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Abstract

purpose: Real-time fusion of magnetic resonance (MR) and ultrasound (US) images could 

facilitate safe and accurate needle placement in spinal interventions. We develop an entirely 

image-based registration method (independent of or complementary to surgical trackers) that 

includes an efficient US probe pose initialization algorithm. The registration enables the 

simultaneous display of 2D ultrasound image slices relative to 3D pre-procedure MR images for 

navigation.

Methods: A dictionary-based 3D-2D pose initialization algorithm was developed in which likely 

probe positions are predefined in a dictionary with feature encoding by Haar wavelet filters. 

Feature vectors representing the 2D US image are computed by scaling and translating multiple 

Haar basis filters to capture scale, location, and relative intensity patterns of distinct anatomical 

features. Following pose initialization, fast 3D-2D registration was performed by optimizing 

normalized cross-correlation between intra- and pre-procedure images using Powell’s method. 

Experiments were performed using a lumbar puncture phantom and a fresh cadaver specimen 

presenting realistic image quality in spinal US imaging. Accuracy was quantified by comparing 

registration transforms to ground truth motion imparted by a computer-controlled motion system 

and calculating target registration error (TRE) in anatomical landmarks.

Results: Initialization using a 315-length feature vector yielded median translation accuracy of 

2.7 mm (3.4 mm interquartile range, IQR) in the phantom and 2.1 mm (2.5 mm IQR) in the 

cadaver. By comparison, storing the entire image set in the dictionary and optimizing correlation 

yielded a comparable median accuracy of 2.1 mm (2.8 mm IQR) in the phantom and 2.9 mm (3.5 

mm IQR) in the cadaver. However, the dictionary-based method reduced memory requirements by 

47× compared to storing the entire image set. The overall 3D error after registration measured 

using 3D landmarks was 3.2 mm (1.8 mm IQR) mm in the phantom and 3.0 mm (2.3 mm IQR) 

mm in the cadaver. The system was implemented in a 3D Slicer interface to facilitate translation to 

clinical studies.

jeff.siewerdsen@jhu.edu. 

HHS Public Access
Author manuscript
Phys Med Biol. Author manuscript; available in PMC 2019 October 29.

Published in final edited form as:
Phys Med Biol. ; 63(21): 215016. doi:10.1088/1361-6560/aae761.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Conclusion: Haar feature based initialization provided accuracy and robustness at a level that 

was sufficient for real-time registration using an entirely image-based method for ultrasound 

navigation. Such an approach could improve the accuracy and safety of spinal interventions in 

broad utilization, since it is entirely software-based and can operate free from the cost and 

workflow requirements of surgical trackers.

A Introduction

Needle placement in spinal interventions is commonly performed in the management and 

treatment of chronic back pain,(Manchikanti et al n.d.) with increased efforts in recent years 

to improve accuracy and better identify the basic mechanisms underlying effective pain 

management(Tompkins et al 2017). During such procedures, the needle position relative to 

nerve bundles and other surrounding anatomy is visualized via intra-procedure imaging. 

Fluoroscopy is the standard image guidance method in a subset of these procedures, 

providing intermittent visualization of the needle location. However, fluoroscopic guidance 

can be costly in an outpatient setting, and the associated radiation risk to the patient and 

personnel has been a growing concern(Straus 2002) (average fluoroscopy time in 

discography > 146 s)(Zhou et al 2005). Moreover, challenges in visualizing nerve bundles 

and soft tissue regions in fluoroscopic imaging limits the accuracy of needle targeting. 

Ultrasound (US) image guidance could be a valuable alternative for these procedures, 

carrying advantages in cost, radiation exposure, and real-time guidance. However, its 

widespread utilization has been limited due to challenges in clearly visualizing bone 

structures of the spine. Furthermore, pre-procedure magnetic resonance imaging (MRI) has 

become increasingly common as a diagnostic modality with superior visibility of nerves and 

soft tissues(Dagenais et al 2010). Real-time registration of intra-procedure US imaging with 

pre-procedure MRI could provide a low-cost, safe, and accurate method for needle targeting 

by displaying co-registered diagnostic-quality MRI slices along with US. Thus, the overall 

objective of this work is to develop a real-time 3D-2D image registration technique to align 

live intra-procedure 2D US images with pre-procedure MRI and facilitate accurate needle 

targeting in spine pain interventions.

Existing ultrasound guidance solutions(Bax et al 2008, Fenster et al 2014, Kadoury et al 
2010, Khallaghi et al 2015, Hummel et al 2008) developed for a variety of clinical 

applications commonly use hardware tracking (e.g., optical, electromagnetic, or mechanical 

tracking) to compute the correspondence between 2D intra-procedure imaging and 3D pre-

procedure imaging. In addition to the cost and complexity of such hardware and geometric 

calibration within routine clinical workflow, tracking typically ignores internal organ motion 

or deformation of the patient during the procedure. Intra-procedure organ motion is a 

common scenario in many ultrasound-guided needle insertion procedures when the patient is 

awake under local anesthesia(De Silva et al 2013a). To compensate for tracking errors due to 

intra-procedure organ motion, image-based registration methods have been previously 

developed to align live intra-procedure images to the pre-procedure images using the 

anatomical information contained in the images(Gillies et al 2017).

Such registration needs to be performed quickly and accurately, and previous solutions have 

initialized the registration with an initialization pose obtained from a hardware tracking 
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system(Khallaghi et al 2015, Xu et al 2008). The local optimization methods for fast 3D-2D 

registration require initialization to be sufficiently proximal to the global optimum(Powell 

1965, Shewchuk 1994). Robust optimization techniques that increase capture range and 

overcome local optima by way of redundancy (e.g., multi-start CMA-ES(Otake et al 2013), 

evolutionary optimizers(Hansen and Ostermeier 1997)) may not be suitable for applications 

requiring fast, real-time performance, thus necessitating hardware-based initialization to 

perform robust image registration. An accurate, fast software-based pose initialization 

obviates the need for hardware tracking equipment and could further reduce the cost and 

improve the usability of ultrasound guidance solutions. To achieve this objective, we propose 

an ultrasound guidance system with image-based registration that includes a software-based 

algorithm for automatic initialization.

In the context of spine needle interventions, there have been multiple attempts to develop 

ultrasound-guided solutions. Some systems have relied upon external hardware tracking to 

estimate ultrasound probe pose as mentioned above. For example, Chen et al.(Chen et al 
2010) proposed an ultrasound guided spine needle injection system with real-time 

electromagnetic (EM) tracking to estimate probe pose and identify corresponding pre-

procedure CT image slices. In addition to 3D-2D mapping via EM tracking, image-based 

3D-3D registration between CT and US has been performed using a biomechanical model. 

Another clinical pilot study(Sartoris et al 2017) evaluated the feasibility of EM tracking in 

MR-US fusion in a costly setup in which both MR and US modalities were available within 

the interventional suite.

Several image-based registration solutions have also been reported(Yan et al 2012, 

Hacihaliloglu et al 2014, Winter et al 2008, Barratt et al 2006) to register pre-procedure CT 

images to intra-procedure 3D ultrasound of the spinal anatomy. While such work 

demonstrated the feasibility of image-based registration methods to align bone structures 

visible in 3D ultrasound images with a pre-procedure imaging modality, such registration 

only enables the information from the pre-procedure image to be mapped to a static, 

intermittent intra-procedure 3D US image. Slice-to-volume registration could provide real-

time guidance by mapping the live 2D US image sequence to the 3D pre-procedure image 

space, though achieving real-time performance without latency introduced by the 

registration computation remains a challenging problem.

Toward this objective, Brudfors et al.(Brudfors et al 2015, A. et al 2015) proposed a system 

for intra-procedure guidance without external hardware tracking systems, whereby 

volumetric US images were acquired in near real-time while performing a statistical model-

to-volume registration to determine the probe pose. This work demonstrated the feasibility 

of a software-based tracking solution and warranted further investigation to validate the 

utility and robustness for clinical translation.

Model-to-volume registration methods have also been extended to MR-US 

registration(Behnami et al 2017). Pesteie et al.(Pesteie et al 2015) described a real-time 

ultrasound image classification method to estimate the desired probe pose during spine 

needle interventions using local directional Hadamard features. Such features can be 

computed efficiently (within as little as 20 ms) and demonstrated the capability of feature 
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encoding methods in compactly representing information embedded in ultrasound images. In 

this work we propose a solution that efficiently encodes features in a similar manner (Haar 

features), and we leverage the resulting fast, robust initialization as a basis for fast 3D-2D 

registration without hardware tracking. The utility of an automatic, robust initialization 

method using anatomical feature extraction via segmentation and edge matching has been 

previously demonstrated by aligning pre-procedure CT and intraoperative 3D US in liver 

interventions.(Nam et al 2011)

In our approach, the approximate pose of the ultrasound probe is computed by storing 

commonly encountered probe poses in the form of a feature dictionary. A dictionary of 

commonly encountered poses or image regions has recently been used in image 

registration(Afzali et al 2016, Avidar et al 2017), and restricting the probable poses to a 

finite set is practical and relevant in the context of ultrasound guidance since the physician 

often relies upon standard anatomical views (e.g., axial and sagittal views of the spine), and 

in some cases access to the anatomical site permit only certain types of probe motion (e.g., 

longitudinal translation along the spine). Thus, slices pertaining to typical probe motion 

patterns are extracted from a pre-procedure 3D ultrasound image to construct a dictionary. 

Live 2D ultrasound images are matched against the dictionary to find the closest matching 

probe pose.

For compact feature extraction and representation of anatomy in 2D US images, we propose 

to use Haar wavelet-based coefficients. Haar features are efficient to compute and possess 

superior image encoding properties compared to other neighborhood feature descriptors.

(Heinrich et al 2012, Dalal and Triggs 2005) Prior applications in fingerprint compression 

and JPEG image compression(Montoya Zegarra et al 2009, Tico et al n.d., Cheung et al 
2006) have demonstrated their capacity in representing image information with a very few 

number of wavelet coefficients. Haar features have also been used in real-time object 

detection tasks for their fast performance and ability to distinguish between different object 

classes when multiple Haar basis functions are used in cascade(Viola and Jones 2001). Such 

characteristics are desirable to differentiate between dictionary entries and robustly finding 

the match for a given probe pose. Utilizing these characteristics, we investigated methods to 

efficiently represent anatomical details in spine ultrasound images using Haar wavelet 

coefficients and propose a solution to find the initialization pose of the ultrasound probe in 

real-time. This image-based initialization is subsequently used in a slice-to-volume 

registration framework. In addition to slice-to-volume registration, a multi-modality 

registration between 3D US and pre-procedure MRI enables the geometric mapping between 

live 2D US and its corresponding MRI slice.

In this work, we present a 3D-2D registration solution that is fully image- and software-

based and obviates the need for hardware tracking systems from the workflow. The solution 

consists of two major components. First, an efficient feature representation and matching to 

determine initialization pose in 3D-2D registration. Second, a fast rigid, image-based 3D-2D 

registration algorithm following the initialization to estimate the rigid pose of the 2D 

ultrasound image in 3D space. The work was validated in experiments performed using a 

lumbar puncture spine phantom and a fresh cadaver specimen that exhibited realistic 

ultrasound and MR image quality/artifacts.
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B Methods

B.1 Image Based MR-US Registration

The overall objective of the proposed MR-US registration system is to achieve real-time 

alignment of live 2D US slices to the 3D pre-procedure MR image. Live 2D US I2D
US

images are registered to pre-procedure MRI I3D
MR  via an intermediary 3D US image I3D

US

acquired at the beginning of the case as shown in Figure 1. Registration between I3D
MR and 

I3D
US is performed as a one-time step using a multi-modality 3D-3D registration technique 

that is outside the registration methods presented in this work. The mismatch of image-

intensities in multi-modality 3D-3D registration has been previously addressed using robust 

image similarity metrics(Sun et al 2015, Fuerst et al 2014) and imaging physics-based US 

wave propagation models that simulated US image intensities from the other modality(Wein 

et al 2008). The methods and experiments described below focus on the mono-modality 

3D-2D registration step to achieve fast and accurate registration between I3D
US and I2D

US. Such 

registration permits real time 3D pose estimation of the US probe relative to the anatomy 

during the intervention.

B.2 Haar Wavelet-Based Initialization

Initialization is an important step in the 3D-2D registration process. Small capture ranges, 

non-convex objective functions, and local optimization methods demand that initialization is 

sufficiently proximal to the global optimum for robust registration performance. A 

dictionary-based method was implemented in the solution described below to obtain the 

initialization pose of the US probe via an efficient feature representation and matching 

mechanism. 2D slices I /2D
US  from likely US probe poses during the procedure (e.g., axial 

and/or sagittal US slices) are extracted from I3D
US to construct the dictionary. The dictionary 

can then be searched to find the closest matching image for a given live 2D image I2D
US . 

Storing entire images in the dictionary and then assessing the similarity between dictionary 

images and the live 2D image is an exhaustive implementation that is computationally 

intensive; furthermore, the number of poses that can be stored in the dictionary is limited by 

memory.

To efficiently encode and compactly represent image features, we compute Haar wavelet 

coefficients and construct a feature vector depicting each image. The Haar basis filter φj,k(t) 
is defined with scaling (j) and translation (k) parameters as:

φ j, k(t) = φ 2 jt − k (1)

where t = (tx, ty ) and k = (kx, ky) are vectors with spatial x and y components. A basis filter 

captures relative intensity patterns in the image that likely exist in ultrasound images due to 

anatomy-US interactions including reflections and shadowing. A filter with small scaling j is 

sensitive to large anatomical variation patterns in images, whereas the filters become 
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responsive to fine anatomical structures with increasing j as shown in Figure 2. The 

translation parameter k encodes the spatial location of the filter. The number of coefficients 

to represent an image increases exponentially with j. However, our expectation is that coarse 

scales capture specular reflection patterns to achieve reliable distinguishability with a small 

number of coefficients.

At a given scale j, the filter is translated to multiple locations to generate a series of filter 

responses. The number of translation locations within a scale is 22j and they are spaced 

Δkx =
dx
2 j , Δky =

dy

2 j  distance apart, where (dx, dy) are image dimensions in the x and y 

directions. The number of elements as scale j is determined by 22j, and for a given 

representation total number of elements is determined by Nj = ∑j 22j. The compactness and 

the efficiency of the feature encoding could be dependent on the type of wavelet basis 

function. In wavelet analysis, multiple basis functions have been investigated(Li et al 2011, 

Singh and Tiwari 2006). Among previously proposed wavelet basis functions, Haar basis 

functions have demonstrated computational advantages to obtain fast performance. Within 

the domain of Haar basis functions, we investigated whether a combination of multiple Haar 

basis functions would yield an efficient feature representation. The various types of Haar 

basis functions being investigated and denoted as φ j, k
b (t) are shown in figure 2d. Variations 

within a certain type of basis function are also explored by changing the filter parameters as 

shown in figure 2e. Filter responses, C (j, k), are computed via the dot product of the 2D 

image, f (t) and the basis filter function, φj,k(t), as shown in Equation 2 using the integral 

image(Viola and Jones 2001) for fast and efficient computation.

C( j, k) = < f (t), φ j, k(t) > (2)

Thus, filter responses at different scales, translation, and basis function types are combined 

to form a feature vector representing the image. Multiple Haar filter responses from different 

basis functions are combined at each level. The total number of elements per vector 

representation is calculated as NT = ∑j 22j × Nb. The dictionary is constructed by computing 

a feature vector for 2D images sampled at different transformations – for example, 

longitudinal translation of the probe along the spine. Transformation feature vector tuples 

(T/2Di, Cd) are stored to form a dictionary. For a live 2D image, the approximate 

initialization pose, T /2D
init , is found by comparing the feature vector of the live 2D image to 

the dictionary. Normalized cross correlation (NCC) between the live 2D vector and a 

dictionary vector was calculated according to Equation 3 as:

T /2D
init = argmax

T /2Dd

1
N j

∑
j = 1

N j
NCC Cd( j), Cl( j) (3)
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where Cd(j) is the Haar filter response from the dictionary, and Cl(j) is the Haar filter 

response for the live 2D image. Nj is the number of filter coefficients at the scale j. 
Averaging the estimates of NCC at each scale normalized the effect due to large number of 

elements in fine scales.

B.3 3D-2D Registration

Registration between live 2D and pre-procedure 3D images is performed using the 

initialization transformation, T /2D
init , described in section B.2. Note that the accuracy of the 

initialization step is limited to the dictionary transformation spacing, whereas this 

subsequent registration step estimates the residual error by aligning all 6 degrees-of-freedom 

(DOF) simultaneously in the 3D-2D registration framework. During registration iterations, 

3D US image was transformed using T /2D
iter  in the 3D (6 DOF) space and the slice, I /2D

US , was 

obtained as the overlapping plane between transformed 3D US image and live 2D US image. 

The NCC between the live 2D US image I2D
US  and the overlapping slice I /2D

US  from the 3D 

US image was chosen as the objective function according to Equation 4.

T /2D = argmax
T /2D

iter
NCC I2D

US, I /2D
US (4)

Calculation of NCC is parallelizable, allowing fast performance, and it is robust to intensity 

scaling differences – e.g., due to variable acoustic coupling at the probe-skin interface. 

While we did not perform any image pre-processing steps to save computation time, edge-

preserving noise reduction has been shown to mitigate the effects of speckle in similar work. 

(De Silva et al 2013b). The optimization was performed using Powell’s method(Powell 

1965) that exhibits second-order, quadratic convergence, a property that is desirable for fast 

performance. Second order, quadratically converging algorithms such as Newton’s method, 

conjugate gradient method, BFGS method leverage speed improvements compared to linear 

optimization techniques such as gradient descent, simplex method. When compared with 

other second order algorithms, Powell’s method has the additional benefit of being 

derivative-free which further helps in computational speed. Translations and rotations with 

different physical units were normalized in a 6D cartesian coordinate system by applying a 

rescale factor (=0.01) such that a 0.01° rotation results in a distance equivalent to 1 mm 

translation in the optimization search space. Termination criteria for the optimization 

algorithm were step size tolerance (=0.0001), metric value tolerance (=0.00001), and 

maximum number of iterations (=500).

B.4 Experiments

Images were acquired using an E-Cube 12R ultrasound imaging system (Alpinion Medical 

Systems, Seoul, Korea) with a mechanical 3D US probe (4DSCA01). Experiments were 

performed using a lumbar puncture phantom (CIRS, Norfolk, VA) and a fresh cadaver 

specimen (Figure 4) that exhibited realistic spine image quality, including shadowing of 

bone structures in the spine. A computer-controlled motion stage was used to impart known 
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translations to the probe. In a single 3D image acquisition, mechanical sweep of the 3D US 

probe acquired 60 2D US images with an angular span of 72° with 1.2° angular spacing. The 

set of 2D images were linearly interpolated in a 3D grid of 224×149×149 with 0.6 mm 

isotropic spacing to construct a single 3D image. The baseline 3D US image needs to cover 

a sufficient region for live 2D images to be fully contained in the 3D image and facilitate 

subsequent 3D-2D image-based registration. Therefore, multiple single 3D images with 

overlapping regions were acquired while translating the US probe along the spine to 

construct a stitched 3D US image covering a substantial anatomical region of at least 6 cm in 

length. Thus, single 3D US images were acquired at 1 cm intervals in a span of 6 cm in the 

phantom and 8 cm in the cadaver, respectively, capturing approximately three vertebrae. 

Adjacent images were registered pairwise and mapped to a common 3D coordinate system. 

The 3D-3D registration was also solved using NCC similarity optimized using Powell’s 

method. The resulting images were transformed and interpolated to construct the 3D image 

I3D
US capturing a wide region in anatomy. The accuracy of 3D volume construction via image 

stitching was measured by comparing registered images to the imparted translation by the 

motion stage.

2D images were acquired at 1 mm intervals with 0.15 mm isotropic spacing and resampled 

to image with 0.6 mm spacing and 224×149 dimensions. Each resampled 2D US image was 

registered to the baseline 3D US image using Haar-based initialization methods described in 

this work. The dictionary was constructed to comprise ~13,000 ultrasound probe poses in 

three translation directions covering a 140-mm span (0.6 mm spacing) in the longitudinal 

translation direction and 10 mm span (1.2 mm spacing) in the lateral and probe-axial 

translation directions (in-plane translations along the axial 2D US plane).

During image acquisition, the US probe axis was only approximately orthogonal to the 

translation direction of the motion stage and the non-planar, curved surface of the phantom 

and the cadaver cause additional irregularities to the simple 1D translational motion. Thus, 

2D US images were not perfectly correlated with the axial slices extracted from the baseline 

3D US image. In-plane translations (within the 10 mm span) within the axial 2D US plane in 

the dictionary facilitated the retrieval of an approximate pose in the presence of such 

irregularities. To analyze the efficiency of Haar-based initialization, the accuracy was 

measured after constructing dictionaries with different (Nj, Nb) configurations. The number 

of scales (Nj) was varied from (1–4), and the number of Haar basis filters (Nb) was varied 

from 1 to 5, 10, 30, and 60. The basis filters were selected from a pool of 60 different basis 

filters constructed from six different types shown in Figure 2d and 10 variations for each 

type obtained according to Figure 2e.

Accuracy was evaluated for the initialization step by comparing the Haar-based initialization 

to the translation imparted by the motion stage. As a control experiment, the entire 2D image 

set was stored in the dictionary, and the initialization pose was selected by optimal NCC 

between the live 2D image and the dictionary image. After initialization, 3D-2D registration 

was performed in the 6 DOF continuous search space without being limited to the discrete 

poses stored in the dictionary. To assess the necessity of a good initialization method, 3D-2D 
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registration was also performed after the straightforward method of initializing at the center 

of the 3D image.

Registration validation by comparing to the motion stage translations as the ground truth 

quantified the translational accuracy against the probe displacements. However, it did not 

account for any possible motion in other rotational degrees of freedom. To quantify the 

overall 3D error, accuracy was also measured using manually-identified corresponding 

landmark locations in the 2D and 3D US images. Target registration error (TRE) was 

calculated as the point-based 3D error of the corresponding anatomical landmarks after 

registration using 19 landmark pairs in the phantom and 24 landmark pairs in the cadaver. 

The capture range of the 3D-2D registration process was measured by varying the 

initialization ± 15 mm from the ground truth in 1 mm increments and repeatedly performing 

registrations. Analysis of capture range of the registration framework provides a basis to 

evaluate the level of initialization accuracy required to achieve robust 3D-2D registration.

C Results

C.1 Haar Filter Responses

Figure 5a shows the accuracy of the initialization method as a function of the number of 

scales, Nj and the number of basis functions, Nb, used when constructing the Haar feature 

vectors in the dictionary. The results show a variety of combinations (Nj, Nb) that yield 

acceptable initialization accuracy for robust registration. Initialization accuracy improved 

steeply as a function of Nj and Nb as shown in Figure 5b and 5c. When using a single basis 

function (Nb =1), a large number of scales (Nj ≥ 3) was needed to achieve reliable 

initialization accuracy. However, when multiple basis functions were combined, reliable 

initialization accuracy was achieved with a smaller number of scales (for example, when Nb 

= 30, Nj =2 yielded satisfactory performance). This is a desirable property, since the length 

of the feature vector (NT) increases linearly with Nb; however, it increases exponentially 

with Nj. Thus, in terms of efficiency in feature representation, combination of multiple basis 

functions without increasing the scale is helpful to build a large dictionary.

Figure 6 shows the initialization accuracy as a function of feature vector length NT, 

demonstrating a rapid decrease in error with increasing NT. Accuracy < 5 mm was found 

with an 85-length feature vector, and accuracy < 3 mm was achieved with a 315-length 

feature vector. The input 2D image size (after down-sampling) in these experiments was 

14,000. Thus, the dictionary storage requirements decrease by approximately 217× and 47×, 

respectively, to achieve the same levels of initialization accuracy. We also investigated the 

effect of the type of Haar basis function used in constructing the feature vector and the 

initialization accuracy. Different basis functions performed comparably with no statistically 

significant difference between the distributions in initialization accuracy. However, certain 

basis filter types were more robust to outliers, and finding the optimal basis filter 

combination is an open question that could be empirically investigated using machine 

learning methods or other approaches in future work.

Figure 7 shows the initialization error distributions with Haar-filter based initialization in 

comparison to two other methods for initialization. Initctr initialized at the center of the 
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image, whereas InitNCC stored and compared entire 2D images in the dictionary. Values of 

Nb = 15 and Nj = 2 were used for Haar-based initialization, constituting a 315-length feature 

vector. In the lumbar puncture phantom experiments, the initialization accuracy of the Haar 

dictionary-based method was 2.7 (median) and 3.4 (interquartile range - IQR) mm, and that 

of the NCC dictionary-based method using the entire image was 2.1 mm (2.8 mm IQR). In 

the cadaver experiments, the Haar-based method achieved accuracy of 2.1 mm (2.5 mm 

IQR), whereas the NCC method achieved 2.9 mm (3.5 mm IQR). Comparable performance 

was achieved with both dictionary-based methods, substantially improving the initialization 

when compared to Initctr. In the phantom experiments Haar-based initialization exhibited 

some outliers due to a similar view in an adjacent vertebra, attributable to the homogeneity 

of the phantom. Such was not observed in the more realistic context of the cadaver. Overall, 

Haar-based initialization demonstrated comparable performance to the exhaustive approach 

of storing the entire 2D images.

C.2 3D-2D Registration

Figure 8 shows the overall 3D-2D registration accuracy with and without Haar-based 

initialization. In the phantom experiments, the median accuracy was improved from 23.7 

mm (25.1 mm IQR) with center initialization to 2.6 mm (3.7 mm IQR) with Haar-based 

initialization. In the cadaver experiments, the accuracy was improved from 25.4 mm (35.3 

mm IQR) to 2.3 mm (2.6 mm IQR). Thus, initialization was a necessary step to accurately 

perform the registration, and Haar-based initialization achieved a level of accuracy sufficient 

to facilitate fast, robust 3D-2D registration. The current implementation required 1.1 ± 0.8 

(mean ± std) s in Intel Xeon 1.7 GHz CPU with 12 GB memory.

When validated using the translation from the motion stage as the ground truth, 3D-2D 

registration step did not exhibit substantial improvement from the initialization accuracy 

achieved of the proposed method. However, Figure 9 shows the improvement after the 

3D-2D registration step when validated using manually identified fiducials that incorporated 

motion in all 6 DoF. 3D-2D registration improved the 3D error by compensating for residual 

errors in directions that were not used in constructing the feature dictionary. The overall 3D 

error was 3.2 mm (1.8 mm IQR) in the phantom studies and 3.0 mm (2.3 mm IQR) in the 

cadaver studies.

Figure 10 shows the alignment achieved in 3D and 2D US images after registration in 

phantom and cadaver, qualitatively demonstrating a reasonable level of registration for 

purposes of needle targeting.

Figure 11 shows the capture range for 3D-2D registrations, indicating that registration could 

be performed successfully when the accuracy of initialization was within ± 8 mm. While 

Haar-based initialization achieved this requirement, it could also be a useful parameter in 

determining the spacing between slices extracted from 3D US images to construct the 

dictionary.

The accuracy of 3D-3D registration between ultrasound volumes was validated using known 

translations imparted by the motion stage, found to be 1.0 ± 0.2 (mean ± std) mm. In the 

stitched US volume, the continuity of anatomical structures was consistent in qualitative 
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observations, and such image quality is essential in subsequent image registrations when 

pre-procedure 3D US volume acts as an intermediary between live 2D ultrasound and 3D 

MR imaging.

D Discussion and Conclusions

In this work, we reported a fully image-based, slice-to-volume registration solution that 

could facilitate guidance for ultrasound needle interventions in the spine. Such an approach 

obviates the need for hardware-based tracking equipment for ultrasound probe pose 

estimation and could decrease the cost, ease workflow, and enhance portability of accurate 

image guidance in common practice. Our approach to provide a software-based initialization 

utilizes the fact that the physicians typically rely upon certain patterns of probe motion 

during an interventional procedure, and the discrete set of poses related to the patterns can 

be efficiently stored in the form of a dictionary for real-time retrieval and matching. Probe 

motion patterns likely exist in many other ultrasound-guided clinical interventions such as 

prostate biopsy where the transrectal access limits only certain types of probe motion, 

cervical brachytherapy procedures and liver focal ablation procedures where the probe is 

positioned transabdominally to acquire a limited set of views of pertinent anatomy. Thus, a 

dictionary-based method for registration initialization could be feasible and directly 

translated to many other ultrasound guided interventions. In our experiments, we observed a 

~47× improvement in memory efficiency in image feature representation, an improvement 

factor commensurate with the compression ratio observed in the Haar wavelet coefficients in 

image compression applications(Nashat and Hassan 2016). Efficiency in image 

representation is critical in constructing a large dictionary of ultrasound probe poses.

A dictionary-based approach discretizes the continuous range of probe poses observed in 

interventions to facilitate a fairly close initialization to 3D-2D registration. Unique 

representation of the discrete set of poses is an essential property to differentiate between 

dictionary elements when matching against a live 2D US image. In our experiments with a 

dictionary element size = 315 (computed as responses to 315 Haar filters), the method 

yielded all unique responses in terms of the match score calculated according to equation 3. 

The match score differences between the best matching element and the remaining 

dictionary elements were within a range (0.35–0.55×10−4). Similar match scores indicate 

similarity in appearance to the 2D image being probed, and the second closest matching 

score (within 0.35×10−4 of the best match) corresponded to a probe pose 1.0 mm away from 

the best match. Overall mean ± std match score differences between the best matching 

element and the remaining dictionary elements was 0.06 ± 0.05. Anatomical homogeneity is 

a factor to consider when building a dictionary that uniquely represents different elements. 

In our experience, despite the structural similarity of different vertebrae, inhomogeneity 

within and adjacent to the vertebrae resulted in US image features that could be uniquely 

represented and identified with 315-length feature vector. If a certain patient has 

homogeneous anatomy that results in closely resembling images at a coarse level, increasing 

the feature vector size could embed more granular anatomical detail to achieve uniqueness at 

the cost of memory.
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In the experiments, the intermediary 3D US image was acquired using a mechanically swept 

3D US probe. To obtain a sufficient span of the spinal anatomy, we stitched multiple 3D US 

images to construct the baseline 3D image. However, the methods described do not depend 

on the specific 3D US acquisition/construction method or the use of a 3D US imaging 

system. Multiple techniques(Fenster et al 2001) that are available to construct a 3D US 

volume using a standard 2D US probe could be used alternatively. Such capability extends 

the methods presented in this work to a form compatible with standard ultrasound imaging 

systems already commonly available in outpatient clinics.

The registration methods were validated using a computer-controlled motion system. The 

current experiments also introduced a small degree of rotational variability due to non-planar 

skin interface in both the phantom and the cadaver. Both the initialization and the final 

registration achieved robust performance in the presence of these rotational errors (even 

though the rotations were not considered when building the dictionary). The robust 

registration performance observed warrants more clinical investigation after introducing 

rotational/angular motion of the probe. Validation was performed both via measuring the 

motion recorded by the motorized stage and manually identifying fiducials. While the 

motion stage imparted a known set of translations to the probe in a controlled setting, the 

measured accuracy could be limited if the probe tilted while moving along the phantom and 

the cadaver. On the other hand, manually identified fiducials allow for measurement error 

due to both translation and rotation errors; however, the corresponding landmarks identified 

in 2D slices and 3D images could be subject to observer variability and suffer from large 

fiducial localization errors. Thus, these factors challenge the assessment of error, and the 

actual error of the registration process could be even lower than that reported in this paper.

The required needle targeting accuracy of the system is governed in part by the smallest 

clinically relevant anatomical structures targeted during intervention. For spine needle 

injections in the lumbar region, the measured registration accuracy <3 mm is comparable to 

that previously shown for electromagnetic and vision-based tracking systems (e.g., 2.9–3.8 

mm reported in the context of ultrasound needle interventions in the spine) (Sartoris et al 
2017, Stolka et al 2014) and should provide relevant anatomical visualization from MRI in 

reaching the intended target while avoiding surrounding critical structures. Patient motion 

during the procedure present an additional potential source of error that was not represented 

in the phantom and cadaver experiments in this work. However, the presented algorithm 

successfully corrected for US probe motion relative to a stationary patient. Therefore, fast, 

near real-time registration can in principle compensate for intra-procedure patient motion 

relative to the probe (De Silva et al 2013b) (i.e., performing registration every 1 s causes 

errors due to patient motion within a 1 s interval). Thus, further improvement in speed could 

strengthen the algorithm in compensating for continuous patient motion such as that caused 

by respiration.

The Haar-feature based initialization method and subsequent 3D-2D registration step 

provide a fully software-based solution (i.e., free from additional tracking hardware) for 

guidance in needle interventions. Registration can be performed continuously as a 

background process and/or immediately prior to needle insertion to verify needle position 

relative to the anatomy using information available in the corresponding MRI slice. Future 
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work includes measuring the overall needle targeting accuracy of the system by combining 

3D US-2D US registration and the offline / one-time 3D US-MRI registration. Testing in a 

clinical setting and assessment of needle targeting accuracy will follow after incorporating 

all patterns of probe motion encountered in clinical procedures within the dictionary. The 

resulting image-based method for needle guidance and navigation could improve the 

accuracy and safety of spinal interventions, enable broader utilization of navigation, and 

reduce confounding geometric factors underlying patient outcomes in pain management.
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Figure 1: 
Image-based registration framework to align live 2D US images and pre-procedure 3D MRI 

in real-time. 3D-2D registration algorithm (white box) includes a software-based method for 

pose initialization and 6 degree-of-freedom search optimizing normalized cross-correlation 

using Powell’s method. MRI-3D US registration is performed prior to the intervention using 

multi-modality registration (gray box) that yields the registered MRI slice to the live 2D US 

image.
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Figure 2: 
Haar basis functions and computation of Haar filter responses. Responses are computed by 

subtracting the cumulative sum of the image intensities within black and white regions. (a) 

Varying the scale of the basis filter function to capture fine-scale anatomical features. (b) 

Computing the response of a single Haar basis filter by translating the filer across the image. 

(c) Multiple filter responses resulting from basis filter translations at ∇k intervals. (d) 

Different types of Haar basis functions investigated. (e) Basis filter variations by changing 

black/white region proportions. φ1 and φ2 basis filters are given as examples where variation 

filters were obtained for all 6 basis filter types in (d).
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Figure 3: 
Computing the approximate initialization pose using a Haar filter dictionary. The dictionary 

is pre-computed from 2D slices extracted from the 3D US image acquired prior to the 

procedure. During the procedure Haar coefficients computed from the live 2D image are 

matched against the dictionary to find the closest matching US probe pose.
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Figure 4: 
Experimental setup for translating the US probe using a motion stage (a) lumbar puncture 

phantom and (b) cadaver experiments. Probe was rigidly attached to the motion stage, which 

imparted known translations to the probe providing a basis for validating the registration 

algorithm.
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Figure 5: 
Initialization accuracy as a function of variable number of scales and number of basis 

functions. (a) Error for different combinations of number of scales and number of basis 

functions (Nj,Nb). (b) Error for variable number of scales, Nj with the number of basis 

functions, Nb, fixed. (c) Error for variable number of basis functions, Nb with the number of 

scales, Nj, fixed.

De Silva et al. Page 20

Phys Med Biol. Author manuscript; available in PMC 2019 October 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6: 
Initialization accuracy as a function of the number of elements (NT) in the Haar feature 

vector representation.
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Figure 7: 
Initialization accuracy prior to 3D-2D registration step for (a) phantom and (b) cadaver 

experiments presented as violin plots. The circle in each violin plot denotes the median, and 

the gray bar marks the interquartile range. The violin thickness is proportional to the data 

density at different error (vertical axis), values and it presents each data point that 

contributed to the distribution as a pale circle in the distribution. Initctr represents a reference 

method where the 2D slice was initialized at the center of the 3D image. InitNCC stored 

entire 2D images in the dictionary and searched for the entry with the optimal NCC and 

InitHaar demonstrates the performance with the methods proposed in this work.
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Figure 8: 
3D-2D image registration accuracy with different initialization methods for (a) phantom and 

(b) cadaver experiments. The accuracy was measure using the translation from the motion 

stage as the ground truth.
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Figure 9: 
TRE distributions after initialization of the Haar-dictionary method and after 3D-2D 

registration step for (a) phantom and (b) cadaver. The accuracy was quantified using 

manually identified anatomical landmarks.
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Figure 10: 
Alignment of registered images in phantom and cadaver experiments. Left column shows the 

live 2D US image, right column shows the corresponding slice from the baseline 3D US 

image after registration, and checkerboard image shows alternating image patches from both 

the images.
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Figure 11: 
Capture range for 3D-2D registration demonstrating the required initialization accuracy to 

achieve reliable registration performance.
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