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Abstract

During embryogenesis, tissues and organs are progressively shaped into their functional 

morphologies. While the information about tissue and organ shape is encoded genetically, the 

sculpting of embryonic structures in the 3D space is ultimately a physical process. The control of 

physical quantities involved in tissue morphogenesis originates at cellular and subcellular scales, 

but it is their emergent behavior at supracellular scales that guides morphogenetic events. In this 

review, we highlight the physical quantities that can be spatiotemporally tuned at supracellular 

scales to sculpt tissues and organs during embryonic development of animal species, and connect 

them to their cellular and molecular origins.

Introduction

From the branching geometry of lung or kidneys to the structure of limbs and digits, tissue 

and organ morphology is intimately related to proper organ function and, therefore, to the 

survival of the organism. A myriad of works over the past several decades have revealed a 

critical role of signaling molecules in orchestrating cellular events during tissue and organ 

morphogenesis[1]. However, despite their key role in developmental processes, even a 

detailed knowledge of the signaling molecules and their connections to cellular events 

cannot, per se, provide a complete understanding of morphogenetic events during 

development. Tissues and organs are also physical objects (materials) that are sculpted in the 

3D space during embryonic development, as highlighted by D’Arcy Thompson a century 

ago[2] and generally acknowledged today. While the current knowledge of the molecular 

control of morphogenesis dwarfs our understanding of how embryonic structures are 
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physically built, the development of new techniques to quantify mechanics within living 

embryos[3] and the advent of interdisciplinary approaches[4], have sparked new and rapidly 

increasing interest in the physical aspects of embryonic development.

From a physical perspective, embryonic tissues are complex, active materials, with the 

ability to self-shape, remodel and, in some cases, even self-heal or regenerate. Regardless of 

their complexity, any material is subject to fundamental physical laws that constrain how 

mechanical forces propagate in the structure and how addition of new material (e.g., via cell 

proliferation) is spatiotemporally redistributed. However, there are several physical 

quantities that remain largely unconstrained by physical law and can be genetically 

controlled and spatiotemporally modulated by cells to sculpt tissues into virtually any 

desired shape. Similar to sculpting inert materials (e.g., clay molding or even 3D printing), 

shaping embryonic tissues and organs requires fine spatiotemporal control of several 

physical quantities to attain the desired functional morphology.

Inspection of the fundamental physics governing material (tissue) morphogenesis highlights 

three physical quantities that can be modulated and, therefore, can be used to shape tissues 

and organs: volumetric growth, tissue material properties and active forces (Fig. 1A; Box 

1). Both inhomogeneities and anisotropies (Box 1) in any of these quantities, or 

combinations of them, can be employed to sculpt the desired shape. For instance, the 

spatiotemporal control of a growth zone (proliferation zone) in the frontonasal mass of 

developing bird beaks has been shown to directly affect the adult beak shape in several avian 

species (Fig. 1B). While a narrow proliferation zone gives rise to the slender chicken beak, 

widening the proliferation zone widens the beak into a bill, as observed in ducks[5]. More 

strikingly, offsetting the proliferation zone posteriorly and dorsally bends the tissue, making 

the curved cockatoos beak[6]. Tight spatiotemporal control of apoptotic tissue regions 

(negative growth or loss of tissue) via programmed cell death can also be used to shape 

tissues and it is an essential mechanism of digit formation in vertebrates[7].

In contrast to the abovementioned examples, tissues can be shaped in the absence of growth. 

For instance, during ventral furrow formation in Drosophila, the regional control of active 

forces in the tissue via spatially-graded actomyosin activity, drives the tissue invagination 

necessary for gastrulation[8] (reviewed in[9]) (Fig. 1B). Beyond active forces, direct in vivo 
and in situ measurements of tissue mechanics during posterior axis elongation in zebrafish 

have recently revealed the existence of a fluid-to-solid transition in the tissue state that 

guides body elongation[10] (Fig. 1B). While the posterior-most elongating tissue is 

maintained in a fluid-like state, enabling tissue remodeling and changes in shape, the tissue 

progressively transits into a solid-like state as it moves anteriorly, establishing tissue 

architecture and mechanically supporting body elongation[10].

Below we discuss the cellular and molecular processes that affect each of these physical 

quantities during tissue morphogenesis, as well as the interplay (or coupling) between them.
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Volumetric growth

While uniform, isotropic volumetric growth causes the size of a tissue or organ to change, 

inhomogeneous growth or anisotropic growth can both lead to shape changes (Box 1). A 

number of cellular processes can lead to tissue volumetric growth, including cell 

proliferation or apoptosis (negative growth), changes in cell size, and deposition/degradation 

of extracellular matrix (ECM).

Cell proliferation/apoptosis is the most studied type of volumetric growth. In many 

embryonic tissues, cell proliferation is inhomogeneous, with some highly proliferative 

domains and regions with little proliferation which, as described above, can drive important 

morphogenetic changes (Fig. 1B). Several signaling molecules, such as BMP4 in beak 

development[5] or FGF, RA and BMP signaling in digit formation[11], have been shown to 

control the spatial localization of cell proliferation/apoptosis (Fig. 2; Table 1). Beyond the 

regional control of proliferation and/or programmed cell death, oriented cell divisions along 

specific spatial directions (anisotropic growth) are also known to contribute to tissue shape 

changes[12], as observed during germ band extension and wing imaginal disc 

morphogenesis in Drosophila[13,14], or during zebrafish gastrulation[15].

Secretion of extracellular matrix (ECM) by cells can considerably contribute to volumetric 

growth in specialized tissues, such as in cartilage, tendon or bone[16,17]. In contrast, in the 

less specialized tissues, such as those found at earlier developmental stages, ECM deposition 

does not strongly contribute to the volumetric growth of the tissue, but rather affects the 

tissue material properties (see below) and provides biochemical and biophysical cues for 

cells[17,18].

Although growth contributes to shaping tissues, in most cases it is not possible to explain 

morphogenetic events solely from volumetric growth, as has been shown, for instance, in 

limb morphogenesis[19,20]. Typically, spatiotemporal modulations in tissue material 

properties or active forces must occur in conjunction with growth to shape functional 

structures.

Active forces

Perhaps the most studied physical quantity in relation to morphogenesis is mechanical force 

and, more specifically, active cellular forces. Several cellular processes and structures can 

generate active forces and affect tissue form, including actomyosin contractility and cell 

volume changes.

The control of regions in the tissue with high actomyosin activity has been shown to be key 

for gastrulation movements in the fly embryo. During ventral furrow formation, a region of 

the tissue defined by the expression of Twist and Snail displays increased and pulsed 

actomyosin constriction that initiates the invagination of the tissue and gastrulation 

movements[8,21,22] (Fig. 1B). The large-scale spatial distribution of myosin and its 

anisotropy in the tissue are thought to drive global tissue morphogenetic flows during 

gastrulation[23,24]. Also in Drosophila, germband elongation has been shown to involve 

planar-polarized (anisotropic) distributions of actomyosin contractility[25]. Myosin is more 
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strongly localized at junctions oriented along the dorso-ventral direction, and less strongly 

localized at anterior-posterior junctions[26–28]; this anisotropy in myosin localization and in 

myosin flows within the cell[29] result in local anisotropic forces[28,30] that cause 

polarized cell intercalation, generating convergent extension movements and axis 

elongation[28,31,32]. Anisotropic force generation is also essential to morphogenetic events 

in vertebrates, including gastrulation movements[33] and early body elongation[34,35], 

where planar cell polarity controls force anisotropy during convergent extension[36]. Recent 

quantitative measurements of supracellular forces during zebrafish posterior axis elongation 

revealed a posterior-to-anterior increase in actively-generated mediolateral (anisotropic) 

forces associated to the thinning of the body axis, but not to its elongation[10]. Finally, 

recent experiments showed that tissue morphology in medaka hir mutants is strongly 

affected by gravity[37]. These defects appeared to be a result of reduced actomyosin 

contractility leading to a failure to correctly assemble fibronectin fibrils, presumably leading 

to reduced tissue tension and the flattening of the body.

Several of the abovementioned processes require the transmission and coordination of active 

forces across multiple cells. This coordination relies on the formation of supracellular actin 

cables that physically connect the cytoskeleton (and especially the cortices) of multiple cells 

through cell-cell adhesion proteins, such as E-cadherin, and connectivity between adhesions 

and the actin cytoskeleton via α-catenin and β-catenin[38–42] (Fig. 2; Table 1).

Changes in cell volume driven by osmotic changes can also generate constrictive forces in a 

tissue that can drive global tissue shape changes. An example of this is the caspase-mediated 

cell volume decrease seen in the Drosophila amnioserosa during dorsal closure. The 

collective cell shrinkage produces a contractile force, that works with the supracellular actin 

cable at the leading edge of the dorsal epithelium to close the epithelium over the dorsal 

surface of the embryo[43].

Tissue material properties

While active forces power cell movements, the material properties of the tissue define the 

morphogenetic movements that result from both active and passive forces in the tissue. 

There are several cellular processes and structures that impact the tissue material properties, 

including cortical actomyosin contractility, cell-cell or cell-matrix adhesion or ECM 

physicochemical state.

In tissues with little to no ECM between cells (except at tissue boundaries), tissue material 

properties depend strongly on the supracellular tissue architecture (Fig. 2), which is largely 

controlled both by the mechanics of cell-cell contacts, as well as on cellular processes like 

cell rearrangements and divisions[12,40]. Measurements in tissue explants from amphibian 

embryos have shown that different tissues are characterized by different elastic and viscous 

properties[44,45] and that axial tissues during body elongation display an actomyosin-

dependent temporal stiffening[45], which is thought to help increase the tissue mechanical 

integrity and maintain tissue architecture as development proceeds[45]. In addition, recent 

direct in vivo measurements of tissue material properties during zebrafish body axis 

elongation show the existence of an anteroposterior, N-cadherin-dependent gradient in tissue 
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viscoelasticity[46]. Since the material properties of the cellular microenvironment are known 

to strongly affect cell behavior, it is possible that spatial variations in tissue material 

properties act as differential biophysical cues. Indeed, recent experiments in amphibian 

embryos have revealed that head mesoderm stiffening triggers the collective migration of 

neural crest cells and coordinates key morphogenetic events, namely gastrulation movements 

and neural crest migration[47]. Other in vivo measurements of mechanical properties have 

focused on the mechanics at the cellular and subcellular scales[30,48] and revealed the 

material properties of cell-cell contacts directly. Recent experiments indicate that the 

viscoelastic dissipation at cell-cell contacts may stabilize the cell shape changes necessary 

for tissue morphogenesis during germ band extension in Drosophila[49].

More recently, comprehensive measurements of both forces and tissue material properties in 
vivo have revealed a fluid-to-solid tissue transition that guides posterior body axis 

elongation in zebrafish[10]. Posterior tissues were shown to display a less constrained 

cellular microenvironment (more extracellular spaces) and higher cell-cell contact active 

fluctuations, driving cellular rearrangements and effectively ‘melting’ the tissue into a fluid-

like state (plastic behavior; Box 1). After remodeling at the posterior end of the body, tissues 

progressively move anteriorly and turn solid-like through a jamming transition caused by 

increasing cellular confinement and smaller cell-cell contact active fluctuations. The solid-

like tissue state helps establish tissue architecture and mechanically supports the posterior 

extension of fluid-like tissues[10]. Cellular movements observed in chicken embryos during 

axis elongation[50], which are under the control of FGF signaling, are consistent with the 

physical mechanical of axis elongation reported in zebrafish embryos. In line with these 

observations, recent experiments suggest that cellular jamming also occurs during 

Drosophila gastrulation in epithelial tissues[51], affecting cell shapes and potentially 

restricting morphogenetic movements.

Spatiotemporal variations in matrix deposition or remodeling have been shown to affect 

morphogenetic events. For instance, branching morphogenesis is strongly dependent on 

proper fibronectin deposition for cleft formation[52] and also on the controlled 

spatiotemporal remodeling of the basement membrane[53]. While direct in vivo and in situ 

measurements of ECM mechanical properties within developing 3D tissues have never been 

achieved, it is thought that spatial variations in ECM assembly/remodeling can lead to 

spatiotemporal variations in its mechanical properties, thereby affecting morphogenesis[54]. 

Recent quantitative experiments have shown that the biased deposition of basement 

membrane during Drosophila oogenesis leads to anisotropic and inhomogeneous matrix 

mechanical properties, which constrict growth of the egg chamber medially and bias growth 

along the antero-posterior axis[55,56].

Interplay between physical quantities

Since the same molecular and cellular structures can affect multiple physical quantities, 

changes in a particular molecule or structure can lead to simultaneous changes in different 

physical quantities (Fig. 2). Indeed, changes in myosin II activity affecting cortical 

contractility can affect both active force generation and the tissue material properties[45]. 

More generally, the three physical quantities described above can be coupled, meaning that 
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changes in one quantity may lead to concomitant changes of another one. The interplay (or 

coupling) between physical quantities is essential to morphogenetic events, as highlighted in 

several key developmental processes.

Interplay between mechanical forces and cell proliferation.

When cells proliferate in a confined environment, the buildup of isotropic stresses can affect 

cell proliferation and anisotropic stresses can affect the orientation of cell division[12,57]. 

For instance, during the development of the Drosophila wing imaginal disc, cells in the 

center of the wing pouch are thought to be compressed and barely proliferate, whereas cells 

in the periphery experience circumferential tension and proliferate more, dividing along the 

directions of maximal tension1[57,58]. At pupal stages, a large scale tissue contraction 

subjects epithelial cells in the wing blade to anisotropic tension, which orients cells divisions 

(and coordinates other cell behaviors) to elongate the wing proximo-distally to properly 

shape it[59]. In the Drosophila dorsal thorax, the inhomogeneous distributions of anisotropic 

stresses have also been shown correlate with the spatial distribution of cell division 

orientation[60], with local cell shapes and strains affecting the cell division axis[61]. In 

zebrafish, cells of the enveloping cell layer divide along the direction of maximal tension 

during epiboly, thereby reducing the anisotropic stress in the tissue and aiding tissue 

movement toward the vegetal pole[62]. In mouse embryos, tension anisotropy in the limb 

ectoderm results in oriented cell divisions that facilitate cellular rearrangements and limb 

bud outgrowth[63].

Cell proliferation can also affect mechanics and morphogenesis. Recent experiments showed 

that spatially uniform cell proliferation can drive a mechanical instability causing the 

simultaneous formation of branches in the developing murine airway epithelium[64,65]. 

Moreover, differential proliferation in adjacent, physically connected tissues, has also been 

shown to drive a mechanical instability causing the looping pattern in the avian gut[66].

Interplay between mechanical forces and tissue material properties.

Active cell-scale forces have been recently shown to be necessary to fluidize embryonic 

tissues that would otherwise be in a solid-like state, directly relating cell-generated forces to 

tissue material properties[10]. Mechanical forces can both promote the secretion of new 

ECM or align previously established ECM, thereby affecting the tissue material properties 

and their anisotropy. During the formation of the heart in zebrafish, shear stress generated by 

blood flow promotes the synthesis of fibronectin1b via activation of the transcription factor 

klf2, resulting in the reorganization of cells in the heart tube and the proper development of 

the atrioventricular valve[67]. In tooth development, odontogenic differentiation is triggered 

by physical compaction of the mesenchyme (mesenchymal condensation), a process which 

results in the deposition of collagen VI which stabilizes the forming odontogenic stem cell 

niche[68,69]. Beyond the mechanical stimulation of matrix deposition, forces generated by 

cells in the ECM can orient the matrix fibers and lead to anisotropic mechanical properties. 

Recent in vitro experiments show that active cellular pulling on the ECM reorganizes the 

matrix, leading to the alignment of matrix fibers[70,71] that generates anisotropic 

mechanical properties which help define the direction of collective cell migration[72]. 

Finally, it has recently been shown that the interplay between tissue stiffness and active force 
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generation in adjacent tissue layers specifies the follicle pattern in the developing avian 

skin[73].

The couplings between physical quantities themselves and with signaling events contain 

essential information to gain a holistic understanding of tissue morphogenesis. With the 

development of new techniques to directly probe physical quantities in vivo[3], it is 

becoming possible to quantitatively study the molecular control of physical quantities and 

how these physical cues affect genetic programs during embryonic development.
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Box 1

Three physical quantities can be spatiotemporally tuned to guide tissue 
morphogenesis:

Volumetric growth –

the change in volume of a tissue (including negative growth, or shrinkage), generally 

involving exchange of matter with the environment. Such changes can be due to cell 

proliferation or programmed cell death, but also due to cell volume changes or 

extracellular matrix deposition.

Active forces –

forces generated by molecular and cellular mechanisms that consume energy (ATP or 

GTP-consuming processes), such as actomyosin contraction or polymerization of actin 

filament networks or microtubules. These forces are to be differentiated from passive 

forces that are not directly generated by cellular processes that employ energy 

consumption. These include elastic and dissipative forces (shear, crowding pressure, etc.). 

Mechanical stresses, defined as force per unit surface, can be active or passive following 

the definition detailed above for forces.

Tissue material properties –

The material (or mechanical) properties of a material, including living tissues, dictate 

how the material deforms or flows in response to mechanical forces. At supracellular, 

tissue scales, the mechanical properties not only depend on cellular structures (cortical 

tension or adhesion levels) but also on the local tissue architecture and extracellular 

structures (such as matrix). Tissue mechanical parameters include its stiffness (resistance 

to deformation), viscosity (resistance to flow), or viscoelasticity (time-dependent elastic/

viscous behavior), but also its plastic behavior, characterized by a yield stress, which 

quantifies the minimal mechanical stress needed to make the tissue flow like a fluid: 

below the yield stress, the tissue behaves like a solid and above like a fluid.

Any of these physical quantities can be isotropic or anisotropic and homogeneous or 

inhomogeneous, which are defined as:

Isotropic, anisotropic, homogenous and inhomogeneous physical quantities –

A physical quantity is isotropic if its properties are equal along all spatial orientations. 

Anisotropic physical quantities display differences along different spatial orientations. A 

physical quantity is homogenous if it is spatially uniform, i.e. if its magnitude does not 

change with spatial position. In contrast, inhomogeneous physical quantities vary from 

point to point in space, displaying differential variations in their magnitude. For instance, 

cell proliferation could be anisotropic (cells dividing along a specific spatial orientation, 

e.g., along an embryonic axis) and homogeneous (the division rate being the same at 

every point of the tissue). In contrast, cell proliferation could be isotropic (the cell 

division axis being randomly oriented) and inhomogeneous (the proliferation rate 

changing with location in the tissue).
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Figure 1 –. Sculpting tissues via spatiotemporal variations of key physical quantities.
A. The functional, morphological phenotype is ultimately achieved by controlling in space 

and time three physical quantities (physical level): volumetric growth, tissue material 

properties and active forces. Such control is, at least partially, due to gradients in signaling 

molecules in the tissue (signaling level). Cells within the tissue both sense and respond to 

local values of biochemical and physical cues (cellular level). B. Examples of 

morphogenetic processes for which spatiotemporal control of specific physical quantities 

have been identified. A localized cell proliferation zone (controlled region of volumetric 

growth) is essential to shaping bird beaks. Changes in the shape of the proliferation zone 

change the shape of the resulting beak, as illustrated for chicken and duck (dorsal views of 

developing beak) [5,6] (left). A fluid-to-solid transition between tissue physical states along 

the anteroposterior axis guides posterior body elongation in zebrafish[10]. In this case, the 

spatiotemporal control of fluid-like and solid-like tissue regions shapes the tissue (middle). 

In Drosophila, high levels of actomyosin contractility are restricted to a ventral region to 

enable invagination of the ventral furrow[9] (right). Dotted line indicates location of 

transverse cross sections shown on right.
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Figure 2 –. Control of physical quantities across scales.
The control of physical quantities at different scales (global tissue scale; supracellular scale; 

cell/subcellular scales) involves many molecular players and structures (Table 1). Multiple 

physical quantities are controlled simultaneously for coordinated morphogenesis. Global 
tissue scale: A tissue may contain gradients of growth (illustrated here by cell proliferation), 

active forces (illustrated here by tissue contractility), and material properties. These global 

gradients of physical parameters are defined by gradients of signaling molecules and 

signaling pathway activity. Supracellular scale: Emergent collective behavior arising from 

the interactions of cells in the tissue defines physical quantities at the supracellular scale. 

Therefore, physical quantities at these scales depend on the local tissue architecture, as well 

as the molecules involved in maintaining physical interactions between cells (e.g., 

connection of cytoskeletal structures across cells: adhesion complexes (orange diamonds), 

α-catenin and β-catenin, cortical actomyosin (red), etc.). Cell scale: Several cellular 

structures and molecules control cell mechanics. Active forces can be generated at the cell 

cortex via actomyosin contractility, via actin polymerization at the cell surface, via osmotic 
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pressure changes, etc. Changes in physical quantities at one scale typically affect other 

scales in the tissue, leading to coordinated development and morphogenesis.
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Table 1:

Biological control of physical quantities across scales

Physical Quantity

Scale Volumetric Growth Active Forces Material Properties

Global tissue • Spatial inhomogeneities in cell 
proliferation controlled by gradients 
in signaling molecules (BMP4, RA, 

FGF, etc.; see e.g.[5])
• Global tissue mechanical forces 

affect both orientation (anisotropy) 
and rate of cell proliferation (see 

e.g.[58,62]).

• Spatial inhomogeneities in active 
forces controlled by transcription 

factors spatial localization (see e.g., 
{Heer:2017hm, Leptin:1990ub})
• Force anisotropy controlled by 

planar cell polarity (see e.g., 
{Zallen:2004wg, Rauzi:2008gz, 

Wallingford:2000c})

• Unknown signaling control.

Supracellular • Cell proliferation/apopt osis. Cell 
shape and local forces affect both 

orientation and rate of cell division 
(see e.g., [60,61]).

• Extracellular matrix deposition 
(see e.g.{Kalson:2015ez,Rozario:

2010fz}).

• Supracellular actomyosin 
networks(see e.g. [21,40,41])

• Supracellular forces depend on cell 
adhesion and the connection of cell 
cortex and adhesion complexes (e.g. 
α-catenin) (see e.g. {Mongera:

2018wv,Vasquez:2016dy,Lecuit:
2015hd,Lecuit:2011ec })

• Collective cell migration[74]

• Supracellular mechanical properties 
depend on cortical tensions (seee.g.

{Heisenberg:2013tla, Lecuit:2007cw, Zhou:
2009hz}), cell-cell or cell-matrix 

adhesion{Mongera:2018 wv, Serwane:
2017ht}, extracellular matrix properties and 

remodeling (via matrix 
metalloproteinases{Bon nans:2014kn}), 
cell-cell rearrangements and extracellular 

spaces{Mongera:2018wv}, etc.
{Khalilgharibi:2016c z, Campas:2016gd}.

Cell/subcellular •Molecularregulators of cell 
growth, shrinkage, proliferation and 

apoptosis control cell and local 
tissue growth (see e.g., [43,75,76]).

• Acto-myosincontractility (e.g. 
cortical tension[40,41])

• Osmotic pressure changes (through 
ion channels[43])

• Actin polymerization, especially 
during collective migration (e.g. 

formation of filopodia and 
lamellipodia[74]).

• Intracellular cytoskeletal 
structures{Khalilgharibi :2016cz}, 
especially the cell cortex. Adhesion 

molecules. Connection of actin cortex to 
adhesion molecules {Vasquez:2016dy, 

Lecuit:2015hd}.
• Force generating molecules, especially 
non-muscle myosin II force generation at 

the cell cortex[40,41].
• Secretion of extracellular matrix 

components and matrix 
metalloproteinases[17,77].
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