaluated. It is based on de-
termining the prevalence of one or more iron-loading
genotypes that affect the hepcidin/ferroportin axis in
the population under consideration either directly or
because of their effect on erythropoietic rate.

Research carried out over the past half century has provided
a clear understanding of the relationships between uncompli-
cated nutritional iron deficiency and anemia. Iron status can
be determined with a high degree of accuracy and biomarkers
that are suitable for field use are affordable and freely avail-
able. However, this approach is less satisfactory in populations
where anemia is caused by an infection or an infection and iron
deficiency combined. Furthermore, the concepts developed for
predicting the risk for iron-deficiency anemia have not been
shown to be predictive of some other putative critical func-
tional consequences of iron deficiency, particularly pregnancy
outcome and cognitive, motor and emotional development in
infancy. There is clearly a need to search for alternative ap-
proaches as well as other biomarkers. The measurement of
plasma (serum) hepcidin is the most promising option at the
present time (617).

Novel red blood cell indexes

Modern hematology analyzers provide a variety of red blood
cell parameters that are of potential use, including the follow-
ing: 1) the proportion of hypochromic red blood cells; 2) the
ratio of microcytic to hypochromic red blood cells; 3) the imma-
ture reticulocyte fraction; 4) the reticulocyte mean hemoglobin
content (as CHr, Ret-He, RHE, or RHCc by different manufac-
turers); and 5) the mean reticulocyte volume (as MCVr,MCVR,
MVR, or MRV by different manufacturers).

None of these potential biomarkers have been studied sys-
tematically for the evaluation of nutritional anemia. Moreover,
their use is complicated by the lack of standardization, in part
because of the different techniques used by the various manu-
facturers (509). They have, however, gained acceptance for the
management of anemia and iron status in patients with chronic
kidney disease (512). In addition, the measurement of reticulo-
cyte hemoglobin concentration has been included in the Ameri-
can Academy of Pediatrics guidelines for the evaluation of ane-
mia in childhood (267).
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Hepcidin

As described elsewhere, hepcidin plays a central role in control-
ling iron absorption and systemic iron supply to all cells. The
functional form of the peptide can be measured in both plasma
and urine.Hepcidin synthesis rises in response to increasing liver
iron stores and serum iron concentration. It is therefore an im-
portant indicator of iron status.

Similar to SF, levels are also increased by inflammation.
A second factor may confound the relationship with iron
status. Hepcidin is suppressed in the presence of increased
erythropoietic activity, putatively by a recently identified protein
that is produced by erythroblasts, erythroferrone (124). Plasma
hepcidin levels are also influenced by many other factors (618).

The response of hepcidin to increased erythropoiesis is an
important concern with potentially significant public health
implications. Jones et al. (435) reported suppressed hepcidin
levels and increased iron accumulation in 62 of 69 Sri Lankan
patients with HbE β-thalassemia with a moderate or severe
phenotype. Sri Lankan school children with β-thalassemia trait
also had mildly decreased hepcidin levels. As a consequence,
the potential exists for public health interventions (e.g., iron
fortification of food, iron supplementation) intended to im-
prove iron status particularly in such groups as women, infants,
and school-aged children, to increase risk of iron overload in
populations with high prevalence of HbE β-thalassemia (the
most common severe thalassemia syndrome in Asia). More
information is needed to determine whether programs that rely
on hepcidin levels to monitor iron status will both provide a
more reliable assessment of iron status than currently available
biomarkers (SF) and avoid the risk of contributing to iron
overload in populations where thalassemia syndromes and
thalassemia carrier status are prevalent.

Hepcidin has been measured in various settings. Plasma con-
centrations during the first trimester of pregnancy are within the
references range for nonpregnant women (226, 255, 619). Dur-
ing the second trimester serum hepcidin concentrations fall to
very low levels and remain low in the third trimester (172, 226,
255). The mechanisms underlying hepcidin suppression during
pregnancy are unknown, but they do not seem to be related to
maternal iron status (256, 620, 621).

Cord blood hepcidin levels may be predictive of anemia and
malaria in Tanzanian children (622) and Pasricha et al. (623)
have suggested that hepcidin levels may prove to be a valuable
tool for identifying IDA in African children. Finally they may
be useful in detecting the rare genetic disorder that leads to iron
deficiency which is unresponsive to oral iron (IRIDA) (624).

The application of hepcidin assays to the evaluation of nu-
tritional iron status is further complicated by differences in
methodology and the lack of assay commutability and stan-
dardization, making comparisons between studies difficult. Ref-
erence intervals are method dependent. However, considerable
progress has recently been made toward the development of a
reference material that will improve the equivalences between
different hepcidin assay procedures (625).

Based on the current status of our understanding of hepcidin
biology and assessment, the I-EP concluded that it is unclear
whether hepcidin assays provide any advantage over SF and the
other currently available methods for assessing nutritional iron
status.
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