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SUMMARY

Enhancer profiling is a powerful approach for discovering cis-regulatory elements that define the 

core transcriptional regulatory circuits of normal and malignant cells. Gene control through 

enhancer activity is often dominated by a subset of lineage-specific transcription factors. By 

integrating measures of chromatin accessibility and enrichment for H3K27 acetylation, we have 

generated regulatory landscapes of chronic lymphocytic leukemia (CLL) samples and 
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representative cell lines. With super enhancer-based modeling of regulatory circuits and 

assessments of transcription factor dependencies, we discover that the essential super enhancer 

factor PAX5 dominates CLL regulatory nodes and is essential for CLL cell survival. Targeting 

enhancer signaling via BET bromodomain inhibition disrupts super enhancer-dependent gene 

expression with selective effects on CLL core regulatory circuitry, conferring potent anti-tumor 

activity.

Graphical Abstract

In Brief

Analyzing integrative enhancer profiles and transcription factor dependencies, Ott et al. construct 

enhancer-based core regulatory circuits of chronic lymphocytic leukemia (CLL) and reveal a 

dominant and essential role for PAX5. BET inhibition disrupts CLL super enhancer networks and 

suppresses CLL growth.

INTRODUCTION

Measurements of epigenomic features, such as open chromatin regions and histone 

modifications, are useful indicators of genomic regulatory elements important for 

maintenance of cellular transcriptional states. This includes enhancers, non-coding cis-

regulatory elements that are bound by multiple transcription factors (TFs) to control cell-

type-specific gene expression through direct association with gene promoters (Spitz and 

Furlong, 2012). In-depth analyses of enhancer landscapes have begun to elucidate the 

mechanisms of cell-type-specific gene expression, including the dynamics of transcription 

factor binding and chromatin organization during tissue differentiation, and their 

contribution to the etiology and progression of disease (Corces et al., 2016; Roadmap 

Epigenomics Consortium et al., 2015).
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We and others have reported that when assessed genome-wide, enhancer magnitude displays 

an asymmetrical distribution with distinct clusters of individual elements defining a subset 

of super enhancers (SEs) (Chapuy et al., 2013; Lovén et al., 2013). All cell types display 

asymmetrical patterns of enhancer magnitude, with up to 40% of enhancer-associated factors 

associated with SEs (Whyte et al., 2013). SE domains are defined using a rank-ordering 

algorithm that scores read density within regions of clustered peaks as measured by 

enhancer-bound factors or associated histone marks. When rank-ordered, SEs are discovered 

as the minority of clustered regions (typically ~3-5%) found to be asymmetrically larger 

than most ‘typical’ domains. SEs are enriched in disease-associated SNPs including those 

that predispose to cancer (Oldridge et al., 2015); maintain expression of lineage-defining 

transcriptional programs in stem cells (Adam et al., 2015); are sites of focal amplification 

and somatic alteration in cancer (Mansour et al., 2014; Zhang et al., 2015); and enforce 

expression of previously unrecognized tumor dependencies (Chapuy et al., 2013). 

Identification of SEs can also be used to define the TF core regulatory circuitry (CRC) of a 

given cell type (Saint-André et al., 2016). These core TFs self-regulate via inward binding to 

SEs within their own genic locus, while also regulating a coordinated set of TFs via SE 

binding, together forming an interconnected auto-regulatory loop. A well-established CRC 

exists in embryonic stem cells (ESC), where the core TFs essential for ESC identity OCT4, 

SOX2, and NANOG regulate themselves and each other through SEs (Boyer et al., 2005; 

Whyte et al., 2013). Identification of CRCs in tumors such as medulloblastoma can reveal 

clues pertaining to cell of origin and putative gene regulatory drivers of the oncogenic state 

(Lin et al., 2016). While targeting TFs directly with therapeutics remains a challenge, SEs 

can be hypersensitive to drugs that directly target enhancer-associated factors such as the 

bromodomain and extraterminal domain (BET) proteins and transcriptional kinases, offering 

a potential pharmacologic means to target cancer cell CRCs (Kwiatkowski et al., 2014; 

Lovén et al., 2013).

Here, we use a combination of genome-wide H3K27 acetylation (H3K27ac) and chromatin 

accessibility assays to define the global SE architecture and circuitry of the CLL epigenome. 

CLL is an incurable B-cell malignancy that is the most common hematologic malignancy in 

adults in the western hemisphere (Chiorazzi et al., 2005). CLL is clinically and molecularly 

heterogeneous, with 13q deletion the most recurrent abnormality (present in >50% of CLL 

patients). Other genetic and molecular events, including different recurrent copy number 

alterations (Brown et al., 2012; Edelmann et al., 2012; Grubor et al., 2009; Pfeifer et al., 

2007), somatic coding and non-coding mutations (Landau et al., 2013; Landau et al., 2015; 

Puente et al., 2015; Wang et al., 2011), gene expression changes (Klein et al., 2001; 

Mansouri et al., 2012), and aberrant DNA methylation (Kulis et al., 2015; Landau et al., 

2014; Oakes et al., 2016) tend to occur in less than 20% of patients each.

The genetic heterogeneity of CLL thus presents limited opportunities for mutation-targeted 

therapy. However recent development of therapeutic agents that target B cell signaling 

pathways, including CD20-directed antibodies and small-molecule antagonists of B cell 

receptor pathways (BTK inhibition with ibrutinib, PI3Kδ inhibition with idelalisib) reveal 

that effective treatments may be realized by targeting essential dependencies that define CLL 

cell state. Here, we have undertaken the complete characterization of the active cis-

regulatory landscape of the CLL epigenome and explore SE analysis to enable the 
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identification of more universal drivers that underlie tumor cell specification, including CLL 

CRCs.

RESULTS

Histone acetylation and transposase hypersensitivity reveal active CLL enhancers

To map the enhancer landscape of the CLL genome, we employed ChIP-seq for the 

enhancer histone mark H3K27ac and assessed open chromatin regions by the assay for 

transposase accessible chromatin (ATAC-seq) (Buenrostro et al., 2013). We assembled a 

cohort of 23 primary B cell samples purified from the peripheral blood of treatment-naive 

individuals diagnosed with CLL. This cohort represented the most prevalent known disease 

subtypes, including immunoglobulin heavy chain (IGHV)-mutated and unmutated, and 

ZAP70-positive and negative disease (Table S1). Each sample was confirmed by flow 

cytometric analysis to be CD19+/CD5+ double-positive with a purity of >93%. We found 

that >99% of the total H3K27ac domains and ATAC hypersensitive sites (HSs) were 

discovered after measuring 16 samples (Figure S1A,B), indicating that this dataset 

comprehensively reflects the total enhancer elements of the CLL epigenome.

Assessment of enhancer magnitude genome-wide revealed characteristic, genome-wide 

enhancer asymmetry, with a minority of enhancer domains enriched with exceptionally high 

levels of H3K27ac (SEs) (Figure 1A and Table S2). These SE domains are found near genes 

known or surmised to play a prominent role specifically in CLL pathobiology and/or broadly 

across tumor types, including CXCR4, CD74, PAX5, CD5, KRAS, and BCL2. Large 

H3K27ac SE domains make up <10% of all total domains across the genome for each 

sample (Figure S1C). However, total H3K27ac enrichment at SEs represents on average 

42% of total H3K27ac signal throughout the genome (Figure S1D), emphasizing the 

dominant nature these enhancer domains play in the transcriptional regulatory circuitry of 

CLL. At the BCL2 locus, a gene commonly transcriptionally upregulated in CLL and 

targeted by the recently FDA-approved agent venetoclax (Roberts et al., 2015), we observed 

a broad H3K27ac SE domain with concomitant open chromatin at the promoter, throughout 

intronic regions, and 3’ to the gene (Figure 1B).

H3K27ac and ATAC-seq HSs are highly correlated, suggesting the bulk of accessible 

chromatin occurs in regions associated with transcriptionally active chromatin domains, with 

ATAC-seq read density occurring within localized regions of H3K27ac depletion (Figure 

S1E,F). These open chromatin regions within discrete H3K27ac domains of SEs reveals the 

cis-regulatory DNA available for TF binding within the SE and can be resolved to individual 

TFs through motif identification. The paired assays provide a high-resolution dataset for 

interrogating the active enhancer-based transcriptional architecture of CLL.

Interrogating the genomic location of CLL HSs, we found that a majority (>60%) occur in 

non-coding intronic or intergenic regions greater than 3 kb from transcription start sites 

(TSS) (Figure S1G,H), similar to prior observations made in normal primary human cell 

types and other studies of CLL open chromatin regions (Rendeiro et al., 2016). Further 

evidence that these HSs are indicative of sites of transcriptional activity, we observe that 

DNA within HSs is largely unmethylated in CLL patient samples, with greater than 90% of 
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CpGs within HSs displaying no cytosine methylation based on comparison to an annotated 

cohort of methylated CpGs observed in CLL (Landau et al., 2014) (Figure S1I). When 

enhancers are binned by decile, we observe significantly more ATAC-seq HSs in the largest 

H3K27ac domains, suggesting that these enhancer domains are associated with a greater 

number of cis operator elements (Figure S1J). When all CLL HSs from our cohort are 

compiled we find that approximately 30% are unique to a single sample, with ~60% of total 

peaks occurring in less than seven samples (Figures 1C and S1K).

Amidst the regulatory heterogeneity among all samples, we discovered a common set of HSs 

that occur in at least 13 samples (22% of all HSs discovered across cohort), suggesting a 

conserved core of CLL gene control determinants. The cumulative incidence profile of 

H3K27ac peaks is similar to that of ATAC HSs, with a majority of peaks observable in only 

a third or less of the samples (Figures 1C and S1L). This profile is slightly shifted however 

with coincident ATAC HSs/H3K27ac with almost half (49%) present in greater than 13 

samples. When large enhancer domains such as SEs are assessed, we find that the degree of 

conservation among individual samples is greater than when total H3K27ac peaks are 

assessed with a majority (62.8% of SEs) present as an enhancer in at least 13 samples, 

including those at the loci of KRAS, CD5, PAX5, CXCR4, BCL2, and CD74. Together, 

these data suggest that these asymmetrically large domains dominate the conserved gene 

regulatory architecture of the CLL genome.

A distinct super enhancer signature in CLL

In order to discern a CLL-specific SE repertoire, we compared the CLL H3K27ac 

landscapes generated here with six H3K27ac enhancer landscapes derived from CD19+ 

peripheral blood B cells harvested from normal donors (normal B cells, NBC). Three NBC 

samples were obtained as a part of this study, and three others have been previously 

generated by other groups (Bernstein et al., 2010; The FANTOM Consortium et al., 2014). 

Differential peak analysis revealed a total of 199 SEs enriched in the CLL cohort, while 230 

SEs were NBC-enriched (Figure 2A). Proximal to NBC-specific enhancers included genes 

with evidence of lymphoma-suppressive functions such as BACH2 and BANK1 (Figure 2B). 

Enhancers whose signal was enriched in the CLL cohort included the BCL2 SE and CTLA4 
(Figure 2C), the inhibitory T-cell checkpoint factor previously shown to be overexpressed in 

CLL cells (Kosmaczewska et al., 2005). Differential expression based on previously 

published mRNA-seq data comparing CLL with NBC cells is highly correlated with SE 

status: genes proximal to an SE 'lost' in CLL have lower mRNA expression, while those SEs 

'gained' in CLL are associated with higher mRNA expression when compared to genes 

without significant changes in SE status (Figure 2D) (Landau et al., 2014). Thus, SE-

localized transcription factor dysfunction is likely a contributing factor to the widespread 

gene expression changes observed in CLL. While we do not observe differentiation of 

genetically defined molecular IGHV-mutated (IGHV-M) and IGHV-unmutated (IGHV-U) 

CLL-subtypes based on these variable SEs, direct differential analysis of the CLL samples 

by IGHV status revealed several SEs specifically enriched in IGHV-M and IGHV-U, 

including at the KLK2 locus (IGHV-U specific) and the ZBTB20 locus (IGHV-M specific)

(Figure S2), recently shown to display IGHV-M specific open chromatin (Rendeiro et al., 

2016).
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Transcription factor core regulatory circuitry of CLL

With the goal of understanding the critical TF interactions responsible for maintaining the 

CLL transcriptional program, we modeled transcriptional regulatory networks mediated by 

asymmetrically large enhancer domains. We utilized H3K27ac domains to define enhancer 

regions and ATAC-seq HSs to demarcate discrete cis-regulatory elements within these 

domains (Figure 3A) (Federation et al., 2018). From top-ranked enhancers, a subset was 

found in proximity to TF gene loci with acetylated promoters defined by ChIP-seq and these 

TFs defined the set of candidate nodes within the network. We confirmed physical TF gene 

promoter association with proximal SE by 4C-seq in the CLL MEC1 cell line at two TF loci, 

IRF8 and LEF1 (Figure S3A,B). Edges between nodes were established when a factor was 

found to have its DNA-binding sequence within an accessible regulatory region of another 

candidate TF. The total in-degree of a node is the sum of the number of TFs binding in its 

regulatory sequence, while the out-degree of a TF is defined as the number of other nodes it 

is regulating in the network. Importantly, using ATAC-defined HSs to demarcate TF binding 

regions dramatically reduces the search space for TF cis-regulatory sites when compared to 

previously used network modeling methods that rely on nucleosome-depleted regions 

(“valleys”) to define these elements (Ziller et al., 2015), with substantial enrichment in 

known co-regulating TFs (Figures S3C,D). Network edges were compiled into a complete 

transcriptional network, with TFs being assigned to auto-regulatory cliques that in turn co-

regulate an extended network or enhancer-associated genes. Scatterplots generated with 

calculated in-degree and out-degree for each sample reveal the most interconnected 

transcription factors (Figure 3B and S3E).

Among the most highly connected CLL TFs include known B cell lineage-defining TFs such 

as several IRF family members and PAX5, which displays a broad SE across the 5' end of its 

gene locus in both CLL and NBC (Figure S4). Other highly-connected TFs include FOXP1, 

RARA, ETS1, IRF2, and IRF8. From this analysis, we also discern enhancer-mediated auto-

regulatory cliques for each sample (Figure 3C and Table S3). Each clique can be scored 

based on the total connectivity of its constitutive TFs, and include master B cell TFs such as 

PAX5, which in turn regulate genes associated with CLL pathobiology such as BCL2, 
CXCR4, and CD83. We calculated a clique enrichment score (the percentage of total cliques 

in which a TF is a constituent member) for each TF in each sample. Clustering samples 

based on TF clique enrichment scores separated CLL from NBC samples, revealing intrinsic 

CRC differences between cell types (Figure 3D). These differences are driven in part by 

hyper-connectivity of PAX5 in CLL, which displays a higher average clique enrichment in 

the CLL cohort compared to NBC samples.

Identification of essential components of the CLL CRC

To mechanistically assess CLL cell dependency on individual TFs, we utilized four human 

cell lines derived from CLL patients (MEC1, MEC2, OSU-CLL, CII). These CLL cell lines 

are derived from primary CLL samples and transformed by Epstein-Barr virus infection, 

which likely has a significant effect on transcription factor activity. When we compare TF 

clique enrichment scores between a combined meta-analysis of the primary CLL networks 

and each individual CLL cell line, several TFs including ETV6, IRF2, and PAX5 displayed 

comparable enrichments between cell lines and primary samples (Figure 4A). Some TFs, 
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including FOXP1 were highly enriched in primary CLL cliques yet were not present in cell 

line networks. Conversely MYC, a gene known to be deregulated upon EBV infection of B 

cells, displayed high enrichment specifically in cell line circuits (Lacy et al., 1987).

We then used a pooled CRISPR screening approach to systematically knock out CLL CRC 

TFs in the MEC1 and OSU-CLL cell lines (Figure S5A). Cells were stably transduced with 

Cas9, and a library of ~3500 gRNAs was transduced covering a set of 147 core CLL TFs. 

Notably, of the 147 TFs assessed, only a minority were significantly depleted in the screens 

(Figure 4B,C and Table S4). In MEC1 cells, targeting 34% of TFs significantly reduced cell 

proliferation over the course of the screen (p value < 0.05); in OSU-CLL cells, 46% reduced 

proliferation. Among CRC constituent TFs, PAX5 knockout resulted in the most significant 

effect on cell proliferation in both cell lines (Figure 4C), revealing that this factor – essential 

for B cell development and differentiation – is the most essential and recurrent regulatory 

node within CLL TF networks. Notably, three other TFs that showed a high degree of 

essentiality in both cell lines - BATF, EBF1, and IRF4 - show little to no H3K27ac in 

primary CLL samples (Figure S5B).

In an orthogonal assay system in which gRNA vectors co-expressing GFP are transduced 

into Cas9-expressing CLL cell lines and GFP is tracked over a period of 30 days, gRNA 

expression that target Cas9 to the coding regions of PAX5 depleted GFP-positive cells in a 

time-dependent manner (Figure 4D). As negative controls, we used a non-cut-inducing 

gRNA that targets the luciferase gene and two gRNAs that cut within non-coding regions 

adjacent to the locus (to control for potential gene copy-number-associated genome-cutting 

effects), and a positive control gRNA targeting the essential RPS19 gene. Five PAX5-

targeting gRNAs displayed similar dropout-out dynamics across 3 CLL cell lines tested, 

while negative control gRNAs had no effect. Four out of the five PAX5-targeted gRNAs 

reduced cell growth with remarkable consistency, typically with similar dynamics to the 

positive control RPS19 essential gene knockout. On-target disruption of the PAX5 locus 

with selected gRNAs was confirmed through the Tracking of Indels by Decomposition 

(TIDE) analysis and immunoblotting following select gRNA transduction and sorting for 

GFP-positive cells (Figure S5C,D). Notably, we observed a high correlation between results 

obtained from the pooled screen and GFP-depletion assays for a panel of CLL TFs, 

confirming a competitive growth disadvantage of CLL cells with PAX5, MYC, IKZF1, 
IKZF3, and RARA disruption, while CRISPR reagents targeting NFATC1, NFATC2, 
PPARA, LEF1, and IRF8 had relatively little effect (Figure S5E).

We compared these results to five gRNAs targeting the genes of established therapeutic 

protein targets in CLL: BCL2, BTK, and PI3KCD (Figure S5F). These gRNAs target either 

the 5’ end of the genes, or their functional domains targeted by their respective drug 

inhibitors. While selective depletion of most gRNA-expressing cells was observed in the 

MEC1 cell line, the dynamics of drop-out was shallower, highlighting the unique growth 

disadvantage conferred by PAX5 loss in these cells.

BET bromodomain inhibition leads to disruption of CLL CRC expression

In a number of contexts, expression of genes driven by SEs can be perturbed to a selective 

degree by BET bromodomain inhibitors (BETi) (Gröschel et al., 2014; Lovén et al., 2013). 
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Thus, while no pharmacologic agent exists to specifically target PAX5 or most other 

members of the CLL CRCs, we explored the possibility that BETi might decrease CRC gene 

expression through enhancer disruption. BETi have apparent antiproliferative activity in 

preclinical models of several lymphoid malignances (Delmore et al., 2011; Ott et al., 2012). 

These studies and others have spurred ongoing clinical trials of this therapeutic class in 

lymphoid malignancies (NCT01713582, NCT01949883, NCT02308761).

To understand the transcriptional consequences of BETi in CLL cells, we treated four cell 

lines for six hours with the prototype BETi JQ1 and harvested mRNA for complete 

quantitative transcriptomic studies. In each cell line tested (MEC1, MEC2, OSU-CLL, CII), 

JQ1 treatment led to a significant decrease in SE-driven gene expression when compared to 

genes associated with typical enhancers (TE) (Figures 5A and S6A). This included a 

selective decrease of TF genes constituent within the CRC (Figure S6B). When JQ1 effects 

on CRC TFs are parsed further, we observe that effects on CRC mRNA levels cluster into 

TFs that are more highly affected and those that are relatively less affected. Among the 

selectively perturbed CRC members are TFs shown by our CRISPR screening to be essential 

for competitive cell proliferation, including PAX5, MYC, IKZF1, and RARA (Figure 5B). 

Downregulation of IKZF1, PAX5, and c-MYC protein levels with short-term JQ1 treatment 

was confirmed with immunoassays (Figures S6C,D,E). We also performed mRNA-seq on 

primary CLL cells and NBCs and found that global effects on the transcriptome with JQ1 

treatment are highly correlated between the two cell types (Figure 5C). This included 

significant down regulation of CRC TF genes PAX5 and IKZF1. Among all TFs expressed 

in the primary CLL samples, PAX5 and IKZF1 are among the most downregulated genes 

with short-term JQ1 treatment (Figure 5D).

BET bromodomain inhibition is an effective strategy to target CLL cell growth

To further explore whether BETi may be a therapeutic option for CLL, we treated a panel of 

available CLL cell lines with a broad dose range of JQ1 and other BETi. For comparative 

analysis, we included other agents used for targeted therapy in CLL (venetoclax, ibrutinib, 

idelalisib), and the chemotherapeutic agent fludarabine. Treatment effects of these agents 

clustered by target class, with all BET inhibitors clustering together (Figure 6A). BET 

bromodomain inhibitors were broadly more effective as antiproliferative agents across the 

cell lines tested when compared to the other drugs (Figure 6A,B).

JQ1 can selectively inhibit the chromatin association of BET family members, which include 

BRD2, BRD3, BRD4, and the testis-specific protein BRDT. As JQ1 treatment alone cannot 

independently assess differential dependency of CLL cells to BET protein activity, we used 

CRISPR targeting of each family member expressed to assess which BET factors may be 

responsible for promoting CLL cell proliferation in culture. We found that gRNAs targeting 

the BRD3 locus had relatively little effect on cell proliferation; gRNAs targeting the BRD2 
locus generally had a moderate effect; and most gRNAs targeting BRD4 had the most 

pronounced effect (Figure 6C).

Significant effects on viability were also observed with JQ1 treatment of four primary CLL 

patient samples, with dose-dependent effects at both 24 and 48 hours (Figure 7A). JQ1 

treatment also resulted in an increase in apoptotic cells in each of the four primary CLL 
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samples (Figure 7B and S7A,B), with similar effects observed in NBC (Figure S7C). We 

then used a modified in vivo model of CLL with a luciferase-expressing version of the 

MEC1 cell line engrafted into Rag2−/−γc
−/− mice by tail vein injection (Bertilaccio et al., 

2010). This model closely recapitulates an aggressive form of disseminated CLL with rapid 

development of systemic disease. Daily treatment of mice with JQ1 (50 mg/kg by 

intraperitoneal injection) led to a significant decrease in tumor burden as measured with 

serial assessment of whole-body bioluminescence (Figure 7C,D). Importantly, JQ1 also led 

to an increase in overall survival compared to vehicle treated mice (p = 0.0005) (Figure 7E). 

Together, these data establish BET inhibition as promising for further exploration in 

translational model systems of CLL and potential clinical investigation.

DISCUSSION

Enhancers have long been recognized as facilitating augmented expression of genes in 

cancer, particularly in hematopoietic malignancies. Here we describe efforts to map and 

dissect enhancer loci in CLL, an incurable B cell disorder typified by heterogeneous genetic 

and DNA methylation profiles. Whole-exome sequencing studies have identified recurrent 

somatic mutations in coding regions of a number of genes including TP53, SF3B1, 
NOTCH1, and MYD88, as well as significant inter- and intra-tumoral heterogeneity (Landau 

et al., 2013; 2015). Whole-genome analysis of 150 CLL samples revealed disrupted gene 

regulatory sites in distal enhancers of the PAX5 locus (Puente et al., 2015), and a very recent 

study from the same group profiled the epigenomic features of a large CLL cohort and panel 

of normal B cell subtypes, revealing dysregulated enhancers in CLL subtypes including 

IGHV-M and IGHV-U cases (Beekman et al., 2018). Another cohort of CLL samples has 

also recently been assessed by ATAC-seq, revealing subtype-specific open chromatin 

signatures of CLL (Rendeiro et al., 2016). By using complementary assay technologies – 

chromatin accessibility as a biophysical readout of the CLL epigenome, and H3K27ac 

histone immunoprecipitation as a biochemical signifier of enhancer activity – we have 

captured the active regulatory landscape of the CLL epigenome. Individually these assays 

are capable of identifying regulatory element domains. Analysis methods described here 

specifically report on the size distribution of these domains, systematically identifying SE 

and more typical enhancer domains, and use them to define the densely interconnected 

transcriptional networks of CLL. Uniquely, the combination of both assays can identify the 

precise TF-bound hypersensitive elements within large enhancer domains. This enables 

precise identification of enhancer-defined TF networks active in CLL. We do note that 

unlike genomic sequencing and DNA methylation analysis, the epigenomic assays included 

here do not resolve the intratumoral heterogeneity known to exist in CLL. However, 

emerging single cell epigenomic assays such as single cell ATAC-seq are quickly maturing, 

and may soon be used to appraise regulatory network heterogeneity within CLL and during 

treatment (Buenrostro et al., 2018).

This systematic identification of active CLL regulatory elements has led to several enabling 

observations. By constructing the CLL-specific TF regulatory network using enhancer 

profiles, we are able to identify the critical TF nodes that enforce the CLL epigenome. This, 

coupled with systematic knockout screening using robust CRISPR/Cas9 technology, enabled 

us to discern the critical, essential nodes of the CLL enhancer architecture. The PAX5-
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mediated transcription circuit emerged as a singularly essential node in CLL. PAX5 is 

known to be essential for B cell development, and has been implicated in promoting 

lymphomagenesis by directly activating components of the B cell receptor signaling 

pathway (Cozma et al., 2007). Expression of PAX5 along with other essential TFs can be 

perturbed with the BET bromodomain inhibitor JQ1. Treatment with JQ1 led to dramatic 

inhibition of cell proliferation and proved efficacious in xenografted mice with disseminated 

CLL tumors. Recently, a structurally dissimilar BET inhibitor PLX51107 was reported to 

have similar effects in pre-clinical models of CLL, with transcriptional disruption of B cell 

receptor signaling genes in proximity to BRD4-bound super enhancers including PAX5 
(Ozer et al., 2018). Thus, this class of pharmacologic agent may prove useful for CLL 

therapy, perhaps in combination with other agents targeting B cell signaling.

In conclusion, we demonstrate that cis-regulatory element discovery in primary cancer cells 

is a useful tool for uncovering tumor-specific hallmarks and active TF regulatory pathways. 

This analysis, coupled with large-scale functional genetic experiments, resolves the critical 

factors necessary for transcriptional networks. This type of epigenomic analysis 

complements other more well-established analyses of cancers like whole-exome and whole-

genome sequencing and captures information about the essential active regulatory networks 

inaccessible by genetics-based approaches alone. We anticipate that these analyses will 

provide a framework for describing the epigenetic state of primary tumor samples and will 

be useful in identifying TF and other dependencies representing potential therapeutic targets.

STAR METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact Christopher J. Ott at christopher.ott@mgh.harvard.edu.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Primary samples—Peripheral blood samples from CLL patients were collected and 

viably frozen as part of an IRB-approved tissue banking protocol at the Dana-Farber Cancer 

Institute and all patients signed written informed consent prior to having the sample drawn. 

For samples with white blood cell count <25 K or absolute lymphocyte count <20 K, B cells 

were purified using the Easy Sep Human B cell Enrichment Kit (StemCell Technologies 

Inc.) according to the manufacturer's instructions. Following thawing, sample purity was 

confirmed by flow cytometry monitoring CD5/CD19 expression on a BD FACSAria II 

(antibodies: BV421 mouse anti-human CD5, #562646 and HIB19 APC mouse anti-human 

CD19, #555415, both from BD Pharmingen). Gender, age of diagnosis, and relevant genetic/

immunophenotypic features of each sample are included in Supplemental Table 1. Normal B 

cell samples were harvested and purified from discarded material donated by normal healthy 

adults through the Kraft Family Blood Donor Center at the Dana-Farber Cancer Institute and 

Brigham and Women’s Hospital. Ten milliliters of peripheral blood was purified by Ficoll 

gradient, and B cells were enriched in the sample with a negative selection cocktail 

(RosetteSep, StemCell Technologies #15024).
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Cell lines—MEC1, MEC2, and HG3 cells were obtained from DSMZ and cultured in 

RPMI with 10% FBS (Rosén et al., 2012; Stacchini et al., 1999). OSU-CLL cells were a 

kind gift from A. Johnson (The Ohio State University Cancer Center, Columbus) and 

cultured in RPMI with 10% FBS (Hertlein et al., 2013). CII cells were a kind gift of M. 

Kwok (Birmingham, UK) and A. Rosen (Linkoping, Sweden) and cultured in RPMI with 

10% FBS (Karande et al., 1980). PCL12 cells were a kind gift from E. Ten Hacken (DFCI, 

Boston) and C. Scielzo (UniSR, Milan) and cultured in RPMI with 10% FBS 

(Agathangelidis et al., 2015). MDA-BM5 cells were a kind gift from E. Ten Hacken (DFCI, 

Boston) and I. McNiece (MD Anderson, Houston) and cultured in MEM Alpha with 20% 

FBS (Kellner et al., 2016). All cell lines were cultured at 37°C with 5% CO 2.

Animal studies—All animal studies were performed according to Dana-Farber Cancer 

Institute Institutional Animal Care and Use Committee-approved protocols. The CLL cell 

line MEC1 was engineered for in vivo imaging by transduction with VSV-G-pseudotyped 

lentivirus encoding firefly luciferase, mCherry, and puromycin-N-acetyltransferase. Five 

million cells were injected into 6-8 week old female Rag2−/−γc
−/− mice (The Jackson 

Laboratory, C;129S4-Rag2tm1.1FlvIl2rgtm1.1Flv/J) via the lateral tail vein. Disease burden was 

quantified using bioluminescent imaging. Eleven days following MEC1 cell injection, mice 

with established disease were randomly divided into two cohorts with equal mean 

bioluminescence and treated once daily with 50 mg/kg JQ1 or vehicle (10% (2-

hydroxypropyl)-β-cyclodextrin (Sigma H107) in 0.9% sterile saline) via intraperitoneal 

injection. Mice were treated until presentation of moribund features, as determined when 

mice were observed with paralysis, emaciation or dyspnea at which point mice were 

immediately euthanized with CO2.

METHOD DETAILS

ATAC-seq—ATAC-seq was performed with 50,000 viable cells as described with minor 

modifications (Buenrostro et al., 2013). Transposition reactions were performed for 1 hr at 

37° C, followed by purification and sample barcoding by PCR. Samples were sequenced on 

an Illumina HiSeq 2000 or 2500 in paired-end mode with 100 × 100 cycles. ATAC-seq for 

MEC1, MEC2, OSU-CLL, and CII cells was performed as above after cells were grown in 

RPMI-1640 supplemented with 10% FCS. MEC1, MEC2, OSU-CLL and CII ATAC-seq 

libraries were sequenced on an Illumina NextSeq in paired-end mode with 75 × 75 cycles. 

Raw sequencing data was mapped to the hg19 build of the human genome with Bowtie2 

v2.3.0 with default settings and the parameters –p 4 –k 1 (Langmead and Salzberg, 2012). 

Mapped reads were filtered to remove duplicate reads, those reads mapping to mitochondrial 

DNA and to regions in the ENCODE blacklist. Reads mapping to the forward strand were 

shifted forward 4 bp and reads mapping to the reverse strand were shifted backwards 5 bp. 

ZINBA v2.03.1 was then used to find peaks with extension=200, winSize=300 and 

offset=75 and default settings (Rashid et al., 2011).

Chromatin immunoprecipitation—Chromatin immunoprecipitation was performed 

with 3 million primary CLL cells per sample using an anti-H3K27ac specific antibody 

(Abcam #ab4729). ChIP procedure was performed as previously described (Chapuy et al., 

2013). Samples were sequenced on an Illumina HiSeq 2000 or 2500, paired-end, 100 × 100 
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cycles. Cell lines were sequenced on an Illumina NextSeq in single-end mode 75 cycles. 

Raw sequencing data was mapped to the hg19 build of the human genome with Bowtie2 

v2.3.0 with default settings and the parameters –p 4 –k 1. Mapped reads were filtered to 

remove duplicate reads, and to regions in the ENCODE blacklist. MACS v1.4 was used for 

peak identification with a p value cutoff of 1e-6 (Zhang et al., 2008). Comparisons of 

genomic loci were performed with BEDOPS v2.4.21 and mapping reads to genomic loci 

was performed with Bamliquidator v1.2.0 (Lin et al., 2016; Neph et al., 2012). Enhancer 

identification was carried out using ROSE2 (https://github.com/BradnerLab/pipeline) (Lin et 

al., 2016).

Super enhancer analysis—Super enhancers were defined using the Rank Ordering of 

Super Enhancers (ROSE2) algorithm (Lin et al., 2016). For all samples, the stitching 

distance was fixed at 12.5 kb to facilitate comparisons between samples. All other 

parameters used the default setting. Gene targets from the ROSE2 

ENHANCER_TO_TOP_GENE.txt file was used for defining the target genes of super 

enhancers for subsequent analyses.

Characterization of genomic loci—Comparisons of genomic loci were performed with 

BEDOPS v2.4.21 (Neph et al., 2012). BED files containing ATAC-seq or ChIP-seq peaks for 

an indivudal sample were sorted with the sort-bed function. For downstream analyses, peaks 

were merged by disease state (CLL or NBC) using the bedops –merge function. Peak 

distribution analysis was performed with CEAS (Shin et al., 2009). The gene annotation 

sqlite3 file is provided by the Liu Lab in the software manual. The BED files used were the 

merged BEDs described above. Promoters were defined as those falling within 1kb of the 

annotated transcriptional start site. Additional annotations (intron, exon, UTR) are defined in 

the gene annotation file.

Sample saturation analysis—BED files for the peaks of interest in each sample were 

used, and the order by which to aggregate the peaks was randomly permutated. The number 

of peaks present in the first sample was counted, then merged with those in the second 

sample and counted again. This merged set was then combined with the third sample and 

counted, and this algirothm was continued until all samples were merged. Ten different 

permutations were considered and standard deviations of the number of peaks present after 

each iteration were plotted.

Differential enhancer analysis—To identify variable SE domains enriched in either 

CLL or NBC we defined the union of all SEs discovered across the CLL and NBC cohorts, 

and used DESeq2 which can robustly estimate within-group variance in sample cohorts 

controlling for GC content of analyzed regions and technical variability in sample read depth 

within SEs (Love et al., 2014). Reads in all SE regions were quantified with the Rsubread 

Bioconductor R package using paired-end mode (Liao et al., 2013). Multi-overlapping read 

assignment was resolved by the length of overlap, and overlapping regions were resolved 

using chromVAR 'filterPeaks' function, removing all but the highest count region for each 

set of overlapping regions (Schep et al., 2017). GC content for each region was calculated 

using the Biostrings Bioconductor package (Pagès et al., 2018). EDASeq was used to 
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generate offsets first with 'EDASeq::withinLaneNormalization' and subsequently with 

'EDASeq::betweenLaneNormalization' (Risso et al., 2011). Normalization factors were 

transformed such that geometric means of each row of the offset matrix are equal to 1. 

DESeq2 was then run with the formula '~ CONDITION', where CONDITION has levels 

'CLL' and 'NBC'. Results for CLL versus NBC were extracted and log fold changes were 

shrunk using the 'apeglm' package. Differential SEs were defined as those with a Benjamini-

Hochberg adjusted p value < 0.1. Heatmap was generated using the R package iheatmapr, 

with clustering performed by euclidean distance calculated with the base r stats::dist 

function (R Core Team, 2013; Schep and Kummerfeld, 2017).

Transcriptional regulatory networks—Network construction utilized the coltron 

python package (https://pypi.python.org/pypi/coltron), which is adapted from Saint-André et 

al. to include information from ATAC-seq and across multiple samples (Saint-André et al., 

2016, Federation et al., 2018). Scripts used to perform network analysis is available at 

github.com/BradnerLab/CLL_TFnetworks_2018. To define the set of TF nodes for 

constructing the transcriptional regulatory network of each sample using paired ATAC-seq 

and H3K27ac ChIP-seq datasets, we assigned the top 1000 enhancers in the H3K27ac 

enhancer rank-ordered list to nearby highly acetylated gene promoters using the following 

strategy: Promoters overlapping the stitched enhancer region are given priority for 

assignment. If that condition is not met, then all genes with promoters overlapping an 

H3K27ac peak contained within 100 kb of the enhancer are assigned. If neither of those 

conditions find a suitable gene assignment, the enhancer is assigned to the closest promoter 

overlapping a peak of H3K27ac ChIP-seq.

Then, discrete ATAC-seq peaks within the large H3K27ac enhancer domains were identified. 

The underlying sequence from these peaks was extracted and FIMO v4.91 was used to 

search for binding sites of node TFs in these peaks with a p value of < 1e-4. TF position-

weight matrices were taken from Transfac and Jaspar (Grant et al., 2011; Mathelier et al., 

2013; Matys et al., 2006). This motif file is included in the distribution of the coltron 

package. When a motif of gene A was identified in an enhancer of gene B, an edge was 

drawn in the network between gene A and the gene B. To build a representative network of 

all primary CLL samples, the network construction algorithm described above was 

performed on merged enhancers from all primary CLL samples. Rank-ordering of enhancers 

for the consensus network was performed by summing the read density in each enhancer 

across all samples. The algorithm was run with 13 individual CLL samples (CLL-1 - 

CLL-13) and 3 NBC samples for which paired ATAC-seq and H3K27ac ChIP-seq datasets 

were generated, along with four CLL cell lines (MEC1, MEC2, OSU-CLL, CII).

In all networks, in-degree for TFx is defined as the number of nodes with motifs found in 

any enhancer assigned to regulate TFx. Out-degree for TFx is defined as the number of nodes 

in the network which is regulated by an enhancer containing a motif for TFx.

CRCs for each sample were defined as the complete auto-regulatory TF network (clique) 

within each sample that comprised TFs with the highest clique score. After the complete 

construction of the network, a clique is defined as a subnetwork with a size of at least 4 

nodes where all nodes are connected to themselves and all other nodes within thet clique. 
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For each sample, the set of all cliques of size 4 or greater were defined. 'Clique enrichment' 

is defined for a specific TF as the percentage of all observed cliques within a sample in 

which that TF participates. 'Clique score', used to pick a top-ranked CRC, is defined as the 

average clique enrichment across an entire clique.

To generate extended networks, the same algorithm to identify TF binding within enhancers 

was utilized and applied to all of the top 1000 enhancers. ATAC-seq peaks within enhancers 

were identified, the underlying DNA sequence was extracted, then this sequence was 

searched for TF motifs for all node TFs within the network. These enhancers were then 

assigned using the TOP_GENE output from the ROSE2 software, which identifies the 

closest gene with an H3K27ac peak overlapping the promoter.

All heatmaps and clustering was performed using Morpheus software (https://

software.broadinstitute.org/morpheus). To define consensus SEs across CLL samples, we 

adapted the ROSE2 algorithm used to define enhancer magnitude from ChIP-seq datasets. 

H3K27ac-enriched peaks across all samples were stitched, followed by remapping of the 

read density to stitched regions in each sample. Each sample was internally normalized, then 

the regions were averaged and ranked, producing the characteristic asymmetric distribution 

of H3K27ac domains. Using this method, we observe 571 consensus SEs in the CLL 

epigenome representing 3.7% of total enhancer domains (n = 15,310).

4C-seq—MEC1 cells (~10 million) were harvested from cell culture media, washed 2X in 

cold PBS, and crosslinked with 1% formaldehyde at room temperature for 10 min. Libraries 

for 4C sequencing were prepared as described (Splinter et al., 2012). Each 4C library uses a 

combination of two enzymes; a primary restriction enzyme and a secondary restriction 

enzyme. For this study we used NlaIII/primary (NEB #R0125L) – DpnII/secondary (NEB 

#R0543M). In brief, nuclei were isolated, and the crosslinked-chromatin was digested 

overnight (O/N) at 37°C with the primary restriction enzyme. Following this step, a ligation 

reaction with T4 DNA ligase (NEB #B0202S) was performed O/N, 16°C. Next, samples 

were incubated at 65°C to de-crosslink the chromatin. Next, the secondary restriction 

enzyme was used (O/N, 37°C). This step was followed by a ligation reaction using T4 DNA 

ligase (O/N, 16°C). For each library, a linear range of amplification was determined by 

performing PCR using a titration of four different DNA template amounts (100 ng, 50 ng, 25 

ng and 12.5 ng). A 25 μl PCR (final volume) consisted of (all reagents listed are at final 

concentration): 1.75 U Expand Long Template Polymerase (Roche, #11759060001), 1X 

buffer 1 (supplied with Expand Long Template Polymerase), 30 picomoles of each primer 

(forward and reverse), 5 nanomoles of each dNTP and Milli-Q water to a total volume of 25 

μl. PCR conditions were 2 min 94°C, 10 sec 94°C, 1 min 55°C, 3 min 68°C, 29 times repeat, 

5 min 68°C and ∞ 4°C. The primer sequences are included in Supplemental Table 5. Once a 

linear range of amplification was determined, 16 independent reactions each using 200 ng of 

template was subjected to PCR (final volume of 50 μl). The final concentration for the 50 μl 

PCR reagents and PCR conditions were the same as described above. Next, all reactions 

were pooled and purified (High Pure PCR Product Purification Kit, Roche, #11732676001). 

For library preparation, 100 ng of the purified PCR product was used as input for the 

Rubicon ThruPLEX DNA-seq Kit, #R400407). All samples were barcoded and run on the 

Illumina NextSeq platform. We aimed to obtain 5 million reads per library. The 4C-seq data 
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was analyzed following the standard pipeline developed by Tanay and de Laat et al using the 

default parameters (van de Werken et al., 2012). The sequencing reads were first mapped to 

a set of reference sequences generated based on the primary and secondary restriction sites. 

Then, the reads that mapped to a certain locus were filtered and normalized to estimate a 

coverage profile, showing the enrichment of 4C reads on the genome with regard to the bait 

region.

Pooled CRISPR screening—Lentivirus was produced in 293FT cells by co-transfection 

of pMD2.G (Addgene #12259), psPAX2 (Addgene #12260), with spCas9-expressing 

plasmid (Addgene #73310). Viral supernatants were collected 60 hr after transfection, 

filtered through a 0.22 μm membrane and concentrated 20-fold with Lenti-X Concentrator. 

All cells lines were transduced by spinoculation at 2500 rpm for 1.5 hr at room temperature, 

and then incubated for 72 hr at 37 degrees/5% CO2. Cells were selected with blasticidin (10 

ug/mL) until resistant, spCas9-expressing cells grew out. Cas9 expression was confirmed by 

immunoblotting. Cells were maintained in 10 ug/mL blasticidin throughout the screen. 

Guide RNA libraries were designed by manually curating optimized sgRNA sequences 

using the Broad Institute GPP CRIPSRko tool (http://portals.broadinstitute.org/gpp/public/

analysis-tools/sgrna-design, (Doench et al., 2016); 20-40 gRNAs were designed to either 

knockout protein expression, or to create indels in functional domains such as DNA-binding 

domains. Transcription factor genes targeted in the library were chosen as the union of TFs 

that appear part of the enhancer-based core regulatory circuitry from the primary CLL 

analysis, MEC1 cells, MEC2 cells, and OSU-CLL cells combined. sgRNA sequences were 

purchased in pooled format (CustomArray, Inc), cloned by Gibson assembly in the LRG 

vector (Addgene #65656), and transformed into electrocompetent bacterial cells (Endura 

#60242-1, Lucigen). Pooled lentivirus was produced from the cloned library, and cells were 

transduced at approximately 5% efficiency (10 million cells total, >2800 cells per sgRNA). 

Cell numbers were maintained throughout passaging to maintain complexity, and cells were 

harvested 28 days post-transduction. Genomic DNA was extracted from samples with the 

QIAamp DNA Blood Maxi Kit (Qiagen, #51194), sgRNA sequences were amplified by two-

step PCR (extraction and subsequent barcoding) as described (Shalem et al., 2014). Samples 

were sequenced on an Illumina NextSeq 500 with single-end 75 base pair reads. Gene-level 

analysis was performed by RSA normalizing to plasmid DNA reads obtained by sequencing 

the untransduced library (König et al., 2007).

Competitive CRISPR GFP depletion assays—Cells were engineered to express Cas9 

by lentiviral transduction as described above. Co-expression of sgRNA and GFP was 

achieved by lentiviral transduction of the LRG plasmid cloned with individual sgRNA 

sequences (all sequences listed in Supplemental Table 5). Lentiviral transduction was 

performed in 12-well plates, one million cells per well, with spinoculation as described 

above. Media was replenished every two days, and flow cytometry to determine GFP+ 

percentage was performed at indicated time points in triplicate in 96-well plates (Guava 

Easycyte HT, Millipore).

mRNA-seq—Cell lines MEC-1, MEC-2, OSU-CLL, and CII were seeded into 6-well 

plates at a density of 800,000 cells/mL, 2 mL per well. Twenty-four hr following seeding, 
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cells were treated with either vehicle (DMSO, 0.1% final concentration) or JQ1 (1 μM) in 

triplicate for a total of 6 hr. For primary cell assays, cells were seeded onto plates coated 

with IgM solution (10 μL/mL diluted in PBS; Jackson ImmunoResearch 109-006-129) and 

treated with JQ1 one hour after seeding. Cells were harvested following 6 hr of treament, 

RNA was isolated using miRNeasy RNA isolation kit (Qiagen), and ERCC spike-in controls 

(Invitrogen) were added in order to normalize expression values to input cell number per the 

manufacturer's protocol and as previously described (Loven et al., 2013). Library 

preparation was performed with the TruSeq Stranded mRNA kit (Illumina), and libraries 

were sequenced on a NextSeq 500 in paired-end mode, 35 × 35 cycles. Reads were aligned 

to hg19 using HISAT with default parameters, and transcript abundance was assessed using 

cuffquant and cuffnorm using default parameters (Kim et al., 2015; Trapnell et al., 2010). A 

custom R script (normalizeRNAseq.R) was used to assess fold change statistics and 

normalize to spike-in controls (github.com/BradnerLab/pipeline).

Immunoassays—For analysis of PAX5 levels following CRISPR gRNA expression, 

MEC1 cells stably expressing Cas9 were seeded at a density of 1 × 106 cells per mL in a 

total volume of 2 mL in a 12-well plate. 50 μL of concentrated lentivirus carrying gRNA-

expressing LRG vector. After spinoculation, cells were expanded in culture for seven days 

then flow-sorted for GFP+ cells. Cells (1 × 105) were used TIDE analysis (see below) and 

the remainder were lysed in RIPA buffer; lysates were run on 4-12% gradient SDS-PAGE 

gels for electrophoresis. Immunoblotting was performed with the following antibodies: 

PAX5 (Abcam, ab183575); alpha-tubulin (Sigma Aldrich, T5168). Blots were incubated 

with species-specific fluorophore-conjugated secondary antibodies and imaged on a LICOR 

Odyssey Clx imaging system. For analysis of IKZF1, c-MYC, and PAX5 levels following 

JQ1 treatment, CII cells were seeded onto 6-well plates at a density of 8 × 105. Twenty-four 

hr following seeding, cells were treated with either DMSO vehicle or 1 μM JQ1. Twenty-

four hr following treatment, cells were harvested and lysed in RIPA buffer. Cell lysates were 

run on a ProteinSimple Wes capillary electrophoresis instrument using instrument default 

settings and manufacturer's standard protocol. Immunoassay was performed with the 

following primary antibodies: IKZF1 (Bethyl A303-516A); c-MYC (Santa Cruz N262); 

PAX5 (RD Systems MAB3487); β-actin (RD Systems MAB8929). Chemiluminescence was 

quantified by assessing the area under the curve, and total protein levels were normalized to 

β-actin controls.

TIDE assays—Genomic DNA from sorted PAX5 gRNA (gRNA-2 and Locus control 

gRNA-2)/Cas9-expressing MEC1 cells was harvested with DNeasy Blood & Tissue kit 

(Qiagen). PCR reactions were performed with primers listed in Supplemental Table 5. The 

forward primers were used to sequence each PCR amplicon, and TIDE analysis was 

performed using available software (tide.nki.nl) (Brinkman et al., 2014).

Cell viability assays—For cell line assays, cells were plated in 384-well plates at a 

seeding density of 5,000 cells/mL in RPMI media supplemented with 10% FBS. One day 

after seeding, cells were treated with compounds resuspended as DMSO stock solutions via 

pin-transfer robots (Janus Workstation, Perkin Elmer). Four days following treatment, 1/10 

volume of AlamarBlue Cell Viability Reagent (Life Technologies) was added and incubated 
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with live cells for 24 hr. After incubation, fluorescence was read on an Envision multi-well 

plate reader (PerkinElmer). Compounds were obtained from commercial sources: venetoclax 

(Selleckchem, #S8048), fludarabine (Selleckchem, S1229), ibrutinib (Selleckchem, 

#S2680), idelalisib (Selleckchem, S2226). JQ1 used in assays was synthesized as previously 

described (Filippakopoulos et al., 2010). For primary cell assays, 96-well plates were coated 

with IgM solution (10 μL/mL diluted in PBS; Jackson ImmunoResearch 109-006-129) and 

primary CLL cells were seeded at 100,000 cells per well. Cell Titer Glo reagent (Promega) 

was added per the manufacturer's protocol at time points 0, 24, and 48 hr following 

treatment of either vehicle (DMSO, 0.1% final concentration) or JQ1.

Apoptosis assay—Cellular apoptosis was assessed with PE Annexin V apoptosis 

detection kit I by BD Pharmingen (#559763) after 48 hr of treatment with 1 μM JQ1 or 

DMSO. Briefly, cells were washed twice with cold PBS and incubated with 100 μL of 

binding buffer containing 5 μL of PE Annexin V and 5 μL of 7-AAD for 15 minutes at room 

temperature in the dark. Then 400 μL of binding buffer was added and flow cytometry was 

performed using BD LSR Fortessa instrument. The percentage of cells positive for PE-

Annexin V and negative for 7-AAD was determined to be the apoptotic fraction.

QUANTIFICATION AND STATISTICAL ANALYSIS

T-tests were applied in Figures 2D, 3D, 5A, 7D, Suppl. Figures 2F, 13.

P values were generated for CRISPR screening results using 'redundant siRNA activity' 

(RSA) analysis (König et al., 2007) in Figure 4B,C.

Heatmaps clustered by euclidean distance were generated in Figures 2A, 3D, 5B, 6A. 

Software used and specifics of methods and cut-offs for each analysis are included in the 

Figure legends.

DATA SOFTWARE AND ACCESSIBILITY

All datasets (ChIP-seq, ATAC-seq, mRNA-seq) generated from cell lines have been 

deposited into the Gene Expression Omnibus (GEO) repository (accession #GSE119744). 

All sequencing data (ChIP-seq, ATAC-seq, mRNA-seq) generated from primary human 

subject samples have been deposited into a NCI dbGAP repository (Study ID #30987; 

accession #phs001704.v1.p1) with appropriate IRB-approved access restrictions. All custom 

software and scripts used in this study are available at github.com/BradnerLab.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• Histone acetylation and chromatin accessibility reveals enhancer signatures of 

CLL

• Super enhancers mediate the CLL transcription factor core regulatory 

circuitry

• PAX5 is a core regulator of CLL super enhancers essential for CLL cell 

survival

• BET inhibition effectively disrupts CLL super enhancer circuits
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SIGNIFICANCE

Although transcriptional dysregulation has long been observed in CLL, a comprehensive 

understanding of the enhancers and transcription factors driving this aberrant cell state 

has not be elucidated. Using integrated analysis of enhancer profiles across a cohort of 

primary CLL patient samples, we define large enhancer clusters - super enhancers - 

characteristic of the CLL epigenome. Coupled with high-resolution chromatin 

accessibility measurements, we construct the enhancer-based core regulatory circuits 

governed by a limited number of highly connected transcription factors including PAX5. 

Functional genetic screening identified PAX5 as a singularly essential, hyperconnected 

enhancer factor in CLL. We further show that CLL super enhancer networks can be 

pharmacologically perturbed by BET bromodomain inhibition, nominating a potential 

therapeutic option for this disease.
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Figure 1: The super enhancer landscape of CLL.
A. Enhancer profiles of four representative CLL samples, using H3K27ac ChIP-seq signal. 

Enhancers are ranked ordered as a percentage of total signal. SEs are highlighted in red with 

ranks of selected SE-associated genes. SE identification for all samples are included in Table 

S2.

B. Overlaid H3K27ac and ATAC-seq profiles of a cohort of primary CLL B cell samples (n 

= 18 for each). Shown is the SE detected at the BCL2 locus, with a highlighted region 

displaying chromatin accessibility within 'valleys' of H3K27ac-enriched regions. Bottom 

track shows TF binding sites as determined by ChIP-seq (ENCODE, genome.ucsc.edu/
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encode). Top track hg19 coordinates chr18:60,748,958-61,129,600; bottom track coordinates 

chr18:60,825,744-60,832,442; y-axis values represent normalized read density.

C. Distribution analysis of shared ATAC-seq HSs and H3K27ac regions across the cohort. 

Regions that overlap in the listed number of samples are shown as a percentage of the total 

number of each feature identified. Recurrent SE-associated genes are highlighted. Features 

were determined to be recurrent between samples if at least one base pair overlapped 

between determined peaks.

See also Figure 1 and Tables S1 and S2
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Figure 2: Distinct SE profiles of CLL
A. Differential H3K27ac enrichment between CD19+ NBC and CLL cells. Each column 

represents an SE found to have differential enrichment between the two cohorts (p value < 

0.1). Data is presented as row-normalized z-scores, and clustering of samples and enhancers 

is performed by euclidean distance using iheatmapr.

B. H3K27ac and ATAC-seq profiles of the BANK1 locus (chr18: 60,825,744 - 60,832,442) 

in CLL and NBC samples.

C. H3K27ac and ATAC-seq profiles of the CTLA4 locus (chr2: 204,724,952 - 204,748,658) 

in CLL and NBC samples.

D. Gene expression changes as measured by mRNA-seq of CLL Lost SE, Unchanged SE, 

and Gained SE; ****, p < 0.0001 (unpaired, two-tailed t test with Welch's correction, 
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GraphPad Prism). Boxes represent the 25th percentile, median and 75th percentile. Tails 

represent the 5th and 95th percentiles, all other data are represented as individual points.

See also Figure S2.
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Figure 3: TF connectivity analysis defines core gene regulatory circuitry of CLL.
A. Schematic of enhancer-based CRC analysis. For each sample, the top 1000 enhancers as 

determined by ROSE2 are extracted. For every TF associated with a top enhancer, in-degrees 

are assessed by motif analysis within HSs of the enhancer; out-degrees are assessed for each 

TF associated with a top enhancer by determining all other bound enhancers at TF gene loci. 

Node connections between TFs are used to discern auto-regulatory cliques that in turn 

regulate a broader enhancer network.

B. Degree plots of four representative CLL samples, with several highly connected TFs 

highlighted. Plots for all CLL, NBC, and cell line samples are provided in Figure S3E.
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C. The top scoring TF cliques (as defined by the cumulative connectivity of constituent TFs) 

for two primary CLL samples (CLL-2 and CLL-11), with the extended enhancer circuitry 

shown on the right. Each TF is associated with an enhancer with a predicted binding site of 

each other clique within an HSs of that enhancer. Enhancers within the extended network 

also contain predicted sites for each clique TF (a total of 134 genes for CLL-2 clique, 57 

genes for CLL-11 clique; 13 extended network genes listed for each).

D. A heatmap of clique enrichment scores for the union of all TFs associated with top 

enhancers across all NBC and CLL samples with paired H3K27ac and ATAC-seq datasets. 

Clique enrichment scores are calculated by the percentage of cliques within each sample of 

which that TF is a constituent. Gray boxes are used when a TF is not associated with any 

clique in that given sample. TFs and samples are clustered by euclidean distance using 

Morpheus software to reveal the most consistent highly connected TFs.

See also Figures S3 and S4 and Table S3.
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Figure 4: Essential TFs of CLL.
A. TF clique enrichment score correlation between individual cell lines and primary CLL 

cells. A cumulative analysis was performed on the cohort of primary CLL samples to derive 

an average clique enrichment value across the cohort (see Methods). Highlighted are highly 

correlated CRC TFs (PAX5, ETV6, IRF2), and selected cell line-enriched TFs (MYC) and 

primary cell-enriched TFs (FOXP1).

B. TF CRISPR screening results in MEC1 cells. Gray circles represent p value dependency 

scores for RPS8 and RPS19, two positive control essential genes; black circle represents the 

average score for all negative control gRNAs (n = 100) included in the library. All other 

circles represent the average gRNA p value dependency scores for each TF gene. Genes with 

statistically significant dependency scores (p < 0.05) are in red, non-essential genes are in 
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gray. P values determined by RSA analysis (König et al., 2007). Neg Con Ave represents the 

average p value of 100 non-targeting control gRNAs included in the library.

C. Correlation of CRC TF dependency scores between the MEC1 and OSU-CLL screens.

D. Negative selection competition assay of three CLL cell lines stably expressing Cas9 and 

transduced with lentiviral constructs expressing gRNAs targeting the PAX5 locus. LUC, 

control gRNA targeting the luciferase gene. Data are represented as mean ± SD, n = 3.

See also Figure S5 and Table S4.
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Figure 5: Effects of BET bromodomain inhibition on CLL CRC expression.
A. RNA-seq of two CLL cell lines treated with the BET bromodomain inhibitor JQ1 for 6 hr 

(1 μM). Change in mRNA transcripts was assessed compared to control samples, and plotted 

as total genes, TE-associated genes, and SE-associated genes; ****, p < 0.0001, unpaired, 

two-tailed t test with Welch's correction (GraphPad Prism). Boxes represent the 25th 

percentile, median and 75th percentile. Tails represent the 5th and 95th percentiles, all other 

data are represented as individual points.

B. JQ1 effects on mRNA levels of all CRC TFs as determined from MEC1, MEC2, OSU-

CLL, and CII cell line enhancer profiling. TF FPKM values for each cell line were 
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normalized by row to the mean of vehicle-treated samples and displayed as percent of 

vehicle-treated mean. Effects on TFs are hierarchically clustered by euclidean distance using 

Morpheus software. The most effected TFs cluster together, including several required for 

CLL cell proliferation including MYC and PAX5 (* = significant dependency in one cell 

line CRISPR screen; ** = significant dependency score in both screens).

C. Correlation between average gene expression changes observed in primary CLL cells 

compared to NBCs with 6 hr JQ1 treatment (1 μM). Genes shown restricted to those with p 

< 0.05. Four different primary CLL samples were analyzed in duplicate (n=8); two NBC 

samples were analyzed in duplicate (n=4).

D. Volcano plot of TF gene expression changes in primary CLL cells treated with either JQ1 

or DMSO as vehicle control. TF genes shown restricted to those with average FPKM value > 

1. P values determined by t tests using a custom R script.

See also Figure S6.
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Figure 6: CLL dependency on BET bromodomain proteins.
A. Clustered heatmap of JQ1 effects on the viability of a panel of CLL cell lines. Also 

shown are effects of CLL targeted therapies and the chemotherapy agent fludarabine. Cell 

viability is measured by alamar blue reagent uptake 5 days following treatment (4 replicates 

at each dose). Drug response is summarized by average area-under-the-curve (AUC, 

GraphPad Prism). Clustering was performed by euclidean distance using Morpheus 

software.

B. Dose-response of JQ1 and other CLL drugs in the MEC1 cell line, normalized to vehicle-

treated controls. Data are represented as mean ± SD, n = 4.

C. Negative competition CRISPR assay in the MEC1 cell line with gRNAs targeting three 

BET bromodomain proteins expressed in CLL: BRD2, BRD3, BRD4. Four gRNAs for each 

gene target exons coding for JQ1-binding bromodomains (BD). LUC, control gRNA 

targeting the luciferase gene. Data are represented as mean ± SD, n = 3.
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Figure 7: JQ1 effects on primary CLL cells and in vivo model of CLL.
A. Dose-response of JQ1 on four individual samples of primary CLL B cells, normalized to 

viability readings at day zero. Cellular viability as approximated by ATP content 

measurements at two time points (24 and 48 hr). Data are represented as mean ± SEM, n = 

3.

B. Apoptotic cell populations as defined by Annexin V positive/7-AAD negative staining 

after 48 hr of JQ1 treatment, 1 μM.

C. Bioluminescence imaging of JQ1 and vehicle-treated mice at day 29 following MEC1 

inoculation.

D. Bioluminescence quantification of JQ1- (n = 7) and vehicle-treated mice (n = 7). **, p < 

0.05, unpaired, two-tailed t test (GraphPad Prism). Data are represented as mean ± SEM.

E. Kaplan-Meier plot of JQ1- and vehicle-treated mice (n=7). P value was generated by log-

rank Mantel-Cox test (GraphPad Prism).

See also Figure S7.
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