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Abstract

Motivation: The Gaussian Process Latent Variable Model (GPLVM) is a popular approach for

dimensionality reduction of single-cell data and has been used for pseudotime estimation with capture

time information. However, current implementations are computationally intensive and will not scale up

to modern droplet-based single-cell datasets which routinely profile many tens of thousands of cells.

Results: We provide an efficient implementation which allows scaling up this approach to modern

single-cell datasets. We also generalize the application of pseudotime inference to cases where

there are other sources of variation such as branching dynamics. We apply our method on micro-

array, nCounter, RNA-seq, qPCR and droplet-based datasets from different organisms. The model

converges an order of magnitude faster compared to existing methods whilst achieving similar lev-

els of estimation accuracy. Further, we demonstrate the flexibility of our approach by extending

the model to higher-dimensional latent spaces that can be used to simultaneously infer pseudo-

time and other structure such as branching. Thus, the model has the capability of producing

meaningful biological insights about cell ordering as well as cell fate regulation.

Availability and implementation: Software available at github.com/ManchesterBioinference/

GrandPrix.

Contact: sumon.ahmed@postgrad.manchester.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The analysis of single-cell genomics data promises to reveal novel

states of complex biological processes, but is challenging due to in-

herent biological and technical noise. It is often useful to reduce

high-dimensional single-cell gene expression profiles into a low-

dimensional latent space capturing major sources of inter-cell vari-

ation in the data. Popular methods for dimensionality reduction

applied to single-cell data include linear methods such as Principal

and Independent Components Analysis (P/ICA) (Ji and Ji, 2016;

Trapnell et al., 2014) and non-linear techniques such as t-stochastic

neighbourhood embedding (t-SNE) (Becher et al., 2014), diffusion

maps (Haghverdi et al., 2015, 2016) and the Gaussian Process

Latent Variable Model (GPLVM) (Buettner and Theis, 2012;

Buettner et al., 2015). In some cases the dimension is reduced to a

single pseudotime dimension representing the trajectory of cells

undergoing some dynamic process such as differentiation or cell div-

ision. The pseudotemporal ordering of cells is based on the principle

that cells represent a time series where each cell corresponds to dis-

tinct time points along the pseudotime trajectory, corresponding to

progress through a process of interest. The trajectory may be linear

or branching depending on the underlying process.

Different formalisms can be used to represent a pseudotime tra-

jectory. In graph-based methods such as Monocle (Trapnell et al.,

2014), Wanderlust (Bendall et al., 2014), Waterfall (Shin et al.,

2015) and TSCAN (Ji and Ji, 2016), a simplified graph or tree is esti-

mated. By using different path-finding algorithms, these methods try

to find a path through a series of nodes. These nodes can correspond

to individual cells (Bendall et al., 2014; Trapnell et al., 2014) or

groups of cells (Ji and Ji, 2016; Shin et al., 2015) in the graph.

SCUBA (Marco et al., 2014) uses curve fitting to characterize the
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pseudotime trajectory. Principal curves are used to model the trajec-

tory and each cell is assigned a pseudotime according to its low-

dimensional projection on the principal curves. On the other hand,

in the diffusion pseudotime (DPT) framework (Haghverdi et al.,

2016), there is no initial dimension reduction. DPT uses random

walk based inference where all the diffusion components are used to

infer pseudotime.

One major drawback of the above methods is the absence of an

explicit probabilistic framework. They only provide a single point

estimate of pseudotime, concealing the impact of biological and

technical variability. Thus, the inherent uncertainty associated with

pseudotime estimation is not propagated to the downstream analysis

and its consequences remain unknown. However, the robustness of

the estimated pseudotime for these models can be examined by re-

estimating the pseudotimes multiple times under different initial

conditions, parameter settings or samples of the original data.

Campbell and Yau (2016) have examined the pseudotime estimation

of Monocle where they have taken multiple random subsets of data

and re-estimated the pseudotimes for each of them. They have

shown that the pseudotime points assigned by Monocle for the same

cell can vary significantly across the random subsets taken. This un-

certainty in pseudotime assignment motivates the use of probabilis-

tic analysis techniques. The GPLVM is a non-linear probabilistic

model for dimension reduction (Lawrence, 2005) and has been used

extensively to analyse single-cell data. Buettner and Theis (2012)

used the GPLVM for non-linear dimension reduction to uncover the

complex interactions among differentiating cells. Buettner et al.

(2015) used the GPLVM to identify subpopulations of cells where

the algorithm also dealt with confounding factors such as cell cycle.

More recently, Bayesian versions of the GPLVM have been used to

model pseudotime uncertainty. Campbell and Yau (2016) have pro-

posed a method using the GPLVM to model pseudotime trajectories

as latent variables. They used Markov Chain Monte Carlo (MCMC)

to draw samples from the posterior pseudotime distribution, where

each sample corresponds to one possible pseudotime ordering for

the cells with associated uncertainties. Zwiessele and Lawrence

(2016) have used the Bayesian GPLVM framework to estimate the

Waddington landscape using single-cell transcriptomic data; the

probabilistic nature of the model allows for more robust estimation

of the topology of the estimated epigenetic landscape.

As well as allowing for uncertainty in inferences, Bayesian meth-

ods have the advantage of allowing the incorporation of additional

covariates which can inform useful dimensionality reduction

through the prior. In particular, pseudotime estimation methods

may usefully incorporate capture times which may be available from

a single-cell time series experiment. For example, in the immune re-

sponse after infection, gene expression profiles show a cyclic behav-

iour which makes it challenging to estimate a single pseudotime.

Reid and Wernisch (2016) have developed a Bayesian approach that

uses a GPLVM with a prior structure on the latent dimension. The

latent dimension in their model is a one-dimensional pseudotime

and the prior relates it to the cell capture time. This helps to identify

specific features of interest such as cyclic behaviour of cell cycle

data. The pseudotime points estimated by their model are in proxim-

ity to the actual capture time and use the same scale. Further,

Lönnberg et al. (2017) have adopted this approach and used sample

capture time as prior information to infer pseudotime in the their

trajectory analysis.

However, although the Bayesian GPLVM provides an appealing

approach for pseudotime estimation with prior information, existing

implementations are too computationally inefficient for application

to large single-cell datasets, e.g. from droplet-based RNA-Seq

experiments. In this contribution, we develop a new efficient imple-

mentation of the Bayesian GPLVM with an informative prior which

allows for application to much larger datasets than previously con-

sidered. Furthermore, we show how extending the pseudotime

model to include additional latent dimensions allows for improved

pseudotime estimation in the case of branching dynamics. Our

model is based on the variational sparse approximation of the

Bayesian GPLVM (Titsias and Lawrence, 2010) that can generate a

full posterior using only a small number of inducing points and is

implemented within a flexible architecture (Matthews et al., 2017)

that uses TensorFlow to perform computation across a number of

CPU cores and GPUs.

2 Materials and Methods

Our model is motivated by the DeLorean approach (Reid and

Wernisch, 2016) and uses cell capture time to specify a prior over

the pseudotime. The probabilistic nature of the model can be used to

quantify the uncertainty associated with pseudotime estimation. The

GPLVM uses a Gaussian process (GP) to define the stochastic map-

ping from a latent pseudotime space to an observed gene expression

space. A Gaussian process is an infinite dimensional multivariate

normal distribution characterized by a mean function and a covari-

ance function (Rasmussen and Williams, 2006). In the GPLVM, the

mean function defines the expected mapping from the latent dimen-

sion to the observed data and the covariance function describes the

associated covariance between the mapping function evaluated at

any two arbitrary points in the latent space. Thus, the covariance

function controls the second order statistics and can be chosen based

on different second order features such as smoothness and

periodicity.

2.1 Model
The challenge is to develop scalable models that can handle both bio-

logical and technical noise inherent in the data. Our preference for the

sparse Bayesian approach offers a principled yet pragmatic answer to

these challenges. The core of the model is the Gaussian process which

has been used extensively to model uncertainty in regression, classifi-

cation and dimension reduction tasks. The model uses a sparse vari-

ational approximation which requires only a small number of

inducing points to efficiently produce a full posterior distribution.

The model we use is similar to the Bayesian GPLVM DeLorean

model (Reid and Wernisch, 2016); the main differences between the

two approaches lie in how model inference is accomplished which is

discussed in Section 2.2. The primary latent variables in our method

are the pseudotimes associated with each cell. The method expects the

technical variability is sufficiently described by a Gaussian distribution

which is often accomplished by taking a logarithmic transformation

of the gene expression data. The critical assumption is that the cell

capture times are informative for the biological dynamics of interest.

The expression profile of each gene yg is modelled as a non-linear

transformation of pseudotime which is corrupted by some noise �

yg ¼ fgðtÞ þ �; (1)

where � � Nð0;r2
noiseÞ is a Gaussian distribution with variance r2

noise.

We place a Gaussian process prior on the mapping function

fgðtÞ � GP
�

0; r2kðt; t�Þ
�
; (2)

where r2 is the process variance and kðt; t�Þ is the covariance func-

tion between two distinct pseudotime points t and t�. Thus, the
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expression profiles are functions of pseudotime and the covariance

function imposes a smoothness constraint that is shared by all genes.

The pseudotime tc of cell c is given a normal prior distribution

centred on the capture time sc of cell c,

tc ¼ Nðsc;r
2
t Þ: (3)

Here, r2
t describes the prior variance of pseudotimes around each

capture time.

To identify a non-periodic smooth pseudotime trajectory we

have used the Radial Basis Function (RBF) and Matern3=2 kernels:

RBF : kðt1; t2Þ ¼ exp ð�r2Þ; (4)

Matern3=2 : kðt1; t2Þ ¼ ð1þ
ffiffiffi
3
p

rÞ exp ð�
ffiffiffi
3
p

rÞ (5)

where r ¼ jt1�t2 j
l and l is the process length scale.

For cell cycle data, we have used the periodic kernel described in

MacKay (1998). For a known period k

Periodic : k t1; t2ð Þ ¼ exp �1

2

sin p
k t1 � t2ð Þ
� �

l

� �2
 !

(6)

which limits the GP prior to periodic functions.

We have exploited the model’s flexibility by extending it to

higher dimensional latent spaces. If x represents the extra latent

dimensions, then the expression profile of each gene is modelled as:

yg ¼ fgðt; xÞ þ �; (7)

where

fg t;xð Þ � GP
�

0;r2k
�

t; xð Þ; t;xð Þ�
��
: (8)

This generalization takes the model beyond the estimation of pseu-

dotime to provide a more general probabilistic non-linear dimension

reduction technique.

2.2 Inference
The computation of the log marginal likelihood is mathematically in-

tractable and MCMC methods (Campbell and Yau, 2016; Reid and

Wernisch, 2016) have been employed for inference. Reid and Wernisch

(2016) also use black box variational approaches that rely on data sub-

sampling to increase inference efficiency. However, for the Bayesian

GPLVM an analytic exact bound exists (Damianou et al., 2016; Titsias

and Lawrence, 2010) but the original derivation and all currently avail-

able packages such as GPy (github.com/SheffieldML/GPy, since 2012)

assume an uninformative prior. We modify the exact bound to allow

for informative priors

log pðYÞ � EqðtÞ½log pðYjtÞ� � KL½qðtÞjjpðtÞ� (9)

where q(t) is the variational distribution and

pðtÞ ¼
YN
n¼1

Nðtnjsn; r
2
t Þ; (10)

is the modified prior centred at the capture time sn of cell n with

prior variance r2
t . The variational approximation for the inputs q(t)

is a factorized Gaussian as in the standard Bayesian GPLVM (Titsias

and Lawrence, 2010)

qðtÞ ¼
YN
n¼1

Nðtnjs�n;r�
2

t Þ: (11)

The modified lower bound on the model marginal likelihood is used

to optimize all model parameters including the kernel

hyperparameters (process variance, length scale, noise model vari-

ance) and the pseudotime locations. The Gaussian assumption for

the variational approximate distribution may fail to adequately

model multimodal distributions and model inference may be suscep-

tible to local optima, as different pseudotime orderings may provide

similarly smooth expression profiles. Careful initialization of the

mean s�n of variational approximation q(t) helps the algorithm to ob-

tain good orderings (see Supplementary Material). Although using a

non-Gaussian distribution would be possible, it would require a

more complex approximate inference scheme (Rasmussen and

Williams, 2006). In our experiments, we find the estimated pseudo-

time ordering to be in close agreement with known times as reflected

by high rank correlation values.

The most common practical limitation of GPs in practice is the

computation required for inference; for each optimization step the

algorithm requires Oðn3Þ time and Oðn2Þ memory, where n is

the number of training examples. Campbell and Yau (2016) have

incorporated an MCMC implementation of the Bayesian GPLVM

without an approximation in their model and hence their approach

does not scale for large datasets.

The Bayesian GPLVM has computational complexity of

OðGC3Þ, where G is the number of genes and C is the number of

cells. To make the model computationally tractable for large data-

sets, a variety of sparse approximations have been proposed

(Qui~nonero-Candela and Rasmussen, 2005). Sparse GP approxima-

tions reduce the complexity to OðGCM2Þ where M�C is the num-

ber of auxiliary or inducing points. These inducing points may or

may not coincide with actual points. As M is chosen much smaller

than C, sparse approximations can result in significant reductions in

computational requirements.

To reduce computational complexity Reid and Wernisch (2016)

use the Fully Independent Training Conditional (FITC) approxima-

tion (Snelson and Ghahramani, 2006). This is a simple approach

where a specific type of kernel is used to reduce the computational

requirement. The approach is attractive because only the kernel is

affected; the bound on the marginal likelihood is not affected and is

therefore simple to derive. However as Bauer et al. (2016) have

shown, this approach is prone to overfitting as it does not penalize

model complexity. Titsias (2009) derived a Variational Free Energy

(VFE) approximation for GP regression where the bound of the mar-

ginal likelihood is modified to include such a penalty term.

Both methods can be succinctly summarized by a different par-

ameterization of the marginal likelihood bound:

F ¼ �N

2
logð2pÞ � 1

2
log jQNN þGj|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

complexity penalty

�1

2
yTðQNN þGÞ�1y|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

data fit

�b
2

trðTÞ|fflfflffl{zfflfflffl}
trace term

;

(12)

For the VFE approximation we have

QNN ¼ KNMK�1
MMKMN; (13)

GVFE ¼ b�1IN ; (14)

TVFE ¼ KNN �QNN : (15)

Here, QNN is approximating the true covariance matrix KNN, but

only involves the inversion of a M�M matrix KMM. KMM is the co-

variance matrix on the inducing inputs Z; KNM is the cross
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covariance matrix between the training and inducing inputs, i.e. be-

tween X and Z and KMN ¼ KT
NM.

The objective function of Equation (12) consists of three terms:

the data fit term imposes a penalty on data not well explained by the

model; the complexity term characterizes the volume of probable

datasets which are compatible with the data fit term and therefore

penalizes complex models fitting well on only a small ratio of data-

sets. Finally, the trace term measures the additional error due to the

sparse approximation. Without this term VFE may overestimate the

marginal likelihood like previous methods of sparse approximation

such as FITC. In fact, the objective function of the FITC can be

obtained from Equation (12) by using the same expression for QNN

and taking

GFITC ¼ diag½KNN �QNN � þ b�1IN ; (16)

TFITC ¼ 0; (17)

which clearly shows that the objective function of the FITC can be

obtained by modifying the GP prior:

pðfgjUÞ ¼ N ðfgj0;QNN þ diag½KNN �QNN �Þ: (18)

Here, the inducing points are acting as an extra set of hyperpara-

meters to parameterize the covariance matrix QNN. As this ap-

proach changes the prior, the continuous optimization of the latent

variable fg with respect to the inducing points U does not guarantee

to approximate the full GP posterior (Titsias, 2009). Moreover, as

fg is heavily parameterized because of the extra hyperparameter U

and the trace term is 0, overfitting may arise at the time of jointly

estimating the inducing points and hyperparameters. For detailed

derivation of the bound see Supplementary Material and for a com-

prehensive comparison of FITC and VFE see Bauer et al. (2016). For

both the VFE and FITC approximations, the inducing points may be

chosen randomly from the training inputs or optimized with respect

to the marginal likelihood bound.

Lastly, we have implemented our model in the GPflow package

whose flexible architecture allows to perform the computation

across multiple CPU cores and GPUs (Matthews et al., 2017).

The source of the scalability of our approach compared to

DeLorean is therefore three-fold: model estimation using an exact

variational bound, a robust sparse approximation (VFE versus

FITC) and implementation on a scalable software architecture.

3 Results and discussion

The performance of our model has been investigated by applying it

on a number of datasets of varying sizes collected from different

organisms using different techniques. First we have compared our

method with the DeLorean model (Reid and Wernisch, 2016) in

terms of model fitting as well as the time required to fit the model

on all the datasets used by Reid and Wernisch (2016); this encom-

passes the whole-leaf microarrays of Arabidopsis thaliana

(Windram et al., 2012); single-cell RNA-Seq libraries of mouse den-

dritic cells (Shalek et al., 2014) and single-cell expression profiles of

a human prostate cancer cell line (McDavid et al., 2014). Unlike the

approach taken in Reid and Wernisch (2016) where the variational

approximation is computed numerically, our approach provides an

exact analytical bound which, as we show, results in robust param-

eter estimation. Moreover, our method converges quickly by using a

small number of inducing points even for large data. Overall, our

model outperforms the DeLorean model in both robustness and

computational scalability aspects.

We also apply our approach on more recent droplet-based sin-

gle-cell data. We apply the model on mouse embryo single-cell

RNA-seq (Klein et al., 2015) and compare our predicted pseudotime

with results from the diffusion pseudotime method (DPT)

(Haghverdi et al., 2016). We then apply the model on a large single-

cell dataset of 30 mRNA count data from peripheral blood mono-

nuclear cells (Zheng et al., 2017) to demonstrate scalability to tens

of thousands of cells.

Finally, we demonstrate the flexibility of the model by applying

it on single-cell qPCR data of early development stages collected

from mouse blastocyst (Guo et al., 2010). We infer a two-

dimensional latent space and show that the capture time used as an

informative prior helps to disambiguate pseudotime from branching

structure.

3.1 Comparison with the DeLorean model
We have applied our model on three different datasets from three

different organisms which have been also used by Reid and

Wernisch (2016). The results produced by our model are similar to

the DeLorean model, but our model converges significantly faster.

All the experiments have been carried out by using the same experi-

mental setup, which is the same model structure and initial

conditions.

Windram et al. (2012) examined the effects of Botrytis cinera in-

fection on A. thaliana. Among the 150 genes described by Windram

et al. (2012), we have used 100 genes for the inference process. The

remaining 50 genes were left out as held-out genes and used further

to validate the model as in Reid and Wernisch (2016). Figure 1

shows the comparison of our method to the DeLorean model.

Figure 1a shows the best and average, over 20 different initializa-

tions, Spearman correlation between the actual capture time and the

estimated pseudotime as the number of inducing points is increased.

Both the best and average correlation values show that our method

has faster convergence for a smaller number of inducing points than

the DeLorean method. Figure 1b depicts the fitting time required by

both models for different number of inducing points. As our model

uses the VFE approximation with an exact bound, it converges an

order of magnitude faster than the DeLorean model which requires

a sampling process. The problem with the sampling approach is that

it requires initial burn-in time to fit the model which makes the in-

ference slower and therefore problematic for larger datasets.

Reid and Wernisch (2016) defined the roughness statistic Rg as

the difference of consecutive expression measurements under the

ordering given by pseudotime. Our model estimates smooth pseudo-

time trajectories which have close correspondence with the actual

Fig. 1. Arabidopsis thaliana microarray data (Windram et al., 2012): A com-

parison of performance and fitting time between the proposed method and

the DeLorean method. (a) Spearman correlation between the actual capture

time and the estimated pseudotime for different number of inducing points.

(b) Fitting time required by the models for the same experimental setups
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capture time points. To verify the smoothness of our predicted tra-

jectory, we calculated the roughness statistics for the 50 held out

genes. The average Rg for all experiments in Figure 1 is the same for

both the DeLorean and the Bayesian GPLVM approaches (0.71),

reflecting the pseudotime similarity. For details, see Supplementary

Material.

Shalek et al. (2014) investigated the primary bone-marrow-

derived dendritic cells of mouse in three different conditions. The

time course data were collected using single-cell RNA-seq technol-

ogy. They described several modules of genes which show different

temporal expression patterns through the lipopolysaccharide stimu-

lated (LPS) time course. Figure 2a shows that our model correctly

assigns two precocious cells to later pseudotime as in the DeLorean

approach (see Supplementary Material). Figure 2b depicts the fitting

time required by the both models for different number of inducing

points and in all the cases the Bayesian GPLVM model converges

significantly faster than the DeLorean model.

McDavid et al. (2014) examined the effect of cell cycle on single-

cell gene expression across three human prostate cancer cell lines.

To model the cyclic nature of the cell cycle, we have used a periodic

kernel [Equation (6)]. The DeLorean model requires 7 h 31 m to fit

the model while our method uses 20 inducing points and takes only

4 m 45 s to converge whilst achieving similar error in recovering the

cell cycle peak times (see Supplementary Material). The DeLorean

approach uses samples from 40 model initializations to generate a

full posterior GP whilst the Bayesian GPLVM only requires a single

initialization as an analytic bound of the marginal likelihood is

available. We also attempted to compare the fitting time required

for different numbers of inducing points for this dataset but the

sparse kernel used in the DeLorean packages results into non-

invertible covariance matrices. Therefore the sparse approximation

followed in the DeLorean package appears more fragile in cases of

non-standard kernels such as the periodic kernel. The estimated

pseudotimes are in good agreement with the cyclic behavior of the

data. The model also predicts the cell cycle peak time of each gene

with similar accuracy level of the DeLorean approach. See

Supplementary Material for the details of these results.

3.2 Scaling up the model to droplet-based single-cell

data
To investigate the robustness and scalability of our method, we have

applied it on droplet-based single-cell data. First, we have applied

the model on single-cell RNA-seq data from mouse embryonic stem

cells (ESC) generated using droplet barcoding (Klein et al., 2015).

Klein et al. (2015) developed a method termed inDrop (indexing

droplet) based on droplet microfluidics. They assayed the gene ex-

pression profiles and differentiation heterogeneity of mouse stem

cells after leukaemia inhibitory factor (LIF) withdrawal. They cap-

tured the cells at t¼0, 2, 4 and 7 days and used their protocol to

profile 2717 cells with 24 175 observed transcripts. Haghverdi et al.

(2016) have used this dataset for their analysis of diffusion pseudo-

time (DPT). They have applied their model on the cell cycle normal-

ized data to infer DPT. We have used this cell cycle normalized data

to assess the quality of the Bayesian GPLVM inferred pseudotime.

The inference process uses 2717 cells and 2047 genes. The model

uses a RBF kernel [Equation (4)] to identify a smooth pseudotime

trajectory. We have set the capture time prior variance to r2
t ¼ 1.

The pseudotime estimated by our model has a high rank correlation

with both the actual capture time as well as the estimated pseudo-

time using DPT (Fig. 3).

As memory is a crucial resource when analyzing large volumes of

data, we also examine the effect of lower precision computations.

We have examined the performance of our model under both 64

and 32 bits floating point precision. In both cases we observe a

strong correlation with DPT (�0.94) but note a significant reduction

in fitting time when using 32 bits precision. For 64 bits precision the

algorithm take �32 s to converge, whilst it takes only �11 s to con-

verge for 32 bits precision.

We also apply our method on a larger single-cell RNA-seq data-

set to further demonstrate its scalability. Zheng et al. (2017) have

presented a droplet-based technology that enables 30 messenger

RNA (mRNA) digital counting to encapsulate tens of thousands of

single cells per sample. In their method, reverse transcription takes

place within each droplet and barcoded complementary DNAs

(cDNAs) have been amplified in bulk. The resulting libraries are

then used for Illumina short-read sequencing. Their method has

50% cell capture efficiency and can process a maximum of 8 cells

simultaneously in each run. Zheng et al. (2017) have assayed �68 k

peripheral blood mononuclear cells (PBMCs) demonstrating the

suitability of single-cell RNA-seq technology to characterize large

immune cell populations.

We have applied our method using the top 1000 variably

expressed genes ranked by their normalized dispersion (Zheng et al.,

2017). We use a 2D GPLVM model with no capture time prior in-

formation and an RBF kernel [Equation (4)] with 60 inducing

points. The inducing points and hyperparameters have been opti-

mized jointly with model parameters and the algorithm takes �10 m

to converge on a simple desktop machine (Intel(R) Core(TM) i5-

3570 CPU @ 3.40 GHz with 16 GB memory). To validate the

Fig. 2. Mouse dendritic cells (Shalek et al., 2014): (a) The module score of core

antiviral cells over pseudotime. The two precocious cells (plotted as triangles)

have been placed in later pseudotimes than the other cells captured at 1 h. A

Loess curve (solid blue line) has been plotted thorough the data. (b)

Comparison of fitting time required by both the DeLorean and our models for

different number of inducing points while using the same experimental set-

ups (Color version of this figure is available at Bioinformatics online.)

Fig. 3. Mouse embryonic stem cells (Klein et al., 2015): Comparison of esti-

mated pseudotime with the actual cell capture time and the pseudotime esti-

mated using DPT. The points are coloured according to the actual cell capture

times. The rank correlation is shown in the caption of each subplot (Color ver-

sion of this figure is available at Bioinformatics online.)
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GrandPrix result, we compare the clustering in the latent space with

the clustering reported in Zheng et al. (2017). The latent space clus-

tering is computed using the k-means algorithm with k¼10 clusters

and we have used the adjusted rand index (ARI) (Hubert and

Arabie, 1985) to evaluate its agreement with the cell labels reported

in Zheng et al. (2017). The ARI has a value near to 0.0 if the cluster

labelling is performed randomly and 1.0 for identical clusterings. A

better solution is achieved when using t-SNE to initialize the latent

space rather than PCA (see Supplementary Material), suggesting

that it is worth considering different methods to initialize GrandPrix

to improve the quality of the solution; a similar strategy is taken in

Zwiessele and Lawrence (2016) where multiple dimension reduction

methods are used to initialize a GPLVM model. We have also found

that the GrandPrix ARI (0.54) is higher than the t-SNE method

(0.51) showing an improvement over the initialization used.

Further we have investigated the scalability of the model across

varying number of CPU cores (The hardware used was a 16-core

Intel Ivy Bridge CPUs (E5-2650 v2, 2.60 GHz) with 512 GB mem-

ory. TensorFlow version 1.0.0 and GPflow version 0.3.8). For sim-

plicity only the 1-D latent positions are optimized, using fixed

values for the kernel hyperparameters l¼1 and r2 ¼ 1 and the

inducing points. In Figure 4, we show the time required per iteration

when using different number of CPU cores for both 32 and 64 bit

precision. The computational benefits of lower precision are reduced

as the number of cores is increased. We also note the diminishing

returns of increasing the number of CPU cores; we see an approxi-

mately doubling of performance when increasing the number of

cores from 2 to 4 but a reduced benefit when increasing from 8 to

16. We recommend a small number of cores is assigned to an indi-

vidual model fitting, with any remaining resources assigned to per-

form multiple model fittings using different initial conditions. The

latter is needed to alleviate the local minima problem inherent when

fitting a Bayesian GPLVM model.

We can further increase the performance of the GrandPrix model

by fixing rather than optimizing the inducing point locations. These

results in faster convergence without sacrificing accuracy given a

sufficient number of inducing points is used (see Supplementary

Material). The effectiveness of this approach stems from the high

amount of redundancy that is typical in larger datasets and offers a

way to scale up the GrandPrix approach to datasets with a larger

number of cells.

3.3 Extending the model to infer pseudotime-branching
To demonstrate the flexibility of our approach, we extend the model

to 2-D latent spaces with a capture time prior on one latent dimen-

sion and apply it on single-cell qPCR data of early developmental

stages in mouse (Guo et al., 2010). The gene expression profiles of

48 genes were measured across 437 cells. Cells differentiate from the

single-cell stage into three different cell states in the 64 cell stage:

trophectoderm (TE), epiblast (EPI) and primitive endoderm (PE).

Models with both informative and non-informative priors are

examined. Both models use an RBF kernel [Equation (4)]. Both

models are initialized with identical values. For the informative

prior, we set the capture time variance to r2
t ¼ 0:1. The informative

prior (Fig. 5b) on capture time helps with the identifiability of the

model as it aligns the first latent dimension (horizontal axis) with

pseudotime and the second latent dimension (vertical axis) with the

branching structure.

To investigate how the branching dynamics affect the estimation

of pseudotime points, we have used our model to infer the 1-D pseu-

dotimes with informative prior and compared it with the

pseudotimes from the 2-D informative prior model (Fig. 6a and b).

Both models were run from multiple initial conditions to ensure a

good likelihood optimum was obtained. The 2-D model estimate of

the pseudotime is found to have better correspondence with the ac-

tual capture time (correlation 0.84 versus 0.95), suggesting that the

1-D model is less able to align all variation with a pseudotime axis.

In Figure 6c and d, we have plotted the expression profiles of

two marker genes against our estimated pseudotime points. Id2 is a

known marker gene for TE, thus it behaves differently in TE cells

from the other two differentiation stages. It is differentially

expressed between the stages TE and EPI, as well as between TE and

PE. Similarly, Figure 6d shows that Sox2 is differentially expressed

between the stages TE and EPI, and between the stages PE and EPI.

To see the expression profiles of the other differentially expressed

genes across the differentiation stages, see the Supplementary

Material.

4 Conclusion

Pseudotime estimation on single-cell genomics faces a number of

challenges as the structure of the expression data is complex and

non-linear. Many sources of variability, both biological and tech-

nical, introduce a significant amount of statistical uncertainty in the

inference process. Here, we have used the Bayesian GPLVM model

with informative priors to perform pseudotime estimation within a

probabilistic framework. The model uses cell capture times as priors

Fig. 4. PBMCs with �68 k cells (Zheng et al., 2017): Time per iteration using 1,

2, 4, 8 and 16 CPU cores. The algorithm has been applied using both 32 and

64 bit floating point precision

Fig. 5. Single-cell qPCR of early developmental stages (Guo et al., 2010):

Latent space reconstruction without and with prior. The bottom captures both

developmental time and branching structure. The cell stage and type labels

are also shown
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over pseudotime. Experimental results show that the properties of

pseudotime ordering do not only depend on the data but also on the

prior assumptions about the trajectory such as proximity to capture

time, smoothness and periodicity.

The Bayesian GPLVM framework allows us to predict a number

of latent dimensions along with associated uncertainty. A sampling-

based Markov Chain Monte Carlo implementation of the Bayesian

GPLVM is impractical for large number of cells because of its high

computational complexity. We have developed our model on the

basis of a sparse approximation that can generate a full posterior

using only a small number of inducing points. Among a number of

sparse approximation techniques, we have used the Variational Free

Energy (VFE) approximation which has an exact bound to the mar-

ginal likelihood and avoids overfitting unlike the FITC approxima-

tion used by Reid and Wernisch (2016). To validate these claims,

our approach has been tested on a variety of datasets from different

organisms collected using different protocols. We find that our

model has comparable accuracy to the DeLorean method for infer-

ring the posterior mean pseudotime across all datasets used in Reid

and Wernisch (2016) while converging considerably faster. The

sources of the speed up are threefold: an analytic rather a numerical-

ly assessed variational bound, a more robust sparse approximation

(VFE versus FITC) requiring fewer inducing points, and a scalable

software implementation (Matthews et al., 2017) allowing for lower

precision and GPU computation. The posterior mean from our

model agrees closely with the posterior mean from DeLorean in all

cases, but we find that the posterior variance of both the DeLorean

and GrandPrix variational inference algorithms can be underesti-

mated when compared to MCMC results (see Supplementary

Section 2.1). However, the DeLorean approach does not scale to

datasets with more than a few hundred cells (Saelens et al., 2018).

Our method therefore provides a practical approach to incorporate

prior information into pseudotime estimation but at the cost of

some loss in accuracy when assessing pseudotime uncertainties.

We have applied our model on droplet-based datasets to exam-

ine the robustness and scalability of our approach on much larger

datasets. Our model successfully estimates pseudotimes for

single-cell RNA-seq data of mouse embryonic stem cells (ESC) gen-

erated using the inDrop protocol. The Bayesian GPLVM estimated

pseudotimes are in good agreement with DPT whilst providing all

the benefits of a fully probabilistic model; namely quantification of

uncertainty in the pseudotime estimation which has been shown to

be of biological relevance (Campbell and Yau, 2016). To demon-

strate our models scalability, we have measured its performance on

a �68 k single-cell data of peripheral blood mononuclear cells and

the model converges in 6 min on this large dataset.

Finally, we have applied the model on single-cell qPCR of early

developmental stages to demonstrating its flexibility. We extended

the model to higher dimensional latent spaces where the interaction

of pseudotime with other factors, such as cell type differentiation,

can be captured. We demonstrated the importance of this additional

flexibility using a two-dimensional latent space where pseudotime is

estimated jointly with the developmental branching structure. As

extra latent dimensions can be used to describe other biological

functions, the model can be extended to include additional prior in-

formation on the other latent dimensions; for example the prior

could include information on branching dynamics extracted from

the application of branching models such as Monocle (Qiu et al.,

2017) and DPT (Haghverdi et al., 2016).

The model performs well across varying floating point preci-

sions. For droplet-based datasets we have run the model using both

32 and 64 bit floating point precision and the algorithm produces

similar estimation of pseudotime. We expect that in most cases, low

precision will be sufficient to understand the behaviour of the system

offering a way to further scale up our approach without the need for

more expensive hardware. Mixed precision computations would

also be possible with higher-precision computations performed only

on the most numerically critical parts of the algorithm maintaining

high accuracy whilst being significantly faster (Baboulin et al.,

2009).

The analysis of single-cell data creates the opportunity to exam-

ine the temporal dynamics of complex biological processes where

the generation of time course experiments is challenging or technic-

ally impossible. As single-cell data are becoming increasingly avail-

able in larger volumes, we believe scalable yet rigorous approaches

such as the Bayesian GPLVM we have presented, will become ever

more relevant. The flexibility of our approach can also reveal inter-

esting biological facts such as identifying branching points in the dif-

ferentiation pathways.
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Fig. 6. Single-cell qPCR of early developmental stages (Guo et al., 2010): (a)

and (b): The actual capture times against the estimated pseudotimes from the

2-D and 1-D model with informative prior. (c) and (d): The expression profiles

of the two known markers genes against the estimated pseudotime shows

the time series experiments describing how the genes behaves differentially

across the differentiation stages
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