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Abstract

Though phenotypic and target-based high-throughput screening approaches have been employed 

to discover new antibiotics, the identification of promising therapeutic candidates remains 

challenging. Each approach provides different information, and understanding their results can 

provide hypotheses for mechanism of action (MoA) and reveal actionable chemical matter. Here 

we describe a framework for identifying efficacy targets of bioactive compounds. High throughput 

biophysical profiling against a broad range of targets coupled with machine learning was 

employed to identify chemical features with predicted efficacy targets for a given phenotypic 

screen. We validate the approach on data from a set of 55,000 compounds in 24 historical internal 

antibacterial phenotypic screens and 636 bacterial targets screened in high-throughput biophysical 

binding assays. Models were built to reveal the relationships between phenotype, target, and 

chemotype, which recapitulated mechanisms for known antibacterials. We also prospectively 

identified novel inhibitors of dihydrofolate reductase with nanomolar antibacterial efficacy against 

Mycobacterium tuberculosis. Molecular modeling provided structural insight into target-ligand 

interactions underlying selective killing activity toward mycobacteria over human cells.
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Introduction

Finding novel, efficacious antibacterials is essential to combat growing threats of resistant 

infections. Conventional drug discovery approaches, namely high-throughput screens, have 

proven largely ineffective at expanding our current antibiotic armamentarium1,2. This has 

been attributed both to challenges that are unique to bacterial targets, such as permeating the 

bacterial cell wall and the persistent threat of resistance, as well as general screening pitfalls, 

such as limited molecular composition of screening libraries and gaps in validation and 

follow-up methodologies1,2. The traditional dichotomy in high-throughput screening, target-

based versus whole-cell or phenotypic-based screening, is inherently limited - active 

biochemical inhibitors may fail to cross the cell membrane and engage their targets in the 

cellular milieu, while phenotypic screen actives provide little information about the 

modulated target(s). New screening paradigms to overcome these pitfalls, such as pathway-

based3, synthetic lethal4, and high-content screens5 have yielded successful results, but are 

typically challenging to establish and difficult to scale up when pursuing multiple targets of 

interest.

Affinity-based methods for target deconvolution have helped elucidate mechanism of action 

for eukaryotic phenotypic actives6, but have had limited application to antibacterial 

discovery7. ALIS (Automated Ligand Identification System)8, which rapidly identifies 

biophysical interactions of compounds with proteins using affinity mass spectrometry in 
vitro, offers a unique technology to systematically assess the binding of bioactive small 

molecules across many targets. However, the challenge remains to uncover the modulated 

target(s) underlying a phenotype in the context of multiple detected interactions. We 

implemented machine learning to solve this problem, by identifying key chemical motifs 

jointly associated with both bioactivity and compound binding to specific “enriched targets”, 

i.e. targets whose small molecule binders are enriched in the bioactives for a given 

phenotypic screen. We reasoned that this strategy would address two fundamental 

limitations to single screening paradigms, eliminating prioritization of compounds without 

specific targets (such as nonspecific membrane disruptors) and target binders without 

bioactivity (for example, compounds unable to permeate the bacterial cell wall to engage 

their target in vivo). This approach was validated by examining assembled data from 

historical antibacterial phenotypic screens at our company and bacterial targets screened in 
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high-throughput ALIS-based biophysical binding assays. We retrospectively identified 

antibiotics that modulate dihydrofolate reductase or the ribosome, then prospectively applied 

our methodologies to identify compounds active against Mycobacterium tuberculosis 
through inhibition of dihydrofolate reductase. These results illustrate the power of applying 

cheminformatic modeling in antimicrobial drug discovery to facilitate target and compound 

identification and prioritization across diverse screening datasets.

Results & Discussion

To investigate the potential to utilize target-based chemogenomic data to predict efficacy 

targets for antibacterial phenotypic screens, we first assembled a rich data set that enabled us 

to connect compounds, phenotypes, and targets (Figure 1). As a source of chemical matter, 

we employed an Enriched Antibacterial set comprising compounds previously active in at 

least one antibacterial campaign at our company9–12, as well as over 100 clinically 

employed antibiotics and antibacterial tools reported in the literature. We then assembled 

historical phenotypic assay data for these 55,000 compounds across 24 internal high-

throughput screens, accumulating over 1,100,000 measurements of growth or death across 7 

bacterial species. The next step was to obtain target association data for the Enriched 

Antibacterial set. ALIS employs mass spectrometry in high-throughput to identify small 

molecule binders after dissociation from their purified cognate targets. Though this format 

disfavors detection of covalent interactions and compounds that ionize poorly, we were able 

to detect the biophysical interactions of 19 chemically diverse and well-characterized 

antibiotics with their canonical targets (Table 1). These initial results supported our use of 

the ALIS platform to profile the Enriched Antibacterial set for binding across a diverse panel 

of 636 bacterial targets (originating from 41 different organisms and over 100 distinct 

metabolic and signaling pathways, see Methods), and lead to the detection of over 120,000 

total interactions.

In order to elucidate meaningful connections between the compounds, phenotypic assays, 

and bacterial proteins from the assembled data, we constructed an informatics framework 

comprising three types of learned models that capture bioactivity and target associations and 

are joined together based on shared target and compound descriptors (Figure 1). We 

employed Naïve Bayesian modeling, as high-throughput measurements are inherently 

noisy13, and this form of machine learning is less sensitive to false negative rates than 

several alternatives14. The first models we derived linked phenotypic assays and compounds 

- for each phenotypic assay, we classified phenotypic activity of compounds using their 

chemical features as descriptors. These models facilitate accurate identification and 

prioritization of key chemical features correlating with favorable bioactivity (bacterial 

killing) for each screen.

The next connections we derived were between targets and compounds. Again, we built 

Naïve Bayesian models, to compensate for inherent noise in ALIS data in the form of false 

negatives or positives. We generated models for each target, where binding of compounds 

was classified using their chemical features as descriptors. Of the 636 total targets screened 

in the ALIS panel, 322 satisfied our minimal threshold for model building of possessing at 
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least 20 nonpromiscuous binders (see Methods). These models empowered us to select 

chemical features most associated with binding to each particular target.

The final connections were between phenotypes and targets. A given set of screen actives 

often has many target associations, precluding the straightforward determination of efficacy 

target(s). Indeed, for our ALIS data, 57.4% of 11,505 compounds detected as binders had 

multiple target associations (Supplementary Figure 1). To prioritize targets, we built Naïve 

Bayesian models for each phenotypic screen - these models featured ALIS targets bound by 

each small molecule as its descriptors, and phenotypic activity for that molecule as its binary 

classification. We then used the model weights derived for each target to prioritize targets in 

a given phenotypic assay. If compounds that bound a target of interest tended to be active, 

the weight for that target was positive. Likewise, if compounds that bound the target tended 

to be inactive, the weight for the target was negative.

We anticipated integrating this framework (Figure 1) as follows:

1. Select a phenotypic assay of interest

2. Select one or more prioritized targets associated with the assay

3. Select compounds with features that are both enriched for activity in the assay 

and features associated with binding one of the previously selected targets

We hypothesized compounds selected in such a fashion would be active in the screen and 

could be associated with an efficacy target, namely, the target selected in step 2.

To illustrate our ability to identify efficacy targets for bioactive screen hits using this 

approach, we began by recapitulating the mechanisms of action for known antibiotics. We 

began by investigating a phenotypic screen identifying inhibitors of E. coli growth. Out of 

the 636 targets screened using the ALIS platform, the most enriched target was FolA 

(dihydrofolate reductase, DHFR), with a normalized probability of 0.89 (Figure 2A). Of 64 

total FolA binders detected in ALIS, 54 were tested in this phenotypic screen and 42 were 

active. Included in this subset were trimethoprim, diaveridine, and theirpara-hydroxyl 
derivatives, compounds with nanomolar IC50 values for FolA and known to kill E. coli by 

inhibiting folate metabolism15. Selecting the top-scoring chemical features from both the 

E.coli screen model and FolA target model generated a list of six fragments enumerating the 

conserved diaminopyrimidine core found in many DHFR inhibitors (green, Figure 2A). 

There were a total of 129 compounds in the Enriched Antibacterial set possessing at least 

one of these features, of which 89 were tested and 55 were active, a 2.4-fold enrichment over 

the bioactive rate overall for this phenotypic screen (p<0.0001, two-tailed χ2 test). In 

addition to successfully identifying diaveridine and trimethoprim, we also predicted 

bioactivity for related antibiotics iclaprim and brodimoprim that were not screened in this 

assay, as well as their established mechanism of action through FolA inhibition15,16, despite 

failure to detect their binding in ALIS. Notably, this small set of bioactive compounds bound 

a total 17 nonhomologous targets, illustrating the power of our approach to key in on the 

likely efficacy target. Thus, we retrospectively recapitulated the mechanism of action for 

known antibiotics targeting dihydrofolate reductase in E. coli, even for compounds that were 

false negatives in the ALIS binding screen.
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The targets of traditional antibiotics tend to be highly conserved across bacteria17, and we 

wondered whether we could utilize phenotype-target connections derived from our models, 

even if the target originated from a different organism. One of the targets included in the 

ALIS screen was the fully reconstituted ribosome of M. tuberculosis, which we identified as 

an enriched target for phenotypic screens conducted against several organisms, including P. 
aeruginosa, A. baumanii, and S. aureus. For the S. aureus phenotypic screen, the ribosome 

was ranked as the 11th most enriched target and there were 20 chemical features highly 

enriched for both ribosome binding and activity against S. aureus. 425 compounds in the 

Enriched Antibacterial set contained at least one of these features, of which 210 were tested 

and 93 were active (2-fold the hit rate of the phenotypic screen, p<0.0001 two-tailed χ2 test, 

Figure 2B). Included in this set were 3 classes of known ribosomal inhibitors, macrolides, 

aminoglycosides, and a mutilin, of which 2 compounds were not screened in this assay nor 

were detected in ALIS, but are known to be active against S. aureus via ribosomal 

inhibition18,19. This demonstrated our ability to identify efficacy targets by exploiting target 

homology, and suggested that homology should be taken into account to reduce the total set 

of targets needed to thoroughly cover target space.

Encouraged by these results, we sought to assess the prediction of efficacy targets and 

phenotypic activities for molecules outside of the training data. Previous studies have 

leveraged molecular descriptors in combination with reference molecules of known 

mechanism of action for efficacy target inference20–22. To test the predictive ability of our 

models, we assembled a set of known antibiotics that were not present in the Enriched 

Antibacterial screening collection and scored them for both target associations and 

bioactivities. 48 antibiotics in this prospective set act through noncovalent inhibition of 

protein targets present in the ALIS screening collection, and binding was correctly predicted 

for 35 of these (72.9%), at an accuracy of 86.9% across all target models, with a 

conservative assumption of exclusive binding to the nominal target (Supplementary Table 1). 

Compounds with successfully predicted target associations belonged to 9 unique structural 

classes of antibiotics, including streptogrammins, which were not represented in the training 

data. For validation of predicted bioactivity, 28 antibiotics that were not part of the Enriched 

Antibacterial set were screened in at least one of the 24 phenotypic assays, and growth 

inhibitory activity was successfully predicted in 48/58 screening instances (82.8%) with an 

accuracy of 76.4%. These results supported the value of applying our models to predict 

efficacy targets and growth inhibitory activity for new molecules.

While our models successfully recovered efficacy targets for established antibiotics of 

distinct classes and targets, we wanted to apply our methodology to identify promising new 

agents. One of the screens in our collection was for compounds inhibiting the growth of 

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis. In evaluating the 

most enriched targets for a screen assaying for compounds inhibiting the growth of Mtb, 
DHFR (Rv2763c) ranked 9th of 636 targets. Several compounds have been developed that 

potently inhibit Mtb DHFR in vitro, yet few have bioactivity23. Nevertheless, we identified 7 

chemical features and 162 compounds possessing these fingerprints that were enriched for 

both bioactivity and target binding for Rv2763, of which 6 were active (4-fold enrichment 

over the phenotypic screen hit rate, p=0.0021 two-tailed χ2 test, Figure 3A). Included in this 

initial set of hits was 10-propargylaminopterin (10-PAP), which was previously reported to 
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inhibit mouse dihydrofolate reductase24. We expanded this class to include structurally 

similar analogs in the greater screening collection at our company, and then tested this 

collection of 136 compounds for both Rv2763c inhibition in vitro and mycobacterial growth 

inhibition. For both the initial screen hits and the expansion, we observed potent inhibition 

of both enzymatic activity and growth with modest correlation, supporting our target 

hypothesis for these compounds (Figure 3B, Table 2). During our investigation, three of the 

tested compounds from our expansion set were reported to inhibit Rv2763c in vitro and/or 

inhibit growth of Mtb, and our measurements were in close agreement with reported values 

(Supplementary Table 2)25,26. Notably, our collection of tested compounds also included 

previously unreported phenyl-substituted 7H-pyrrolo[3,2-f]quinazoline-1,3-diamines 

(PQDs) (Figure 3, Class 4) as well as diversification of the benzyl-PQD scaffold (Classes 

2,3). Thus, by searching for chemical features enriched for both Mtb growth and DHFR 

binding activities, then expanding to structurally related chemical matter, we were able to 

prospectively identify new series of antibacterials targeting Rv2763c.

To investigate the potential for progression of these series into antibiotic development, we 

assessed cytostatic activity and toxicity for a subset of 110 compounds against human cells. 

All tested phenyl-PQDs and bicyclic-PQDs (Figure 3, classes 3,4) caused a reduction in both 

the number of viable HeLa cells and in total incorporation of 5-ethynyl-2’-deoxyuridine 

(EDU) with low micromolar EC50. The majority of tested members of the folate analog 

(class 1) and benzyl-substituted PQD classes (class 2) that did not kill human cells also lost 

antibacterial activity, though many retained potent enzyme inhibition. However, 2 folic acid 

derivatives possessed EC50>99 μM against human cells and retained bioactivity, including 

10-PAP. In order to gain structural insight into engagement of DHFR by the different 

inhibitor classes, we docked several compounds into both Mtb and human enzyme crystal 

structures (PDB 1DF7, 1OHJ)27,28. We observed that docked inhibitors adopted poses 

overlapping the natural substrate (dihydrofolate) and crystalized inhibitors (Figure 4, 

Supplementary Figure 2) for both enzymes. The shared pyrimidine cores all exhibited a 

common protonation state supported by previous studies29,30, and in agreement with 

previous docking experiments, amino groups of the planar quinazoline and pteridine cores 

engaged in hydrogen bonds with Rv2763c residues I5, D27, and I94 (corresponding to 

human DHFR I7, E30, and V115)25. The planar paraminobenzoate moieties of 

dihydrofolate, 10-PAP, and related class 1 inhibitors were observed to fold back toward 

inhibitor cores at an angle of 21–26°. While benzyl- and bicyclic substituted derivatives 

(classes 2,3) exhibited a ~10° distortion in this angle, phenyl-PQDs of class 4 were shifted 

~120° due to their loss of rotational freedom provided by the benzyl carbon. These 

distortions retained π-π stacking interactions between the phenyl and benzyl PQD 

substituents with active site residue F31 in the human enzyme, supporting engagement of 

human DHFR as a possible cause for observed toxicity. In contrast, docking results 

exhibited steric clashes between the 10-propargyl substituent of 10-PAP and human DHFR 

S59 that were absent in the active site of Mtb DHFR (Figure 4), which may support bulky 

substitution at this position as a selectivity determinant for future analogs. Taken together, 

the results of our docking support targeting of DHFR by identified inhibitors and selective 

targeting of mycobacterial DHFR over the human enzyme by 10-PAP through exploitation 

of key differences in an otherwise conserved active site.
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Our ability to assign mechanisms of action for the cases discussed above was facilitated by 

the inclusion of these targets in the ALIS screening collection. To assess the performance of 

our approach across screens and its dependency on the protein set included in ALIS, we 

determined the percentage of active compounds with assigned efficacy target hypotheses for 

each phenotypic assay. We found significant differences across bacterial species and assays 

(Figure 5A, Supplementary Figure 3), noting that while greater percentages of active 

compounds could be assigned efficacy target hypotheses as more ALIS targets and their 

corresponding interactions were included in the data set, the maximum percentage ranged 

between 0.5–26.2%. This maximum percentage was largely independent of both the total 

number of actives for a screen (Supplementary Figure 4) and the number of ALIS proteins 

that originated from that organism (Supplementary Figure 5). Integrating high quality 

chemogenomics data from our internal CHEMGENIE database improved efficacy target 

associations, in some cases doubling the total number of active compounds with an efficacy 

target hypothesis (Figure 5B). This analysis highlights a key limitation of our approach, and 

suggests that inclusion of additional proteins in ALIS would improve our association of 

active compounds with efficacy target(s).

Conclusion

We have demonstrated the power of machine learning to determine mechanism of action for 

molecules with antibacterial activities. Our approach in building and integrating models for 

high-throughput biophysical and phenotypic screening data enables us to pinpoint chemical 

fingerprints enriched for bioactivity and for binding to enriched efficacy targets. Chemical 

matter possessing these molecular features can then be assessed for bioactivity, target 

engagement, and toxicity against human cells in follow-up assays. Applying our 

methodology to historical screening data at our company recapitulated the mechanisms of 

action for known antibiotics across several structural classes and acting on diverse targets. 

Prospective application in a screen for inhibition of M. tuberculosis growth identified 

Rv2763c (Mtb DHFR) as a potential efficacy target. Follow-up experiments yielded 4 

classes of Rv2763c inhibitors, several of which exhibited both nanomolar enzymatic 

inhibition and sub-micromolar potency in inhibiting Mtb growth. We observed that the 

majority of PQD-containing compounds exhibited toxicity toward mammalian cells. PQDs 

have also been reported as micromolar thrombin receptor antagonists30, suggesting that 

future development of these series as therapeutics may require mitigation of off-target 

activities. Nevertheless, we identified Class 1derivatives as effective Mtb DHFR inhibitors 

with potent antimycobacterial activity and little or no measurable toxicity.

Though we were only able to predict mechanism of action for a subset of antibiotics, and 

were able to assign an efficacy target hypothesis to a limited number of screen actives, it is 

anticipated that increasing the size of the compound and target sets will improve model 

accuracy and utility. Indeed our analysis suggests that the ALIS platform might benefit from 

including additional proteins from the body of emerging and resistant targets31. It is 

important to note that models can readily be regenerated to incorporate newly acquired data, 

and that incorporating models from other forms of high-throughput biophysical data could 

assist in addressing the target scope limitations of ALIS (e.g. membrane proteins, proteins 

with covalent inhibitors such as beta-lactamases, and non-protein targets for antibiotics, such 
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as lipid II). It is anticipated that our approach can be used to identify and prioritize both new 

chemical matter and novel targets to aid in the development of antimicrobials across a broad 

range of bacterial pathogens.

Methods

Compound Collection Assembly

In order to supply our screens with rich chemical matter and positive controls for bioactivity 

and binding, we employed an “Enriched Antibacterials” set of approximately 55,000 small 

molecules from known antibiotics as well as compounds with bioactivity in at least one of a 

set of historical high-throughput, cell-based bacterial screens at our company, from 1996–

20119-12.

Historical Antibacterial Screens

A set of 24 primary and confirmatory high-throughput antibacterial screens was included in 

our analysis, including several that have been previously described9–11, with the prerequisite 

that at least 1,000 compounds from the Enriched Antibacterials set were assayed. For each 

of these screens, we selected the corresponding data for the subset of compounds present in 

the Enriched Antibacterials set. Compounds that were not screened were excluded from 

Naïve Bayes (NB) models built for that screen.

Biophysical Screen of 636 Bacterial Targets

The full Enriched Antibacterials set was screened in the ALIS platform against 636 bacterial 

targets with modification of previously reported conditions8. Purified proteins were obtained 

from the Seattle Structural Genomics Center for Infectious Disease (SSGCID) and the 

Center for Structural Genomics of Infectious Diseases (CSGID). Targets were curated into 

pathways using UniProt, or manually when annotation was unavailable. To enable the 

screening of tens of thousands of compounds against hundreds of targets, an arrayed 

screening format was developed, which entails screening mixtures of compounds against 

mixtures of proteins and deconvoluting detected binding interactions to single compound-

protein pairs across pools.

CHEMGENIE Database

To supplement bacterial ALIS data with pharmacological evidence for Enriched 

Antibacterial compound activities, we integrated experimental evidence from our company’s 

Chemical Genetic Interaction enterprise (CHEMGENIE) Database32, which contains data 

curated from internal bacterial and eukaryotic biochemical and biophysical assays, other 

ALIS target screens, high-throughput screening campaigns, as well as external results 

acquired from Metabase, PDB, and CHEMBL. Biochemical data were filtered to only 

include IC50 or equivalent inhibitory activities at ≤1μM.

Construction of Naïve Bayes Models for Bioactivity and Binding

In order to determine chemical features enriched for bioactivity or target-binding among the 

Enriched Antibacterial set, we built NB models based on extended connectivity fingerprints 
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(ECFP4)33 in Pipeline Pilot v17.0 for each phenotypic assay and each target binding assay. 

Target models were generated for 325 proteins that satisfied the criterion of binding at least 

20 compounds, after removal of data for 705 promiscuous compounds (defined as binding 

>10% of all targets screened). Compounds were annotated as active in a phenotypic screen if 

they induced ≥80% inhibition of bacterial growth. Models built to identify efficacy targets 

for a phenotypic assay were learned using targets as features, with ALIS target-compound 

associations as inputs and phenotypic activity (as defined above) as a test for good.

Each model output a normalized probability for every learning feature present in the 

observed data, normalized by the total occurrences of that feature across the training data 

set. Mathematically expressed,

34NPi = ln
Hi + 1

T i
H
T + 1

(Eqn. 1)

where Hi and Ti are the number of active and total molecules possessing a feature, 

respectively, H is the total number of features present for active molecules, and T is the total 

number of features present in the screening set for the assay.

Models were assessed for performance by calculating a leave-one-out cross-validated ROC 

score and enrichment factor for the top 1% of actives (EF1%). For the 24 models linking 

phenotypic activity to chemical matter, these values averaged 0.81 and 45.8%, respectively. 

ALIS binding models had an average leave-one-out cross-validated ROC AUC score of 0.83 

and an average EF1% of 51.9%. Models connecting assays with efficacy targets had an 

average cross-validated ROC AUC score of 0.68 and EF1% = 11.1%.

In order to predict performance for compounds outside training data, a model score was first 

calculated for each compound as the sum of the model’s normalized probabilities for each 

chemical feature present in that compound. A score cut-off was then calculated for each 

target or assay model by picking a split that minimized the sum of the percent misclassified 

for category members (binders or actives) and for category nonmembers (non-binders or 

inactive compounds), using the cross-validated score for each sample. For assay 

performance prediction, compounds scoring above the cut-off for a given assay model were 

predicted to be active. For target prediction, compounds scoring above the cut-off for a given 

target model were predicted to bind. Only one model was evaluated in cases of targets with 

multiple homologs present in the protein screening collection. Multitarget antibiotics 

(ralitrexed and pemetrexed) were evaluated independently for each nominal target, and for 

performance calculations, all remaining compounds were assumed to exclusively bind their 

nominal targets.

To determine the percentage of phenotypic screen bioactives with an enriched efficacy target 

hypothesis, fixed percentages of total targets were then selected randomly from 

pharmacogenomic (CHEMGENIE) and/or biophysical data, and the corresponding target-

compound associations used to identify a fraction of the total bioactives for the phenotypic 

screen that were associated with an enriched efficacy target (in this case defined as scoring 
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in the top 10% of targets for a phenotypic screen model). These target models were built in 

the same manner as the ALIS models connecting phenotypic assays and targets, with the 

exception that additional target-compound associations were included using filtered 

pharmacogenomic data (vide supra). The combined CHEMGENIE+ALIS models had an 

average cross-validated ROC AUC score of 0.69 and EF1% = 21.57%.

M. tuberculosis Growth Inhibition Assay

In order to test the growth inhibitory effect of predicted DHFR inhibitors on mycobacteria, 

M. tuberculosis ATCC 27294 was grown to an OD600 of 0.2–0.3 then diluted 1:1000 in a 96 

well plate containing 7H9 media supplemented with 0.5% BSA Fraction V, .081% NaCl, 

0.5% (v/v) Tyloxapol, 0.4% glucose and inhibitors in dilution series. Plates were incubated 

in a sealed bag for 2 weeks at 37°C. 10% (v/v) Alamar blue was then added and wells were 

scored for growth after 24 hrs incubation. Isoniazid was used as a positive control for growth 

inhibition.

DHFR Inhibition Assay

In order to test the growth inhibitory effect of predicted DHFR inhibitors on mycobacteria, 

M. tuberculosis PMSP12 expressing green fluorescence protein (GFP) was grown to OD600 

0.2, then diluted 1:1500 in a black, flat bottom 96 well plate containing 7H9 media 

supplemented with 0.5% BSA Fraction V, 0.081% NaCl, 0.05% (v/v) Tyloxapol, 0.4% 

glucose or 0.01% cholesterol and inhibitors in dilution series. Plates were incubated in a 

sealed bag for 1 weeks at 37°C. GFP fluorescence was measured by PerkinElmer 

EnVision™ multilabel Plate Reader (λex485 nm and λem 520 nm). Isoniazid was used as a 

positive control for growth inhibition.

HeLa Cytostatic and Toxicity Assays

The effects of test compounds on Human cervical adenocarcinoma cell (HeLa, ATCC, 

Manassas, VA) DNA synthesis and growth were assessed using the Click-iT EdU Alexa 

Fluor 488 HCS Assay (Invitrogen, Grand Island, NY). DNA synthesis as well as total cell 

counts were assessed following incubation with test compounds and 5 μM 5-ethynyl-2’ 

deoxyuridine (EdU) at 37°C for 24 hours. Cells were fixed and EdU was click-labeled with 

Alexa Fluor 488 azide. Microplates were analyzed on an Acumen eX3 laser scanning plate 

cytometer (TTP Labtech, Inc.; Melbourne, UK). Data were analyzed using a 4-parameter 

curve fitting algorithm.

Docking

The binding pockets of PDB structure 1DF7 (M. tuberculosis) and 1OHJ (H. sapiens) were 

first aligned and preprocessed to add hydrogens, remove waters and glycerol, and minimize 

residue energies using the Protein Preparation Wizard functionality in Schrodinger software 

suite version 2017–1. Ligands were prepared using LigPrep (Schrodinger Inc., v 2017–1) 

allowing for multiple protonation and tautomerization states. GLIDE (Schrodinger Inc., 

version 2017–1) with extra precision and default parameters was used to predict poses of 

ligands within a bounding box defined by the methotrexate ligand of 1DF7. The final pose 
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for each ligand was selected from among the top 5 scoring poses using visual inspection 

ensuring correct overlap between diaminopyrimidine cores with the crystallized ligand.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Overview of our cheminformatic approach to mechanism of action prediction for 

antimicrobial drug discovery. Naïve Bayes models were generated for a series of phenotypic 

and biophysical binding screens using a joint Enriched Antibacterial training set of ~55,000 

compounds (see Methods). Models identified protein targets that were enriched in 

phenotypic assays (binders of that target were enriched as phenotypic actives). Models 

linking a phenotypic screen and enriched target of interest to chemical matter identified 

chemotypes enriched for both binding to the target and phenotypic screen activity (bacterial 

killing). Compounds possessing the selected chemotypes were hypothesized to achieve 

efficacy in killing bacteria by acting through the enriched efficacy target.
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Figure 2: 
Joint identification of enriched chemotypes facilitates retrospective validation of known 

antibiotic mechanism of action. A) 6 enriched chemotypes for bioactivity in an E. coli live/

dead phenotypic assay and for the top enriched target, FolA, yielded 4 well-known 

antibiotics inhibiting dihydrofolate reductase, 2 of which were active hits in the phenotypic 

screen. B) The M. tuberculosis ribosome was an enriched target for a S. aureus live/dead 

phenotypic screen, and joint identification of 19 chemotypes (8 shown) lead to identification 

of 14 known ribosomal antibiotics in 3 distinct chemical classes (12 active, 2 were untested 

in this screen).
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Figure 3: 
Identification of compounds that target DHFR to inhibit the growth of M. tuberculosis. A) 7 

enriched chemotypes yielded 6 compounds with growth inhibitory activity and hypothesized 

to act through Rv2763c (Mtb DHFR). B) Correlation between in vitro inhibition of purified 

Mtb DHFR and inhibition of bacterial growth. Methotrexate (yellow) was used as a control 

for inhibiting the enzyme but having no efficacy against bacterial growth. Example class 

members are listed in the table, along with their IC50 values for the Mtb enzyme, MITC95 

values, the correlation between these, and their toxicity observed at 99μM in HeLa cells.
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Figure 4: 
A) Overlay of 10-PAP and dihydrofolate ligands in the active sites of both Mtb and human 

DHFR. B) Key interactions are illustrated between the diaminopyrimidine pharmacophore 

and conserved active site residues. Hydrogen bonds between Mtb DHFR Arg60 and the 10-

PAP glutamate moiety were omitted for clarity. Other classes can be found in Supplementary 

Figure 2. Figure prepared using Maestro (Schrodinger version 2017–1).
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Figure 5: 
Assessment of target space coverage to generate efficacy target hypotheses for phenotypic 

actives. A) Percentage of phenotypic assay actives (vertical axis) that could be associated 

with a potential efficacy target for each organism. The horizontal axis is the percentage of 

efficacy targets randomly selected for each screen, and each value is the average of 10 

replicates. B) Adding CHEMGENIE annotations (green line) improves the percentage of 

bioactives for each screen with an efficacy target hypothesis, as compared to ALIS data 

alone (blue line). Shown are the results for M. tuberculosis, other organisms can be found in 

Supplementary Figure 2.
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Table 1:

Conventional antibiotic target pairs detected via ALIS

Antibiotic Class Canonical Target Originating Organism for Nominal 
Target Number Targets Bound

Novobiocin Aminocoumarin Gyrase L. monocytogenes 4*

Trimethoprim Antifolate Dihydrofolate reductase B. henselae, E. coli 4*

Diaveridine Antifolate Dihydrofolate reductase B. henselae, E. coli 2*

Pyrimetriamine Antifolate Dihydrofolate reductase B. henselae, E. coli 2*

Clindamycin Lincosamide Ribosome M. tuberculosis 1

Rosaramicin/Rosamicin Macrolide Ribosome M. tuberculosis 1

Azathramycin Macrolide Ribosome M. tuberculosis 1

Ervthromycylamine Macrolide Ribosome M. tuberculosis 1

Lankacidin Macrolide Ribosome M. tuberculosis 1

L-701677 Macrolide Ribosome M. tuberculosis 1

Lexithromycin Macrolide Ribosome M. tuberculosis 1

Azithromycin Macrolide Ribosome M. tuberculosis 1

Clarithromycin Macrolide Ribosome M. tuberculosis 1

Linezolid Oxazolidinone Ribosome M. tuberculosis 1

Sutezolid Oxazolidinone Ribosome M. tuberculosis 1

VRT-752586 Other Gyrase L monocytogenes 2

CHIR-090 Other LpxC B. ambifaria 58

Actinonin Peptide Peptide deformylase A. phagocytophilum 1

Doxycycline Tetracycline Ribosome M. tuberculosis 3

*
Includes 2 target homologs.
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