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Abstract

Summary: Estimating linkage disequilibrium (LD) is essential for a wide range of summary statistics-

based association methods for genome-wide association studies. Large genetic datasets, e.g. the

TOPMed WGS project and UK Biobank, enable more accurate and comprehensive LD estimates, but

increase the computational burden of LD estimation. Here, we describe emeraLD (Efficient Methods

for Estimation and Random Access of LD), a computational tool that leverages sparsity and haplo-

type structure to estimate LD up to 2 orders of magnitude faster than current tools.

Availability and implementation: emeraLD is implemented in Cþþ, and is open source under

GPLv3. Source code and documentation are freely available at http://github.com/statgen/emeraLD.

Contact: corbinq@umich.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Linkage disequilibrium (LD) is of fundamental interest in popula-

tion genetics as a vestige of natural selection and demographic his-

tory, and is essential for a wide range of analyses from summary

statistics in genome-wide association studies (GWAS). Motivated by

data-sharing and logistical constraints, a variety of tools have been

developed for analysis of GWAS summary statistics rather than

individual-level data––for example, fine-mapping (Benner et al.,

2017) and conditional analysis (Yang et al., 2012). These methods

often rely on LD estimates from an external dataset, which are ideal-

ly calculated on-the-fly rather than pre-computed and stored due to

prohibitive storage costs. For example, the 1000 Genomes Project

Phase 3 panel includes over 35 M shared variants (1000 Genomes

Project Consortium, 2015), corresponding to > 4�1011 pairwise

LD coefficients within 1 Mbp windows genome-wide. Analyzing

GWAS summary statistics from increasingly large and diverse stud-

ies will require estimating LD with correspondingly large and di-

verse cohorts, prompting a need for efficient and scalable methods

to estimate LD with massive datasets.

2 Materials and methods

2.1 LD statistics
Three common measures of LD are the LD coefficient D (the covari-

ance of genotypes), the standardized LD coefficient D0 (D divided

by its maximum value given allele frequencies) and the Pearson cor-

relation r or its square. Each of these statistics can be written as a

function of allele frequencies, sample size and the dot product of

genotype vectors. The dot product must be calculated for each pair

of variants, whereas allele frequencies can be can be computed once

for each variant and stored.

2.2 Computational approach
2.2.1 Sparse representation of phased genotypes

Given phased genotypes, we keep a {0, 1}2n vector of genotypes

(where 1 indicates the minor allele) and sparse vector containing the

indexes of non-zero entries for each variant. If the minor allele is

non-reference in the input file, we reverse the sign of its LD statistics

for consistency. The dot product mjk ¼ Gj �Gk between variants j
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and k can be calculated in min (mj, mk) operations, where mj is the

minor allele count at variant j, using the sparse-by-dense product

formula mjk ¼
P

i2Cj
Gik, where Cj ¼ fijGij ¼ 1g is the set of minor-

allele carriers for variant j.

2.2.2 Sparse representation of unphased genotypes

For unphased genotypes, we store a {0, 1, 2}n genotype vector and

sparse vectors indexing heterozygotes and minor-allele homozygotes

for each variant. In this case, the dot product can be calculated in

minðNj1 þNj2;Nk1 þNk2Þ operations, where Nji is the count of

genotype i at variant j.

2.2.3 Haplotype block representation

Due to the limited diversity of human haplotypes (Wall and Pritchard,

2003), the number of distinct haplotypes in a haplotype block with J

biallelic variants is typically small relative to the sample size 2n or to 2 J.

M3VCF format (Das et al., 2016) stores genotypes using a compact

haplotype representation, which requires far less storage than VCF

(Danecek et al., 2011). Given M3VCF input, we pre-compute the

counts Nb
h of each haplotype h in each block b, and index the haplo-

types Hb
j containing the minor allele at variant j in block b. For variants

in the same block, the dot product can be calculated in minðcb
j ; c

b
kÞ

operations, where cb
k ¼ #Hb

k is the number of haplotypes that carry the

minor allele at variant k, using the formula mjk ¼
P

h2Hb
j

1Hb
k
ðhÞNb

h .

For variants in different blocks, we use sparse genotype representation

to efficiently estimate LD.

2.2.4 Approximation by sub-sampling for large sample sizes

When both variants j and k have large MAC (e.g. common variants

and/or large sample sizes), calculating sparse-by-dense products

becomes expensive. In this case, we use an informed sub-sampling ap-

proach to efficiently estimate LD while maintaining a user-specified

bound on the precision of LD estimates. In Supplementary Materials,

we derive an optimal approximate estimator ~r‘, which can be calcu-

lated in at most ‘ operations for any pair of variants while increasing

the MSE by no more than 1=‘ relative to exact LD estimates (or 2=‘

for unphased genotypes), where ‘ is user-specified. In very large data-

sets (n>50 K), this approach decreased computation time for com-

mon variants (MAF > 5%) by an order of magnitude or more.

3 Results

3.1 Implementation and usage
We implemented our methods in an open source Cþþ tool,

emeraLD (efficient methods for estimation and random access of

LD), which accepts VCF.gz and M3VCF.gz formats and leverages

Tabix (Li, 2011) and HTSlib for rapid querying and random access

of genomic regions. emeraLD includes options to facilitate a variety

of common analyses involving LD, and can also be used via an R

interface included with source files.

3.2 Performance
We used WGS genotype data from the 1000 Genomes Project Phase

3 (1 KGP; n¼2504), Haplotype Reference Consortium (HRC;

n¼32 470; Haplotype Reference Consortium, 2016), and imputed

genotype data from the UK Biobank (UKBB; n¼487 409) to com-

pare performance between emeraLD and PLINK v1.9 (Chang et al.,

2015; Purcell and Chang, 2016), LDstore (Benner et al., 2017) and

m3vcftools (Das et al., 2016). In large datasets, emeraLD is up to

two orders of magnitude faster than existing tools (Table 1). Times

reported for emeraLD used ‘ ¼ 1000 (MSE of approximation �
0.001); for for UKB and HRC, this reduced overall computation

time by �50%. Using M3VCF.gz files reduced computation time for

emeraLD by �30–50% relative to VCF.gz.

3.3 Applications
Our approach will be implemented in a forthcoming web-based ser-

vice capable of providing LD from panels with >60 K samples in

real time. This enables use of improved LD information in web-

based interactive analysis and visualization tools such as

LocusZoom (Pruim et al., 2010).

We have also used emeraLD to estimate LD on-the-fly for gene-

based association and functional enrichment analysis of GWAS sum-

mary statistics. This approach avoids pre-computing and storing LD

without compromising speed.

4 Conclusions

Here, we described methods to efficiently estimate LD with large

datasets by leveraging the natural sparsity and redundancy of genet-

ic data. We also developed an approximation approach to improve

computational efficiency while maintaining a user-specified bound

on statistical precision. Finally, we described an open-source soft-

ware implementation of our methods.
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Table 1. Benchmarking: CPU time and memory usage

Tool: m3vcftools PLINK 1.9 LDstore emeraLDa Absolutea

Format: M3VCF.gz BED BGEN M3VCF.gz

CPU Time relative to emeraLD

1 KGP 18.8 1.3 4.4 1.0 8.5 m

HRC 44.7 6.8 16.8 1.0 2.6 m

UKB 473.7 128.4 250.6 1.0 19.9 m

Memory usage relative to emeraLD

1 KGP 0.7 137.6 372.4 1.0 43.8 MiB

HRC 0.6 10.7 26.1 1.0 156.9 MiB

UKB 0.4 4.7 4.8 1.0 4.8 GiB

Note: CPU time and memory to calculate LD in a 1 Mbp region of chr20 (28 126 variants in 1 KGP; 13 174 in HRC and 32 783 in UKB). All experiments

were run on a 2.8 GHz Intel Xeon CPU.
aAbsolute time or memory for emeraLD as reference.
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