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Abstract

Summary: SPUTNIK is an R package consisting of a series of tools to filter mass spectrometry

imaging peaks characterized by a noisy or unlikely spatial distribution. SPUTNIK can produce mass

spectrometry imaging datasets characterized by a smaller but more informative set of peaks, re-

duce the complexity of subsequent multi-variate analysis and increase the interpretability of the

statistical results.

Availability and implementation: SPUTNIK is freely available online from CRAN repository and at

https://github.com/paoloinglese/SPUTNIK. The package is distributed under the GNU General

Public License version 3 and is accompanied by example files and data.

Contact: p.inglese14@imperial.ac.uk or r.glen@imperial.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Over the last few years, mass spectrometry imaging (MSI or IMS)

has demonstrated great potential in discovering and elucidating

chemical processes in a wide variety of research contexts. MSI has

been used to determine possible cancer biomarkers (Franck et al.,

2009), and recent technologies are capable of detecting molecular

signals at the cellular level (Kompauer et al., 2017). The properties

of such data type, such as high ion dimensionality and the presence

of noise fluctuations in the spectral profiles, make the pre-processing

phase and the extraction of informative features for the subsequent

statistical analysis extremely important.

Software packages, such as MALDIquant (Gibb and Strimmer,

2012) can filter peaks based on the presence of signals in a minimum

fraction of samples, but unfortunately these filters do not to take

into account the information contained in the spatial localization of

the signals as addressed in recent work (Alexandrov and Bartels,

2013; Fonville et al., 2012; Palmer et al., 2017).

SPUTNIK (SPatially aUTomatic deNoising for Ims toolKit) pro-

vides a series of filters which aim select meaningful and informative

peaks, based on the plausibility of their spatial distributions, given

the information about the signal source (Supplementary Material

S1, Table S1). It provides an estimation of split peaks, a correlation-

based filter, a pixel count based filter and a series of tests based on

complete spatial randomness. Each class of filters is designed to re-

move uninformative peaks based on specific assumptions. An ex-

ample of the effects of each filter (with the default parameters) on

the final dimensionality of two example datasets (MALDI-MSI and

DESI-MSI) is shown in Supplementary Material S1, Figure S1.

SPUTNIK is freely distributed as an R package written using S4

object-oriented programming.

Two example workflows showing how to apply SPUTNIK to

both MALDI-MSI and DESI-MSI datasets are provided together

with the package (Supplementary Materials S2 and S3). The original

imzML and the associated optical image files for the MALDI-MSI

dataset are available at https://www.ebi.ac.uk/pride/archive/proj

ects/PXD001283/.

An example of the application of the SPUTNIK pipeline to

MALDI-MSI from mouse urinary bladder specimen (Rompp et al.,
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2010) is shown in Figure 1 (see complete workflow in Supplementary

Material S2). The sum of the matched peaks intensities (pre-processed

using MALDIquant) was used as a reference for determining the tissue

specimen location and ROI detection. The ROI quality was visually

evaluated comparing its morphology with an external tissue image

(e.g. optical image of H&E stained tissue). The dataset was filtered

using a correlation-based filter (reference ¼ binary ROI calculated by

k-means, measure ¼ Spearman’s correlation, threshold ¼ 0); followed

by a count pixels filter with a minimum number of connected pixels

equal to 4. Finally, a complete spatial randomness filter was applied

using the Kolmogorov-Smirnov test with the total ion count image as

a covariate; Bonferroni corrected P-values (a¼0.001) were used to se-

lect the peaks. The pipeline was capable of reducing the dimensional-

ity from 1175 peaks to 204 peaks. Visualization of the filtered dataset

and analyses based on the reduced number of peaks result in images

with enhanced contrast (Fig. 1B and C). This also provided improved

clustering results, with an enhanced contrast due to the removal of sig-

nals associated with noise. A complete workflow of the application of

SPUTNIK on the example DESI-MSI dataset is available in

Supplementary Material S3.

2 Algorithms details

2.1 Split peak estimation
Random peak shifting can generate false multiple peaks during the

peak-matching procedure. These peaks signals, which represent the

same ion source, are assigned to multiple m/z values. In order to

identify the occurrence of this issue, we hypothesized that split peaks

are randomly assigned to contiguous m/z values within the limits of

instrumental error. Additional conditions to assign multiple peaks

to the same m/z value are: (i) their peak intensity signals are local-

ized in small or non-overlapping spatial regions, (ii) at least one of

the peaks signal images shows a sufficient level of ‘spatial regular-

ity’, (iii) the combined signal, generated by merging the intensities of

the candidate split peaks, is associated with an image with a spatial

regularity at least as high as the images associated with the original

peaks. Spatial regularity measures available are: (i) ratio of scattered

pixels (defined as the number of Otsu’s thresholded (Otsu, 1975)

disconnected signal pixels divided by the total number of signal pix-

els), (ii) spatial chaos (Palmer et al., 2017), (iii) Gini index (Hurley

and Rickard, 2009). An example of simulated split peak merging

from the DESI-MSI sample is shown in Supplementary Material S1,

Figure S2. Based on its purpose, the split peak tool should always be

applied before any other filtering tool.

2.2 Reference similarity filter
Often, signals derived from non-informative peaks (e.g. matrix or

solvent related peaks) are characterized by an unrelated spatial dis-

tribution compared to the geometrical shape of the expected signal

source (e.g. a tissue section). In order to identify and remove these

peaks, we designed a filter based on the similarity between the peak

intensity images and a reference image. Available measures to esti-

mate the similarity between the peak and the reference signal distri-

butions are: Pearson’s correlation, Spearman’s correlation,

structural similarity index measure (Wang et al., 2004) and normal-

ized mutual information. Two options are available for calculating

the reference signal, a continuous measure among ‘sum’, ‘median’,

‘mean’ or ‘first principal component scores’ of the entire set of peak

intensities, and a binary mask, representing the region of interest

(ROI), calculated either applying Otsu’s thresholding to the refer-

ence signal seen as an image, or applying k-means clustering with

two clusters on the entire dataset. Additionally, external reference

and ROI images can be used, after opportunely resizing and register-

ing them with the MS image. The command ‘msImage’ allows to

easily convert arbitrary images represented as pixel intensity matri-

ces into MS images compatible with SPUTNIK (an example of the

filter applied using the ROI generated by the H&E optical image

registered with the sum of the ion intensities in the 800–900 m/z

range is shown in Supplementary Material S1, Fig. S3). By default, a

similarity threshold equal to 0 guarantees that ions also localized in

small regionswithin the ROI are not filtered. Scaled first three prin-

cipal components scores image of the filtered peaks data confirm

that the filter successfully removes the ions localized outside of the

tissue in the DESI-MSI and MALDI-MSI examples (Supplementary

Material S1, Fig. S4). When off-tissue regions are available, the user

should run the reference similarity filter before all the other filters.

In this way, the dataset dimensionality can be significantly reduced,

increasing the global contrast between tissue and off-tissue regions.

2.3 Pixel count based filter
The Poisson spatially distributed signals (due to shot-like noise) are

characterized by a more scattered spatial distribution than the real

signal. Meaningful clusters of pixels should be larger than the

expected smallest spatial sub-regions. Under this assumption, we

designed a filter that takes into account the number of connected

pixels where the peak intensity is higher than the background level.

Using a binary ROI mask, calculated similarly to that described in

the ‘Reference similarity filter’ section or generated externally (e.g.

binarization of the registered optical image of the H&E stained

Fig. 1. A comparison between the original and the filtered MALDI-MSI dataset

(Rompp et al., 2010): (A) total ion count (TIC) images, (B) RGB images of the

three first principal components scores scaled in [0, 1] and (C) results of

k-means clustering with four clusters applied to the PCA scores responsible

for 95% of the total variance. The heatmaps (D) show the intensities of five fil-

tered (top row) and five selected peaks (bottom row) with the five largest

average intensities (Supplementary Material S1, Fig. S6). The images of the

filtered peaks show that they are mainly localized outside of the tissue region.

All the results confirm that the filters reduce the effect of signal noise and

allow a clear identification of tissue sub-structures
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tissue), the connected signal sub-regions are detected from Otsu’s

thresholded binary peak image within the ROI. Subsequently, the

filter selects those peaks characterized by connected regions larger

than the provided number of pixels, which are user-defined based

on the expected smallest meaningful image sub-regions. Different

levels of ‘aggressiveness’ take into account the clusters size which is

also outside of the ROI. When off-tissue regions are not present,

pixel count based filter can be used with an ROI consisting of a ma-

trix of all ones (Supplementary Material S1, Fig. S5).

2.4 Complete spatial randomness filter
A further filter is based on the rejection of the null hypothesis of a

peak signal following a complete spatial random distribution. The as-

sumption behind these statistical tests is that a non-informative peak

signal is spatially distributed as a homogeneous spatial Poisson pro-

cess (Maimon and Rokach, 2010). The tests use Otsu’s thresholded

binary pixels associated with the peak signal to define a two-dimen-

sional point pattern process; two tests are currently available: (i)

Clark Evans test (Clark and Evans, 1954), (ii) Kolmogorov-Smirnov

test against a covariate distribution (Berman, 1986), calculated with

the same methods used to extract the reference image. The tests are

based on the already available spatstat R package (Baddeley and

Turner, 2005). This represents the least aggressive filter, since it does

not take into account of the connectivity between pixels and the tissue

spatial distribution, but only tests whether ion intensities reflect the

overall contrast between the tissue and off-tissue regions. Similarly to

the count pixel filter, this filter should be used when off-tissue regions

are not available (Supplementary Material S1, Fig. S5).

More details about the algorithms are available in

Supplementary Material S1.

3 Conclusions

SPUTNIK provides a collection of flexible filters for the detection of

peaks associated with non-realistic spatial distributions, given the

prior information about the signal source localization.

Two tutorials, distributed with the package, show how to apply

the filtering pipeline to MALDI-MSI and DESI-MSI datasets.
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