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Abstract

Motivation: The analysis of sequence conservation patterns has been widely utilized to identify

functionally important (catalytic and ligand-binding) protein residues for over a half-century.

Despite decades of development, on average state-of-the-art non-template-based functional resi-

due prediction methods must predict �25% of a protein’s total residues to correctly identify half of

the protein’s functional site residues. The overwhelming proportion of false positives results in

reported ‘F-Scores’ of �0.3. We investigated the limits of current approaches, focusing on the so-

far neglected impact of the specific choice of homologs included in multiple sequence alignments

(MSAs).

Results: The limits of conservation-based functional residue prediction were explored by surveying

the binding sites of 1023 proteins. A straightforward conservation analysis of MSAs composed of

randomly selected homologs sampled from a PSI-BLAST search achieves average F-Scores of

�0.3, a performance matching that reported by state-of-the-art methods, which often consider

additional features for the prediction in a machine learning setting. Interestingly, we found that a

simple combinatorial MSA sampling algorithm will in almost every case produce an MSA with an

optimal set of homologs whose conservation analysis reaches average F-Scores of �0.6, doubling

state-of-the-art performance. We also show that this is nearly at the theoretical limit of possible per-

formance given the agreement between different binding site definitions. Additionally, we show-

case the progress in this direction made by Selection of Alignment by Maximal Mutual Information

(SAMMI), an information-theory-based approach to identifying biologically informative MSAs. This

work highlights the importance and the unused potential of optimally composed MSAs for conser-

vation analysis.

Contact: andras.fiser@einstein.yu.edu.

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The evolutionary conservation of functionally important residues in

protein sequences is one of the most fundamental and pervasive

assumptions in current biological thinking. Ever since the birth of

comparative sequence analysis in the mid-20th century (Braunitzer

et al., 1961; Margoliash, 1963; Sanger and Thompson, 1952), se-

quence conservation has been used to infer structural and functional

relationships among homologous proteins. Since then, there has

been tremendous progress in the invention of pairwise and multiple

sequence alignment techniques (Altschul et al., 1990, 1997; Chang

et al., 2014; Needleman and Wunsch, 1970; Smith and Waterman,

1981; Soding, 2005) as well as an exponential growth in available

sequence data (NCBI Resource Coordinators, 2017; UniProt, 2015).

Paralleling the increasing volume and complexity of sequence data
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has been the development of sequence-based conservation analysis

methods capable of identifying and distinguishing from each other

both usually-considered types of ‘functional’ residues: those that are

general-function-granting (e.g. a protease’s catalytic triad) and those

that are specificity-determining (e.g. the protease’s substrate-binding

residues) (Chakraborty and Chakrabarti, 2015). Development of

these conservation analysis tools has most prominently relied on

measures derived using residue count statistics (Casari et al., 1995;

Lichtarge et al., 1996; Livingstone and Barton, 1993; Zvelebil et al.,

1987), and information theory (Capra and Singh, 2007;

Hannenhalli and Russell, 2000; Reva et al., 2007). More recent

advances in functional residue prediction have focused on using con-

servation as a feature to be integrated, together with structural and

other physicochemical properties, into machine learning approaches

(Fajardo and Fiser, 2013; Liu and Hu, 2013; Sun et al., 2016;

Taherzadeh et al., 2016, 2018).

Nevertheless, functional residue prediction remains challeng-

ing, as is clear from reported performance metrics of ‘recall’ (true

positives/(true positives þ false negatives)) and ‘precision’ (true

positives/(true positives þ false positives)). Although state-of-the-

art machine learning methods report on average the correct

identification of approximately half of the residues in a given

ligand-binding site (a recall of 0.5), this comes at the expense of

large numbers of false positives (a precision of 0.2). Such imprecise

predictions are impractical for further experimental testing. For

example, for a 100-residue protein with a 10-residue binding site,

correct identification of 5 binding residues (a recall of 0.5) would

require prediction of 25 residues (at a precision of 0.2): one-fourth

of the protein. This is suggestive of the fundamental class imbal-

ance problem that arises in functional residue prediction: for any

protein, the functional residues are a small fraction of the total res-

idues, so true negatives far outnumber true positives. Appraising

the quality of functional residue prediction methods is therefore

complicated by the practice of reporting performance metrics that

heavily reward true negatives, such as the ‘specificity’ and the ‘ac-

curacy’, which are less appropriate for this application than ones

that do not, such as the ‘F-Score’ (Witten et al., 2011), or ones that

do so minimally, such as the ‘Matthews Correlation Coefficient’

(MCC) (Matthews, 1975).

An additional issue that arises in benchmarking ligand-binding

site prediction in proteins is the ambiguity of binding site definition.

These are often defined using distance cutoffs between protein and

ligand atoms based on a protein-ligand complex structure. Several

databases exist that compile these binding site definitions for thou-

sands of proteins (Dessailly et al., 2007; Maietta et al., 2014; Yang

et al., 2012), with considerable differences. In addition, residues out-

side the borders of these distance-defined binding sites can be critical

to ligand binding. A biomedically-impactful example of this is the

difference between abatacept and belatacept, which are immunosup-

pressive drugs used in the clinical management of autoimmune dis-

eases and organ transplantation, respectively (Vincenti and Luggen,

2007). Both abatacept and belatacept are CTLA4-Ig fusion proteins

and bind CD80/CD86 to inhibit costimulatory signaling necessary

for the immune response. However, belatacept binds to CD80/

CD86 with a binding affinity tenfold stronger than that of abata-

cept, increasing its suitability for the large-scale immunosuppression

needed for organ transplantation (Larsen et al., 2005). Belatacept

differs from abatacept only by two mutations in residues just outside

the rim of CTLA4’s atomic-distance-defined binding site for CD80/

CD86 (Larsen et al., 2005). Given all these uncertainties in binding

site definition, one cannot expect binding site prediction approaches

to perfectly match database-annotated binding sites.

In the present work, we survey the sequence conservation of

annotated ligand-binding residues for a large, diverse cross-section

of the proteome consisting of 1023 proteins binding diverse ligand

types derived from BioLiP, a semi-manually curated protein-ligand

interaction database (Yang et al., 2012). We show that the potential

of accurate functional residue identification by conservation analysis

is far from exhausted and posit that the most important factor to be

explored is the search for an optimally composed multiple sequence

alignment (MSA). The importance of feeding a ‘high-quality’ MSA

into conservation analysis methods has been stressed for decades

(Casari et al., 1995). However, ‘quality’ is usually taken to mean the

minimization of alignment errors (‘alignment accuracy’) rather than

the more biologically relevant question of the specific choice of

included homologs in MSAs, which we refer to as ‘informativeness’.

Early studies on this topic have emphasized the need for ensuring di-

versity in the set of homologs included in MSAs to have confidence

in functional residue predictions (Valdar and Thornton, 2001a,b).

In this study, we demonstrate that ‘informativeness’ of MSAs is a

surprisingly impactful and neglected topic with enormous potential

for sequence-based functional residue identification. We also show-

case the utility of a recently-developed MSA assessment pipeline

called Selection of Alignment by Maximal Mutual Information

(SAMMI) (Gil and Fiser, 2018), which is a possible step in the right

direction.

2 Materials and methods

We performed conservation analysis on a diverse collection of 1023

small-molecule-binding proteins (Supplementary Table S2) with the

aim of predicting their ligand-binding residues as annotated by the

January 25, 2017 version of the BioLiP database. These proteins

were 100–300 residues long, sharing at most 40% sequence identity

with each other, and had a single annotated binding site with a size

between 10 and 25 residues. The 1023 proteins were grouped into

three datasets: 482, 266 and 275 proteins that bind oligopeptides,

oligonucleotides and ‘miscellaneous’ small molecules (enzyme-

substrate interactions) in BioLiP, respectively (Gil and Fiser, 2018).

For each query protein, a PSI-BLAST (Altschul et al., 1997)

search was performed with three iterations and an e-value cutoff of

10�10 which returned up to 20 000 hits. We then sampled 264 alter-

native MSAs from this search consisting of subsets of all hits using

combinations of three sequence parameters: the minimum (set at 20,

25, 30, 35, 40, 45, 50, 55 and 60%), and maximum (set at 50, 70,

90, 99%) sequence identity between query and hits, and the max-

imum sequence identity (level of clustering) between hits (set at 40,

50, 60, 70, 80, 90, 95 and 99%). Sequence identities were defined as

reported by default in the PSI-BLAST output. The hits were also

required to cover at least 70% of the query.

For each of the 264 MSAs, we analyzed the conservation of posi-

tions using a score based on the Jensen-Shannon Divergence (JSD)

(Capra and Singh, 2007), considering residue positions with relative

solvent-accessibility exceeding zero using a sequence-based ap-

proach (Magnan and Baldi, 2014). We ranked each MSA query

residue position by its JSD conservation score and considered the

top N ranked residue positions as the functional residue prediction,

where N is the number of BioLiP-annotated functional residues for

the query protein. The success of a functional residue prediction

was assessed by the F-Score, the harmonic mean of precision and

recall (2*precision*recall/(precision þ recall)), where precision is

the ratio of true positives to the sum of true and false positives

and recall is the ratio of true positives to the sum of true positives
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and false negatives. The MSA whose conservation pattern yielded

the highest F-Score out of the 264 sampled was termed the ‘Max

Sampled MSA’.

We also predicted the ‘informativeness’ of each MSA by applying

a recently developed algorithm, SAMMI (Gil and Fiser, 2018).

SAMMI calculates a mutual-information-based score (MI-Score)

that represents the structural and functional signals unique to the

three-dimensional fold of a protein family that is encoded in a bio-

logically relevant MSA. Briefly, the MI-Score is calculated by com-

puting the mutual information (MI) (Cover and Thomas, 2006)

between all pairs of columns in an MSA that are occupied by a query

protein residue and at least 10 homologous protein residues, and be-

tween shuffled versions of those columns. The top 5% of the differ-

ences between the ‘raw’ and ‘column-shuffled’ MI values are then

averaged to obtain the MI-Score. The MSA with the highest MI-

Score of the 264 sampled was termed the ‘SAMMI MSA’. The logic

behind SAMMI is that the most informative MSA is the one that

contains the most diverse set of sequences of homologous proteins,

but without mixing in unrelated subfamilies. It is hypothesized that

high MI-Scores will reflect the structurally consistent conformations

among sequentially similar inputs that are connected to the same

function.

3 Results and discussion

3.1 Uncertainty in residue-level definition of

ligand-binding sites in proteins
To estimate a practical upper limit for the accuracy of binding site

identification, we explored the agreement between binding site resi-

due annotations in BioLiP versus those obtained through other

approaches. We calculated F-Scores treating BioLiP annotations as

the ‘true’ binding sites and cross referencing them with alternative

definitions (Fig. 1). FireDB (Maietta et al., 2014) is a protein-ligand

interaction database that uses almost identical criteria as BioLiP to

define binding site residues, the only minor difference being that

FireDB spatially clusters binding site residues from proteins that are

at least 97% sequence identical. Despite the almost identical binding

site definition criteria, the ‘agreement F-Score’ between BioLiP and

FireDB for the subset of 249/275 proteins binding miscellaneous-

small-molecules present in both databases has a left-skewed distri-

bution with a mean of 0.86 and a median of 0.93. This indicates

that although many BioLiP and FireDB annotations match perfectly

as expected from the almost identical binding site criteria used, there

is significant disagreement in a substantial fraction of cases.

Ligand Protein Contacts (LPC) (Sobolev, 1999) provides a differ-

ent approach to binding site definition that considers both distances

and physicochemical compatibilities between protein and ligand

atoms. Applying LPC to a subset of 202/275 miscellaneous-

molecule-binding proteins, we observed an agreement F-Score distri-

bution with BioLiP that has a mean and median of 0.73 and 0.77,

respectively (Fig. 1). Like in the FireDB case, this distribution is

left-skewed, with a peak at �0.8. The skewness arises from several

factors: (i) LPC identifying greater numbers of binding residues in

general as compared to BioLiP (mean 20.4 for LPC versus 12.4 for

BioLiP in cases with F-Score < 0.8), (ii) LPC identifying opposite

sides of binding pockets as annotated in BioLiP (possibly indicating

BioLiP misannotations), (iii) LPC failing to recognize contacts

involving nonstandard amino acid residues. The few cases with com-

plete disagreement are due to LPC recognizing ligands that BioLiP

does not recognize as ‘biologically relevant’. Applying Contacts of

Structural Units (CSU) (Sobolev, 1999), which uses the same

principles as LPC to define residues involved in protein-protein

interactions, to a subset of 336/482 oligopeptide-binding

proteins produces a similar distribution to that seen when using

LPC, with a mean and median of 0.76 and 0.78, respectively and a

peak at �0.8. These results suggest that the practical maximum

F-Score a binding site residue prediction algorithm can possibly aim

to achieve is �0.8.

3.2 Conservation patterns of optimally composed MSAs

are predictive of nearly all functional sites
We examined the distributions of conservation analysis F-Scores

obtained for the Max Sampled and SAMMI MSAs in each of the

datasets, together with those of two types of controls representing

random/naı̈ve MSA selection and random residue prediction (Fig. 2,

Supplementary Table S2). Random residue selection, which repre-

sents the likelihood of identifying functionally important residues by

chance, produces a narrow F-Score distributions peaking at �0.1,

with essentially no density above 0.2. The rest of the distributions

confirm the power of using sequence conservation for functional

residue identification: for most proteins, even an MSA composed of

a random subset of sequences from a PSI-BLAST search will have a

conservation pattern that produces a prediction statistically signifi-

cantly different from random residue selection. Notably, the F-Score

distributions of randomly-selected MSAs peak at �0.3; this repre-

sents the background conservation signal averaged over all MSAs

sampled (Fig. 2, red line).

The most important finding in these distributions is that using

correct MSA selection (the optimally composed ‘Max Sampled

MSA’, i.e. selecting the best-performing MSA out of all 264 sampled

ones), one would consistently identify over half of binding site resi-

dues, with few false positives [F-Score distributions peak at �0.6,

(Fig. 2, blue line)]. This value approaches the practical upper limit

Fig. 1. Agreement between functional sites defined using different methods.

This plot shows the agreement between BioLiP and two different approaches,

FireDB (red line) and Ligand Protein Contacts (LPC; blue line, solid), in defin-

ing ligand-binding site residues for miscellaneous-molecule-binding proteins.

Also shown is the agreement between BioLiP and Contacts of Structural

Units (CSU; blue line, dashed) in defining the ligand-binding residues of

oligopeptide-binding proteins
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of �0.8 that was established in Figure 1. The Max Sampled MSA

F-Score distributions do not change statistically significantly

whether BioLiP or FireDB are used as sources of functional residue

annotation (Supplementary Fig. S1), suggesting that the upper limit

on performance is independent of benchmark dataset.

The signal for functional residue conservation is generally stron-

gest for miscellaneous-small-molecule-binding proteins (Fig. 2A),

with its Max Sampled MSA F-Score having a median of 0.54. This

could be due to this dataset being enriched in enzymes, whose cata-

lytic residues are under greater evolutionary pressure to stay invari-

ant than general ligand-binding residues. The conservation signals

appear weakest for the oligopeptide-binding proteins (Fig. 2B), with

its median Max Sampled MSA F-Score being 0.41, while that of the

oligonucleotide-binding proteins (Fig. 2C) is slightly stronger at

0.45. This may suggest that although protein-nucleotide interactions

are similar to protein-protein interactions, they may be slightly more

conserved in general due to the necessity of interacting with nega-

tively charged DNA molecules (Ahmad, 2008).

Nevertheless, there is a non-negligible overlap between the

F-Score distributions of random MSA selection and random residue

prediction (Supplementary Table S1). Specifically, the 30% overlap

between random MSA selection and random residue prediction for

the oligopeptide-binding set may explain the conflicting conclusions

reported in the literature with respect to protein binding site conser-

vation; some studies state that conservation is non-existent or weak

at best (Caffrey et al., 2004; Grishin and Phillips, 1994), while

others find they can be well predicted by conservation (Guharoy

and Chakrabarti, 2005; Valdar and Thornton, 2001a,b). A similar

33% overlap is observed for the oligonucleotide-binding set, which

may point to the fundamental similarity between protein-protein

and protein-nucleotide interactions (Ahmad, 2008; Pujato et al.,

2014).

3.3 Focusing on methods to select optimally composed

MSAs could greatly contribute to functional residue

identification
Selecting an optimal MSA for conservation analysis has the potential

to achieve F-Scores of above 0.6 for �30% of the proteins (depend-

ing on the dataset); at this F-Score we have demonstrated that the

main question to consider becomes one of binding site definition ra-

ther than identification. Optimal MSAs exclude proteins, which

had evolutionarily diverged in function or ligand specificity despite

having met a rigorous PSI-BLAST search e-value cutoff. Indeed,

attempting to predict functional residues based on all the sequences

in such a PSI-BLAST profile results in performance similar to that of

randomly selecting MSAs (Supplementary Fig. S3), but with more

cases completely failing to predict the annotated binding site, reflect-

ing the mixing of different functional site conservation signals.

Furthermore, only an average of 9% of the sequences in the full PSI-

BLAST profile are included in the theoretically optimal, Max

Sampled MSAs (Supplementary Fig. S4). Attempts exist to automat-

ically assign functional specificities of homologs in MSAs using stat-

istical and information-theoretic approaches (Reva et al., 2007;

Sankararaman and Sjölander, 2008)—these may help provide better

starting points for sampling sets of included homologs than a raw

PSI-BLAST match set. Regardless of the initial MSA sampling,

information-theoretic ideas can be adapted to identify optimal

MSAs from among those sampled.

SAMMI, an information-theory-based method, was recently

introduced to rank and choose an optimally composed MSA from

a large set of sampled alternative input MSAs (Fig. 2, green line).

SAMMI clearly provides an advantage for the miscellaneous-

molecule-binding dataset, but its benefit for the oligopeptide-

binding and oligonucleotide-binding sets appears tenuous at best.

However, the benefit of SAMMI is strong in all datasets when

considering the subset of proteins with Max Sampled F-Scores

greater than 0.5 (Supplementary Fig. S5). The difference between

the SAMMI-selected MSA and randomly selected MSA F-Score

distributions is more pronounced in this subset at values near 0,

as well: although it appears that a greater proportion of SAMMI-

selected MSAs have ‘random’ residue predictions than those from

randomly selected MSAs, we infer that this is in fact due to the de-

tection of unannotated functional sites, as has been shown previ-

ously with the miscellaneous-molecule-binding dataset (Gil and

Fiser, 2018).

Diversity of Protein Scores (DOPS) is an approach to assessing

the reliability of functional site predictions obtained from conserva-

tion analysis—this method calculates an information-theoretic

entropy of conservation scores obtained by the ‘scorecons’ ap-

proach, with the hypothesis that only MSAs with sufficiently diverse

conservation scores along their lengths are considered ‘reliable’.

Interestingly, although DOPS was originally intended to provide a

cutoff value for reliability, selecting the single MSA with highest

DOPS score appears to result in functional site prediction perform-

ance equivalent to that of MSAs selected by SAMMI on 126/275

proteins from miscellaneous-molecule-binding dataset (median

F-Score of 0.35 for DOPS versus 0.36 for SAMMI; Supplementary

Fig. 6). A drawback of the approach is that DOPS has a high compu-

tational cost that makes it impractical for assessing MSAs that in-

clude several thousand homologs.

Fig. 2. Sequence conservation-based binding site residue predictions can

approach the practical upper limit of binding site definition. Conservation

analysis F-Score distributions for the three datasets used in this work (A:

miscellaneous-molecule-binding, B: oligopeptide-binding, C: oligonucleotide-

binding) are plotted for the Max Sampled MSAs (blue), SAMMI MSAs (green)

and randomly selected MSAs (red). Specifically, the red curve was obtained

by plotting the distribution of average F-Scores resulting from conservation

analysis of 100 randomly selected sampled MSAs for each protein. In add-

ition, a background F-Score distribution (black) representing the likelihood of

selecting functional residues by chance was obtained by randomly selecting

a number of residues (with relative solvent-accessibility greater than zero)

equal to the number of annotated functional residues for each protein and

averaging the resulting F-Score over 264 trials. The dashed lines at F-Scores

of �0.8 indicate the approximate theoretical upper limit that was established

by analysis of the agreement between different databases. The plotted

density functions are accurate representations of the underlying data

(Supplementary Fig. 2)
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3.4 Current functional site prediction methods appear to

be limited by naı̈ve MSA selection
Conservation analysis on randomly selected MSAs produces

an F-Score distribution with a median value of 0.30 for the

miscellaneous-molecule-binding dataset. To put this observation

into context, this approximately matches what is reported by a

number of current state-of-the-art non-template-based functional

residue prediction methods applied to enzyme catalytic and ligand-

binding residue datasets (Fig. 3; Table 1) (Amitai et al., 2004;

Chen et al., 2014; Fajardo and Fiser, 2013; Sankararaman et al.,

2010; Sun et al., 2016; Wong et al., 2013; Youn et al., 2007;

Zhang et al., 2008). It should be noted that to date no functional

residue prediction method exists that was benchmarked on a lig-

and set as diverse as the one used in this study. Regardless, results

shown in Figure 3 and Table 1 are taken directly as reported in the

original publications, and therefore the variations among these

also reflect the different choices of benchmark datasets. Several of

these methods use PSI-BLAST profiles as a raw input to machine

learning approaches, suggesting that they identify a ‘baseline’ con-

servation signal similar to the one in this work represented by ran-

dom MSA selection. However, this signal is typically the most

dominant among all inputs (Fajardo and Fiser, 2013). When com-

paring performances of each of the machine learning methods

developed over the last decade, the advances in functional residue

prediction have been remarkably small, especially given the pace

of sequence database growth. As we have shown here, conserva-

tion analysis of a correctly selected, ‘most informative’ MSA can

have dramatic effect in improving the accuracy of the approaches.

In fact, a straightforward conservation analysis alone using the

most informative MSA would not only potentially double the ac-

curacy of current functional site prediction methods, but would

also approximate the practical upper limit of these approaches,

due the ambiguity of functional site definitions (Fig. 3).

Machine learning methods have also been recently developed for

the specialized task of predicting the more challenging peptide bind-

ing (Taherzadeh et al., 2016, 2018; Zhang and Kurgan, 2017) and

nucleotide-binding (Liu and Hu, 2013; Yan et al., 2016) residues.

The median values of the randomly selected MSA F-Score distribu-

tions for the oligopeptide-binding and oligonucleotide-binding

datasets were 0.20 and 0.26, respectively. The machine learning

methods corresponding to these ligand types offer a small benefit

compared to random MSA selection, but conservation analysis of

the ‘correct’ MSA would again provide superior performance. Our

results suggest that advances in functional residue prediction should

focus on de veloping methods for optimizing sequence profiles ra-

ther than blindly relying on machine learning approaches from the

start of a prediction pipeline.

3.5 Statistical significance of functional residue

predictions
In order to facilitate the statistical interpretation of F-Scores in

protein functional residue prediction, we constructed a background

distribution of F-Scores for every individual protein in each of

the datasets. To calculate the P-value for each protein functional

residue prediction F-Score, we first calculate ‘background’ F-Score

Fig. 3. Modern functional residue prediction methods are equivalent to

conservation analysis on a randomly selected MSA. Reported F-Scores of

representative state-of-the-art methods for predicting enzyme catalytic and

ligand-binding residues, overlain on the F-Score distributions obtained for

the miscellaneous-molecule-binding dataset in this work. The mean reported

F-Scores of methods 2, 3, 4 and 5 are all between 0.25 and 0.30, while that of

methods 6, 7 and 8 are �0.35. Although the performances of each method

were calculated based on different benchmark datasets, they exhibit similar

results and appear roughly equivalent to using conservation analysis on a

randomly selected MSA. All methods involve statistical analysis of sequence

and/or structural features, mostly by using machine learning approaches.

Brief descriptions the methods and their reported performances are listed in

Table 1

Table 1. Summary of state-of-the-art non-template-based functional residue prediction approaches

Method Reference Description F-Score

Sarig Server Amitai et al. (2004) Structure-based network analysis 0.137

Youn et al. Youn et al. (2007) Support vector machine (SVM) using sequence and structural features 0.279

CRPred Zhang et al. (2008) SVM using sequence features 0.282

DISCERN Sankararaman et al. (2010) Logistic regression model using phylogenomic and structural inputs 0.286

Conservation-distance-aa Fajardo and Fiser (2013) Artificial neural network (ANN) using sequence and structural features 0.269

Wong et al. Wong et al. (2013) SVM to find ligand-binding pockets based on structure and sequence

properties

0.342

LigandRFS Chen et al. (2014) Random forest (RF) classifier using sequence features 0.344

CRHunter (non-template-

based portion)

Sun et al. (2016) SVM using sequence and structural features generated by Delaunay

triangulation and Laplacian transformation of protein structures

0.350

Note: F-Scores are taken as reported in the original publications or calculated from reported precision and recall values. The exception is Sarig Server, which

does not report F-Score in its original publication; the listed F-Score is taken from the ‘Conservation-distance-aa’ publication, where Sarig Server was also

benchmarked.
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distributions by randomly sampling N residues (with relative solvent

accessibility greater than zero) 264 times, where N is the number of

annotated functional residues in the protein. This gives an approxi-

mately normal distribution with mean ‘Fbackground’ along with a

standard deviation ‘S’. For each F-Score F, we then calculate a

Z-Score by Z ¼ (F – Fbackground)/S. Z-Scores have one-to-one corres-

pondence to P-values by p¼2*U(-Z), where U is the cumulative dis-

tribution function for a standard normal random variable (Fig. 4,

Supplementary Table S2). These calculations show that P-values

drop sharply for the miscellaneous-molecule-binding proteins upon

the F-Score reaching 0.20, suggesting this F-Score value should be

used as a cutoff to ensure statistical significance. The corresponding

P-value plots for the oligopeptide-binding and oligonucleotide-

binding proteins would show a similar drop at an F-Score value of

approximately 0.25.

These findings are notable because of the aforementioned per-

formances of state-of-the-art non-template-based functional residue

prediction methods: their average F-Scores just barely satisfy statis-

tical significance. This also highlights the importance of using the

F-Score as a benchmarking measure for functional residue prediction

as opposed to traditional sensitivity/specificity ROC plots or the ac-

curacy; since true negatives far outnumber true positives in this ap-

plication, the specificity (ratio of true negatives to sum of true

negatives and false positives) and accuracy (ratio of sum of true posi-

tives and true negatives to total number of protein residues) can in-

appropriately reward methods and make high values of these

measures misleading even though they are statistically significant.

Fig. 4. Statistical significance of SAMMI MSA F-Scores obtained for the set of

275 misc.-molecule-binding proteins. Each point represents the P-value

obtained for an individual protein’s SAMMI F-Score. The plot shows that

P-values drop sharply after the F-Score reaches 0.20. The inset shows the

negative base 10 logarithm of the P-values and demonstrates a correspond-

ing monotonically rising trend. The cluster of P-values at F-Scores of 0 indi-

cates the statistical significance of these predictions as well; for these cases,

it is likely that the SAMMI MSA conservation pattern detects a secondary

binding site or unannotated functional residues. The dashed lines indicate

P-values of 0.05 and 0.01 (-log10 applied in inset). Similar plots were obtained

for the oligopeptide-binding and oligonucleotide-binding datasets. Plotting

the P-values of random MSA selection F-Scores would also show a similar

drop at an F-Score value of 0.25

Fig. 5. Example of functional residue prediction of CD38 extracellular domain

(PDB 3dzhA; gray cartoon) using an ‘average-performing’ MSA representing

random MSA selection (A; F-Score ¼ 0.3), the SAMMI-selected MSA (B; F-

Score ¼ 0.5) and the Max Sampled MSA (C; F-Score ¼ 0.6). Balls represent

residues that either are BioLiP-annotated to bind or are predicted to bind to

the GTP (blue stick model), an inhibitory ligand of CD38. True positive, false

negative and false positive residue atoms are respectively represented by

green, yellow and red balls
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For example, for a 100-residue protein with 10 annotated functional

residues, a 10-residue prediction that completely misses the func-

tional residues would have an accuracy of 0.80. Similarly, reported

ROC analyses in state-of-the-art functional residue prediction meth-

ods become uninformative because they explore only a horizontally

narrow portion of the ROC curve, due to sensitivity values being

universally high. This again results from the class imbalance prob-

lem of functional residue prediction.

3.6 Practical significance of F-score improvements
We illustrate the practical significance of attaining improvements in

F-Scores by showing three predictions of the ligand-binding residues

of human CD38 extracellular domain (PDB 3dzhA) (Liu et al.,

2008), which in addition to being a lymphocyte surface antigen nor-

mally catalyzes the conversion of nicotinamide adenine dinucleotide

(NAD) into cyclic adenine diphosphate ribose (cADPR). Guanosine

triphosphate (GTP) can act as a competitive inhibitor of this en-

zyme, fitting well into the 10-residue BioLiP-annotated active site

(Fig. 5). The conservation analysis of an ‘average-performing’ MSA,

representing random MSA selection, correctly identifies just 3 func-

tional site residues, with 7 false positive residues being scattered

across the CD38 structure, yielding an F-Score of 0.3 (Fig. 5A). In

contrast, conservation analysis of the SAMMI-selected correctly

identifies 5 functional site residues, which surround the guanine

group of GTP, giving an F-Score of 0.5 (Fig. 5B). For this case, the

performance of the SAMMI-selected MSA approaches that of the

Max Sampled MSA, which correctly identifies 6 active site residues

for an F-Score of 0.6, with its 4 false positive residues surrounding

the active site (Fig. 5C).

This example demonstrates the substantial impact that selecting

an MSA including an optimal set of sequence homologs can have on

functional residue prediction. A naively-selected MSA clearly produ-

ces a minimally useful result that precludes any functional character-

ization of CD38. On the other hand, the conservation pattern of an

optimally informative MSA allows for the identification of the most

important active site residues of CD38—those that interact with the

guanine group of GTP—from sequence information alone.
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Sankararaman,S. and Sjölander,K. (2008) INTREPID—INformation-theoretic

TREe traversal for Protein functional site IDentification. Bioinformatics, 24,

2445–2452.

Smith,T.F. and Waterman,M.S. (1981) Identification of common molecular

subsequences. J. Mol. Biol., 147, 195–197.

Sobolev,V. (1999) Automated analysis of interatomic contacts in proteins.

Bioinformatics, 15, 327–332.

Soding,J. (2005) Protein homology detection by HMM-HMM comparison.

Bioinformatics, 21, 951–960.

Sun,J. et al. (2016) CRHunter: integrating multifaceted information to predict

catalytic residues in enzymes. Sci. Rep., 6, 34044.

Taherzadeh,G. et al. (2016) Sequence-based prediction of protein-peptide

binding sites using support vector machine. J. Comput. Chem., 37,

1223–1229.

Taherzadeh,G. et al. (2018) Structure-based prediction of protein- peptide

binding regions using Random Forest. Bioinformatics, 34, 477–484.

UniProt,C. (2015) UniProt: a hub for protein information. Nucleic Acids Res.,

43, D204–D212.

Valdar,W.S. and Thornton,J.M. (2001a) Conservation helps to identify bio-

logically relevant crystal contacts. J. Mol. Biol., 313, 399–416.

Valdar,W.S. and Thornton,J.M. (2001b) Protein-protein interfaces: analysis

of amino acid conservation in homodimers. Proteins, 42, 108–124.

Vincenti,F. and Luggen,M. (2007) T cell costimulation: a rational target in the

therapeutic armamentarium for autoimmune diseases and transplantation.

Annu. Rev. Med., 58, 347–358.

Witten,I.H. et al. (2011) Data Mining: Practical Machine Learning Tools and

Techniques. Morgan Kaufmann, Burlington, MA.

Wong,G.Y. et al. (2013) Predicting protein-ligand binding site using support

vector machine with protein properties. IEEE/ACM Trans. Comput. Biol.

Bioinform., 10, 1517–1529.

Yan,J. et al. (2016) A comprehensive comparative review of sequence-based

predictors of DNA- and RNA-binding residues. Brief. Bioinform., 17,

88–105.

Yang,J. et al. (2012) BioLiP: a semi-manually curated database for biologically

relevant ligand-protein interactions. Nucleic Acids Res., 41, D1096–D1103.

Youn,E. et al. (2007) Evaluation of features for catalytic residue prediction in

novel folds. Protein Sci., 16, 216–226.

Zhang,J. and Kurgan,L. (2017) Review and comparative assessment of

sequence-based predictors of protein-binding residues. Brief. Bioinform.

Zhang,T. et al. (2008) Accurate sequence-based prediction of catalytic resi-

dues. Bioinformatics, 24, 2329–2338.

Zvelebil,M.J. et al. (1987) Prediction of protein secondary structure and active

sites using the alignment of homologous sequences. J. Mol. Biol., 195,

957–961.

The choice of sequence homologs included in multiple sequence alignments has a dramatic impact on evolutionary conservation analysis 19


	bty523-TF1

