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Abstract

Motivation: Recent advances in genomics and precision medicine have been made possible

through the application of high throughput sequencing (HTS) to large collections of human

genomes. Although HTS technologies have proven their use in cataloging human genome vari-

ation, computational analysis of the data they generate is still far from being perfect. The main limi-

tation of Illumina and other popular sequencing technologies is their short read length relative to

the lengths of (common) genomic repeats. Newer (single molecule sequencing – SMS) technolo-

gies such as Pacific Biosciences and Oxford Nanopore are producing longer reads, making it theor-

etically possible to overcome the difficulties imposed by repeat regions. Unfortunately, because of

their high sequencing error rate, reads generated by these technologies are very difficult to work

with and cannot be used in many of the standard downstream analysis pipelines. Note that it is not

only difficult to find the correct mapping locations of such reads in a reference genome, but also to

establish their correct alignment so as to differentiate sequencing errors from real genomic var-

iants. Furthermore, especially since newer SMS instruments provide higher throughput, mapping

and alignment need to be performed much faster than before, maintaining high sensitivity.

Results: We introduce lordFAST, a novel long-read mapper that is specifically designed to align

reads generated by PacBio and potentially other SMS technologies to a reference. lordFAST not

only has higher sensitivity than the available alternatives, it is also among the fastest and has a

very low memory footprint.

Availability and implementation: lordFAST is implemented in Cþþ and supports multi-threading.

The source code of lordFAST is available at https://github.com/vpc-ccg/lordfast.

Contact: ehaghshe@sfu.ca or faraz.hach@ubc.ca, fhach@prostatecentre.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

High throughput sequencing (HTS) technologies have been evolving

since their inauguration (Margulies et al., 2005). Especially, recent

advances in single molecule sequencing (SMS) technologies such as

Pacific Biosciences (Eid et al., 2009; Korlach et al., 2010) and

Oxford Nanopore (Cherf et al., 2012; Eisenstein, 2012; Manrao

et al., 2012) are a breakthrough in this evolution. Although the

next generation sequencing (NGS) technologies have proven their

ability in detection of genetic variation (1000 Genomes Project

Consortium, 2010, 2012), finding disease causing mutations

(O’Roak et al., 2011) and building de novo genome assemblies

(Gnerre et al., 2011), computational analysis based on NGS data is

still far from being perfect due to their short read length relative to

the lengths of common repeat sequences (Alkan et al., 2011;

Hormozdiari et al., 2009).

The increase in the length of the reads generated by SMS technol-

ogies offers solutions to many unresolved questions in genomics.
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Unfortunately, SMS technologies introduce higher error rates

(’15% versus 1%) with different types of errors (insertions and

deletions rather than substitutions) making it difficult to use them in

standard genomic analysis pipelines. This promoted the develop-

ment of new algorithms and pipelines specifically tailored for SMS

technologies capable of handling very long, erroneous reads for vari-

ous applications. These applications include de novo assembly

(Berlin et al., 2015; Chin et al., 2013; Koren et al., 2013; Loman

et al., 2015), hybrid de novo assembly (Goodwin et al., 2015; Koren

et al., 2012) (where the long reads are mixed with more accurate

short reads from NGS), gap filling in scaffolds (English et al., 2012),

genome finishing (Bashir et al., 2012; Brown et al., 2014; Chin

et al., 2013), reconstruction of GC-rich and complex regions

(Huddleston et al., 2014; Scott and Ely, 2014; Shin et al., 2013),

structural variation (SV) detection (Chaisson et al., 2015; Doi et al.,

2014; Fan et al., 2017; Huddleston et al., 2017; Ummat and Bashir,

2014), haplotype phasing (Chaisson et al., 2017; Pendleton et al.,

2015) and finding methylation sites (Rand et al., 2017; Simpson

et al., 2017).

The very first step for most of the downstream analysis pipelines

involves mapping the reads to a reference genome. On an Illumina-

like short read with a low error rate, it is usually possible to find a

‘long’ substring that would exactly match its mapping locus on the

reference genome. All existing tools for mapping short reads are

based on this fundamental observation. They aim to find such exact

matches by using either (i) BW Transform/FM Index (Burrows and

Wheeler, 1994; Ferragina and Manzini, 2000) based methods

(Langmead and Salzberg, 2012; Li et al., 2009; Li and Durbin,

2009), or (ii) substring hashing (Alkan et al., 2009; David et al.,

2011; Gontarz et al., 2013; Hach et al., 2010, 2014; Lin et al.,

2008; Weese et al., 2012; Xin et al., 2013), or (iii) hybrid methods

that combine FM Index with hashing (Marco-Sola et al., 2012;

Siragusa et al., 2013). Unfortunately, because of high error rates [up

to 20% reported for PacBio (Travers et al., 2010; Thompson and

Milos, 2011) and up to 15% reported for Oxford Nanopore (Rang

et al., 2018)], this key observation is not valid for SMS technologies,

this key observation is not valid for SMS technologies. Furthermore,

even when the mapping locus for a read can be correctly found, it is

quite difficult to differentiate sequencing errors from actual genomic

variants.

There are a number of available methods for mapping long reads

to the reference genome. BLASR (Chaisson and Tesler, 2012) is the

first tool specifically designed for PacBio reads. It finds all sufficient-

ly long exact matches between a long read and a reference genome

using a suffix array index. Then it groups the matches into clusters

and ranks them by a frequency weighted score. The top scored clus-

ters which correspond to candidate genomic locations are used for

performing sparse dynamic programing (SDP) followed by a banded

alignment. BWA-MEM (Li, 2013) is another mapper that was ori-

ginally designed to align short sequence reads as well as assembled

contigs to a reference genome. It has been also extended to map long

SMS reads by tuning its alignment parameters (via option -x pacbio

or -x ont2d). BWA-MEM achieves this by finding the longest exact

match covering each query position as a possible initial match,

chaining these matches (and filtering out those chains ‘contained’ by

others), ranking the initial matches by the length of the chains con-

taining them, and finally extending the initial matches based on a

specific score cutoff, to get a complete alignment. Another tool,

rHAT (Liu et al., 2016), is a hash table based mapper that uses a

heuristic to estimate the approximate location of the mapping for

each read. This is done by finding potential mapping regions for the

middle 1000 bp segment of the long read on the reference genome

through an approximate k-mer counting scheme. Then, for each po-

tential mapping region, a lookup table is built to find short seeds

and a chain of these seeds using an SDP-based heuristic. The final

alignment is formed from the selected chains. A fourth tool,

GraphMap (Sovi�c et al., 2016), uses gapped spaced seeds and per-

forms an approximate alignment by clustering these seeds. It then

constructs alignment anchors by finding an exact walk in their

‘alignment graph’ built from short k-mers of the target, chains these

anchors, and finally refines the chain to generate the final alignment.

Another tool, LAMSA (Liu et al., 2017), splits the long read to some

‘seeding fragments’ and finds all their approximate matches on the

reference genome using GEM mapper (Marco-Sola et al., 2012). It

then finds the ‘skeleton’ of the alignment using a directed acyclic

graph based on SDP. Lastly, LAMSA prioritizes the candidate skele-

tons and fills the gaps within the skeletons while accounting for dif-

ferent possible structural differences (e.g. large deletions). Recently,

two new mappers, NGMLR (Sedlazeck et al., 2018) and Minimap2

(Li, 2018), have been published. Similar to LAMSA, NGMLR starts

by finding alignments of subsegments of a read that are aligned by a

single linear alignment. For each pair of such subsegment align-

ments, it then performs a pairwise sequence alignment using a con-

vex gap-cost model. It finally scans inside alignments to identify

regions with low sequence identity that exist due to small SVs.

Minimap2 uses the notion of minimizers (Roberts et al., 2004) for

indexing the reference and finding seeds. It then performs chaining

of the seeds and identifies the primary chains. At the end, it performs

alignment between adjacent anchors of chains using its fast imple-

mentation based on SSE instructions.

Among the above tools, BLASR and BWA-MEM are sensitive

but too slow in mapping large datasets. Speed is becoming a major

issue since the delivery of Pacbio Sequel by Pacific Biosciences and

the introduction of PromethION device by Oxford Nanopore,

which promises higher throughput for long-read data at a lower

cost. On the other hand, tools like rHAT and LAMSA are not sensi-

tive enough to find the correct mapping locations for many reads.

For instance, the candidate selection step of rHAT uses the seeds

only from the middle 1000 bp segment of the long reads which

could be problematic especially if that segment comes from repeti-

tive regions.

In this paper, we introduce lordFAST, a novel long-read mapper

that is especially designed for PacBio’s continuous long reads (CLR).

lordFAST is a highly efficient and sensitive aligner that can tolerate

high sequencing error rates observed in CLR reads, through its use

of multiple short exact matches. lordFAST not only maps more

reads in a PacBio dataset but also maps them more accurately than

the available alternatives such as BLASR and BWA-MEM. It is

worth mentioning that lordFAST is also capable of aligning reads

generated by Oxford Nanopore Technology since the error models

are somewhat similar. Our experimental results show that

Minimap2 is the fastest tool among the above mappers. lordFAST

achieves the highest sensitivity and precision on simulated data. This

is especially due to the fact that it maps the highest number of bases

correctly among all mappers we tested.

2 Materials and methods

2.1 Overview
lordFAST is a heuristic anchor-based aligner for long reads gener-

ated by third generation sequencing technologies. lordFAST aims to

find a set of candidate locations (ideally, only one) per read before

the costly step of base-to-base alignment to the reference genome.
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lordFAST works in two main stages. In stage one, it builds an index

from the reference genome, which is used to find short exact

matches. The index is a combination of a lookup table and an

(uncompressed) FM index. In stage two, it maps the long reads to

the reference genome in four steps: (i) on each read, it identifies a

fixed number of evenly spaced k-mers (k ¼ 14 in the default set-

tings), which are matched to the reference genome through the use

of the index. For each such match, it obtains the longest exact

matching (prefix) extension. Among these extended matches of each

k-mer identified in each read, it finally chooses the longest (there

could be more than one) which acts as anchor matches; (ii) for each

read, it then splits the reference genome into overlapping windows

(of length twice that of the read) and identifies each such window as

a candidate region if the number of anchor matches in that window

is above a threshold value; (iii) for each candidate region, it identi-

fies the longest chain of ‘concordant’ anchor matches (i.e. chain of

anchor matches which have equal respective spacing in the read and

the reference genome); (iv) it obtains the base-to-base alignment by

performing dynamic programing between consecutive anchor

matches in the selected chain. We provide a more detailed descrip-

tion for each step below.

2.2 Stage one: reference genome indexing
In order to build a (substring) index for the reference genome, we

use a combination of a simple lookup table for initial short matches,

and an (uncompressed) FM index for extending such initial matches.

This combined index benefits from the speed of lookup table and

the compactness of the Burrows–Wheeler transform (BWT) repre-

sentation for the reference genome. The lookup table (with 4h

entries for all possible h-mers) provides a constant time search cap-

ability for each h-mer’s position in the uncompressed FM index

(Ferragina and Manzini, 2000) (in the default setting h ¼ 12, but the

user is given the option to pick any value). As is well known, the FM

index provides a compact representation of a suffix array (Manber

and Myers, 1993) which we use to find (exact matching) extensions

of initial h-mer matches.

Note that in order to be able to perform efficient search on both

strands of the reference genome, we use an extension to the FM

index implemented in fermi (Li, 2012). Our combined index pro-

vides a 29% speed up over the standard uncompressed FM index

(see Supplementary Figs S2 and S3 for speed gain and extra memory

usage).

2.3 Stage two: read mapping
Given a set of long reads, lordFAST aligns one read at a time as

follows:

2.3.1 Step 1: sparse extraction of anchor matches

For a given read with length ‘, lordFAST identifies C (user defined,

default 1000) evenly spaced anchoring positions on the read. For

each anchoring position, it finds the longest prefix match(es) (of

length at least k ¼ 14) to the genome as follows. First, it extracts the

first h-mer starting from the anchoring position and uses the lookup

table of the genome index to obtain the interval that represents

the initial set of matching locations on the FM index. It then uses

the LF-mapping operation of the FM index to extend the initial

set of matches and identify the longest match(es). Note that using

longest matches reduces the total number of anchor matches

significantly.

The longest matches are then added to the set of anchors, M, as

triplets (r, g, s) where r is the anchoring position on the read, g is the

starting location of the longest match on the genome and s is the

length of the match. At the end of this step, M is partitioned into

M
þ and M

� based on the strand of the matching location on the

genome. (Note that for reads that are ‘too short’, i.e. ‘<C þ k – 1,

we use ‘ – k þ 1 anchoring positions instead of C anchoring

positions.)

2.3.2 Step 2: candidate region selection

In order to select the candidate regions for alignment, lordFAST

splits the reference genome into overlapping windows of size 2‘ (as

illustrated in Fig. 1a). For each window, it calculates two scores for

the forward and reverse strands from anchor matches of the respect-

ive strands (Mþ and M
�). For each anchor match falling in a win-

dow, it adds s – k þ 1 to the score of that window. lordFAST keeps

all the windows with score >scoremax=f where f is the factor defining

the significance of the window score (default 4) and scoremax is the

maximum window score. In other words, lordFAST keeps those

windows whose score is not significantly worse than the maximum

window score. In cases where two overlapping windows both meet

the minimum window score requirement, lordFAST will keep the

one with higher window score in the final list (ties are broken by

choosing the window with smaller reference coordinate). Figure 1b

depicts an example of the selection process.

2.3.3 Step 3: chaining and anchor selection

Among all the anchor matches in a candidate region, lordFAST

chooses a set of ‘concordant’ anchors using local chaining. The best

local chain is a set of co-linear, non-overlapping anchors on the ref-

erence genome that has the highest score among all such sets

(Ohlebusch and Abouelhoda, 2005). To calculate the best local

chain, lordFAST assigns a weight to each anchor match equal to the

length of the match. lordFAST supports two chaining algorithms. By

default, it obtains the best chain using the dynamic programing

based chaining algorithm (Ohlebusch and Abouelhoda, 2005). Note

that the time complexity of this chaining algorithm is quadratic, but

in practice, it is fast due to our small number of anchor matches per

read. It is also possible for the user to select the alternative chaining

(a)

(b)

Fig. 1. (a) The implicit windows considered on the reference genome for the

candidate selection step. If the read length is ‘, then the windows are of size

2‘ and overlap by ‘ bases. (b) An example of the candidate selection step.

Each dot represents an anchor and its size represents the weight of the an-

chor. In this example, f¼ 2, and since the maximum window score is 11,

every window with score �5.5 will be ignored. In addition, the window with

score 6 is not kept since it is overlapping with a window with score 7. Also,

only one of the windows with score 11 will be in the final list of candidates

since the other window is overlapping it
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algorithm based on clasp (Otto et al., 2011). The anchor matches in

the best local chain form the basis of the alignment in that region.

2.3.4 Step 4: alignment

lordFAST prioritizes the candidate regions based on their best chain-

ing score and performs the final alignment for the top N regions (de-

fault value for N is 10). In order to generate the base-to-base

alignment of a region, it uses anchor matches from the top scoring

chain and performs banded global alignment for gaps between pairs

of consecutive anchor matches. Furthermore, the alignment between

the prefix of the read and the reference prior to the first anchor can

be performed by the use of an anchored global-to-local alignment

and the alignment between the suffix of the read and the reference

following the last anchor can be computed in an identical fashion.

This strategy is a widely used technique to avoid computing the full

alignment between long sequences as that needs huge memory and

computational time. lordFAST uses Edlib (�So�si�c and �Siki�c, 2017) for

computing the global alignments and ksw library (https://github.

com/attractivechaos/klib) for computing the global-to-local align-

ments. Edlib is a library implementing a fast bit-vector algorithm

devised by Myers (1999). ksw, on the other hand, provides align-

ment extension based on affine gap-cost model.

It is worth mentioning that lordFAST supports clipping as fol-

lows: if the prefix of the read before the first anchor (or, respective-

ly, suffix of the read after the last anchor) has an alignment score/

similarity which is lower than a threshold (thclip), lordFAST per-

forms clipping of that prefix (or, respectively, suffix). This is done

by using ksw library to extend the alignment as long as a significant

drop in the alignment score/similarity is not observed (using a par-

ameter similar to BLAST’s X-dropoff).

In addition, lordFAST supports split alignment as follows: Let

Si, j denote the substring of S that starts at position i and ends at pos-

ition j. Suppose we are mapping a long read R to the reference gen-

ome G. Consider two consecutive anchors A ¼ (rA, gA, sA) and

B ¼ (rB, gB, sB), as per the definition above, in the best chain chosen

for a candidate window. If the alignment between RrA ;rB
and GgA ;gB

has a score lower than a threshold (thsplit) we split the alignment and

report one alignment as primary and another as supplementary (as

the definition in the SAM format specification). One alignment cor-

responds to the substring before anchor A and the other alignment

corresponds to the substring after anchor B. Furthermore, since the

drop in alignment score/similarity could be due to the presence of an

inversion, we check if the alignment between the reverse comple-

ment of RrA ;rB
and GgA ;gB

has a score higher than thsplit. In that case,

such an alignment will be also reported as another supplementary

alignment.

3 Results

We evaluated the performance of lordFAST-v0.0.9 against BLASR-

v5.3.4323a52 (Chaisson and Tesler, 2012), BWA-MEM-v0.7.15-r1140

(Li, 2013), GraphMap-v0.5.1 (Sovi�c et al., 2016), LAMSA-v1.0.0 (Liu

et al., 2017), rHAT-v0.1.1 (Liu et al., 2016), NGMLR-v0.2.6

(Sedlazeck et al., 2018), Minimap2-v2.10-r761 (Li, 2018) and another

recently available software minialign-v0.5.3 (https://github.com/ocx

tal/minialign). Note that although GraphMap is specifically designed

for Oxford Nanopore reads, we included it in our experiment as it is

capable of mapping PacBio long reads with default parameters (Sovi�c

et al., 2016).

We compared the methods on both simulated and real datasets.

We used the results on the simulated dataset for calculating the

methods’ precision and recall. All experiments were performed on a

server running Cenots 6.9 equipped with 4 twelve-core (2 threads

per core) Intel(R) Xeon(R) CPU processors (E7-4860 v2 @

2.60 GHz) and 1000 GB RAM. The commands and parameters

used to run each tool are provided in the Supplementary Material.

Note that on real PacBio datasets, we observed that more than

99% of the sequence data are provided in reads of length 1000 bp

or longer (see Supplementary Fig. S1 for details). Thus, we only

focused on aligning reads that are 1000 bp or longer.

3.1 Experiment on a simulated dataset
3.1.1 Simulation without structural variations

To evaluate the precision and recall of lordFAST against the above

mentioned tools, we simulated 25 000 long reads from hg38 using

PBSIM (Ono et al., 2013) which infers the read length and error

model from a real human read dataset (see Supplementary Material

for details). Note that we did not introduce any SNPs, indels or

structural variants in this experiment, i.e. the correct alignment be-

tween a read and the reference genome has mismatches and gaps

only due to (simulated) read errors. For each read, PBSIM provides

both the originating location on the reference genome and the ‘true’

base-to-base alignment of the read to the reference genome in that

location. Because for any base on any read, its ‘true’ base pairing on

the reference genome is known, we have been able to calculate the

number of correctly mapped reads/bases.

We consider a read to be correctly mapped if (i) it gets mapped

to the correct chromosome and strand; and (ii) the subsequence on

the reference genome the read maps to, overlaps with the ‘true’ map-

ping subsequence by at least p bases. In order to compare the meth-

ods we tested with respect to the number of correctly mapped reads,

we used two values of p: a fixed value of 1 bp and a variable value

which is set to 90% of the length of the originating ‘true’ mapping

subsequence. Note that, for most of the methods there is not a big

difference between the results based on the two settings for p;

however some methods cannot identify the ‘correct’ mapping subse-

quence in its entirety and report only a partial alignment—accord-

ingly, those methods perform poorly for the variable setting of p.

We consider a base in a read to be correctly mapped if (i) the

read is correctly mapped (as per the definition above) and (ii) the

mapped location of the base is within 25 bp of the true alignment

locus of the base (a smaller value for the second condition makes

the definition of a correctly mapped base more stringent.

Supplementary Tables S1 and S2 show the result when this threshold

is increased to 50 bp and decreased to 5 bp, respectively). Sensitivity

is thus defined as the fraction of correctly mapped bases (according

to this notion of a correct mapping) out of the total number of bases

in the reads. Similarly, precision is defined as the fraction of correct-

ly mapped bases out of the total number of mapped bases in the

reads.

Using the definitions above, we compared all of the above men-

tioned methods; a summary of the results are presented in Table 1.

As can be seen, lordFAST not only maps more reads correctly than

any other mapper, but also aligns about 98.9% of the total number

of bases correctly, which is 0.9–9.4% more than its competitors.

In addition, lordFAST achieves the highest base sensitivity and

precision. It is important to note that for GraphMap, the precision

value is much higher than the sensitivity because it leaves many of

the bases unmapped. In that sense, we believe that sensitivity

provides a much better measure to compare the tools—even

though lordFAST is the best with respect to both measures.

On this small dataset, Minimap2 is the fastest tool followed by

lordFAST 23

https://github.com/attractivechaos/klib
https://github.com/attractivechaos/klib
https://github.com/ocxtal/minialign
https://github.com/ocxtal/minialign
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty544#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty544#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty544#supplementary-data


minialign and lordFAST. However, on a larger simulated dataset,

minialign performs better in terms of running time (see

Supplementary Table S4). BWA-MEM, lordFAST and LAMSA

show the lowest memory footprint.

We also evaluated the ability of different tools to distinguish be-

tween unique and repetitive hits in terms of the assigned mapping

quality (MAPQ) per Li (2018). For this evaluation, a read is consid-

ered as correctly mapped if its best mapping aligns to a region of the

reference that (i) overlaps with 10% of the ‘true’ mapping region

(Fig. 2a), and (ii) 90% of the ‘true’ mapping region (Fig. 2b). In gen-

eral, Minimap2 and lordFAST map higher portion of reads with

high MAPQ to correct location compared to other tools, especially

with the more stringent definition of the correct mapping (see

Fig. 2b).

3.1.2 Simulation in presence of structural variations

In order to evaluate the capability of lordFAST for mapping reads

that span SVs, we performed another experiment to detect simulated

SVs using Sniffles (Sedlazeck et al., 2018). Sniffles requires minimum

of 15� coverage to have a good accuracy. Therefore, for this experi-

ment, we focused on only chr1 and generated a simulated dataset by

inserting 21 SVs from DGV (nine insertions, nine deletions and three

inversions) of different sizes (See Supplementary Material for

details).

Here, we provide the results of SV calling using Sniffles based on

the mappings from different tools. We define a call as ‘exact’ if (i) its

start and end coordinates are at most 25 bp away from the actual

simulated breakpoints; and (ii) it overlaps with one simulated SV of

the same type. However, if the first condition is not satisfied, the

call is considered as ‘inexact’. If the second condition is not satisfied

the call is considered as ‘mis-classified’. If none of the conditions is

satisfied the call is considered as ‘wrong’. Among all mappers,

Sniffles generated SV calls only for NGMLR, BWA-MEM, rHAT

and lordFAST. As it can be seen in the Table 2, all calls based on

rHAT mappings are wrong. Also, Sniffles finds more ‘exact’ calls

with lordFAST and NGMLR mappings in comparison to mappings

provided by BWA-MEM. This suggests that lordFAST does not gen-

erate misalignments around SV breakpoints.

Table 1. Comparison between different tools capable of mapping PacBio long reads on the simulated human dataset

Minimum Correctly Correct Incorrect Unmapped Sensitivitya Precisionb Timec Memoryc

overlap (p) Mapper mapped bases (Mb) bases (Mb) bases (Kb) (%) (%) (s) (GB)

1 bp BLASR 24 642 164.52 18.39 698.22 89.61 89.95 9233 14.67

BWA-MEM 24 603 170.63 12.50 525.11 92.91 93.17 6842 5.22

GraphMap 24 161 177.26 4.05 2297.27 96.55 97.77 17 546 42.56

LAMSA 24 458 176.00 6.40 282.15 96.36 96.51 1277 5.85

rHAT 24 409 177.59 5.63 391.52 96.72 96.93 1044 13.95

NGMLR 24 194 170.50 8.86 4246.51 92.86 95.06 2970 5.45

Minimap2 24 745 180.06 3.34 223.46 98.06 98.18 154 6.50

minialign 24 567 178.25 4.73 621.60 97.08 97.41 201 12.70

lordFAST 24 751 181.68 1.89 29.35 98.95 98.97 696 5.43

90% BLASR 24 563 164.46 18.47 675.95 89.57 89.90

BWA-MEM 24 485 170.23 12.98 417.84 92.70 92.91

GraphMap 24 161 177.26 4.05 2297.27 96.55 97.77

LAMSA 24 371 176.87 6.59 208.22 96.30 96.41

rHAT 24 372 177.55 5.98 80.98 96.70 96.74

NGMLR 23 769 169.66 10.44 3508.56 92.40 94.20

Minimap2 24 740 180.04 3.35 223.20 98.05 98.17

minialign 24 469 177.84 5.53 233.74 96.86 96.98

lordFAST 24 747 181.68 1.90 29.10 98.95 98.97

Note: This dataset contains 25 000 reads and 183.61 million bases. Best result in each column is marked with bold typeface. A read is considered to be mapped

correctly if its aligned subsequence in the reference overlaps with the ‘correct’ mapping subsequence by at least p bases. On the other hand, a base in a read is

considered to be correctly mapped if the read is correctly mapped and the mapping location of the base is within a 25 bp vicinity of the correct alignment locus

of the base.
aThe sensitivity is defined as the number of correctly mapped bases/the total number of bases.
bThe precision is defined as the number of correctly mapped bases/the number of mapped bases.
cThe running time and peak memory usage are measured using /usr/bin/time -v Unix command.

(a) (b)

Fig. 2. Read mappings are sorted based on their mapping quality in descend-

ing order. Then for each mapping quality threshold, the fraction of mapped

reads with mapping quality above the threshold (out of total number of reads)

and the fraction of incorrectly mapped read (out of the number of mapped

reads) are plotted along the curve

Table 2. Structural variations called by Sniffles based on mappings

from different tools

Mapper # calls # exact # inexact # mis-classified # wrong

NGMLR 19 17 1 0 1

BWA-MEM 18 12 5 0 1

rHAT 35 0 0 0 35

lordFAST 17 16 1 0 0
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3.2 Experiment on a real dataset
We evaluated the above methods on a real dataset, containing

23 155 reads sequenced from a human genome (CHM1;

Supplementary Material contains details related to this dataset).

Since the true mapping locations of the reads are not known a

priori, we compared methods based on the quality of their reported

alignments. For each mapping of a read, we count the number of its

bases that are aligned to the identical bases in the reference (matched

bases). In addition, we calculated the alignment score by adding up

þ1 for every matching base and –1 for every mis-matching, inserted,

deleted or unmapped/clipped base. For each tool, we reported the

sum of alignment scores of all the reads in the dataset. Although the

number of matched bases per se may not be the best comparison

measure (since one could match all the bases in the read without

paying attention to the gaps created in the reference), it is comple-

mentary to the alignment score. If a program tries to greedily maxi-

mize the number of matched bases, it will very likely produce a low

alignment score. Table 3 shows the result of this experiment.

lordFAST has the highest total alignment score. More precisely,

lordFAST reports 2.79 million higher alignment score and 1.74 mil-

lion higher number of matched bases compared to the closest

competitor.

We also measured the agreement between various methods based

on their alignment of the reads. For a given read, an alignment x

covers another alignment y if and only if the subsequence on the ref-

erence genome covered by x overlaps with at least 90% of the subse-

quence on the reference genome covered by y. Figure 3 shows

examples of covering and non-covering alignments. Table 4 shows

how best alignments from different methods cover each other. More

specifically, each row contains the percentage of mappings reported

by the corresponding tool that cover mappings of other tools. For in-

stance, among all reads for which both lordFAST and BLASR report

an alignment, 90.84% of the alignments reported by BLASR are

covered by lordFAST, while only 88.28% of the alignments reported

by lordFAST are covered by BLASR. As can be observed, lordFAST

alignments provide a high coverage of the alignments obtained by

the alternative tools.

In addition, in Table 5, we compared the performance of the

tools on reads for which their alignments do not agree. To give an

example, there are 2930 reads for which BLASR does not cover

alignments of lordFAST. For those reads, BLASR reports alignments

with an average of 28.84% lower identity. In contrast, there are

2094 reads for which lordFAST does not cover BLASR’s alignments.

For those reads, on average, lordFAST’s alignments have only

7.40% lower identity than BLASR’s. With a lack of the true map-

pings for the real dataset, the information in Tables 4 and 5 are

some extra support for the fact that lordFAST’s alignments are

reliable.

We also compared the speed and memory requirement of all

tools we tested on this dataset. Supplementary Figures S4 and S5

show this comparison when using multiple threads.

4 Discussion

The main performance/running time bottleneck in most genome se-

quence analysis pipelines is mapping. Since the introduction of the

first HTS platforms, the bioinformatics research community has

developed many mapping methods to address this issue. After the

emergence of PacBio and Oxford Nanopore technologies that pro-

duce long but noisy reads mapping has again become a central bio-

informatics challenge.

In this paper, we present lordFAST, a fast and highly sensitive

mapping tool for long noisy reads. Its sparse anchor extraction strat-

egy has an important impact on the speed of its chaining step. Our

experiment on the simulated data shows that despite using a small

number of anchors, lordFAST not only maps more reads to their

true originating region compared to its competitors but also is highly

accurate in base-level alignment (see Table 1).

In addition, lordFAST provides both clipped and split alignments

of the reads. This makes lordFAST appropriate for aligning reads

originating from regions with long SVs, so that downstream analysis

of its alignments would be simpler for the task of variation

discovery.

Table 3. Evaluation of the performance of various long-read mappers on a real human dataset

Mapped Mapped Matched Alignmenta Timeb Memoryb

Mapper reads bases (Mb) bases (Mb) score (s) (GB)

BLASR 22 866 163.11 148.58 108 002 225 12 243 14.96

BWA-MEM 22 913 170.76 154.15 119 117 389 8810 5.25

GraphMap 22 159 169.57 151.93 113 717 041 17 745 42.56

LAMSA 23 154 173.90 155.68 122 035 697 2040 6.29

rHAT 23 136 159.99 142.40 92 824 214 1769 13.95

NGMLR 21 295 155.83 143.06 97 830 317 4629 5.43

Minimap2 22 818 170.97 154.78 119 673 199 262 6.57

minialign 23 006 152.61 139.22 89 538 289 207 12.70

lordFAST 22 961 176.18 157.42 124 826 081 765 5.43

Note: This dataset includes 23 155 reads and 178.45 million bases. Best result in each column is marked with bold typeface.
aThe alignment score is calculated by adding up þ1 for every matching base and �1 for every mis-matching, inserted, deleted or unmapped/clipped base.
bThe running time and peak memory usage are measured using /usr/bin/time -v Unix command.

Fig. 3. Examples of covering and non-covering alignments. Suppose x, y, z1,

z2, z3 and z4 are different alignments of the same read. In this figure, align-

ments x and y cover each other as they span the subsequences on the refer-

ence genome that have at least 90% overlap. The alignments x and y cover

alignments z1 and z2 but not the alignments z3 and z4. On the other hand, the

alignments z1, z2, z3, and z4 do not cover either alignment x or y
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