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Background: Inorganic arsenic exposure is ubiquitous and both exposure and inter-individual 

differences in its metabolism have been associated with cardiometabolic risk. A more efficient 

arsenic metabolism profile (lower MMA%, higher DMA%) has been associated with reduced risk 

for arsenic-related health outcomes. This profile, however, has also been associated with increased 

risk for diabetes-related outcomes.

Objectives: The mechanism behind these conflicting associations is unclear; we hypothesized 

the one-carbon metabolism (OCM) pathway may play a role.

Methods: We evaluated the influence of OCM on the relationship between arsenic metabolism 

and diabetes-related outcomes (HOMA2-IR, waist circumference, fasting plasma glucose) using 

metabolomic data from an OCM-specific and P180 metabolite panel measured in plasma, arsenic 

metabolism measured in urine, and HOMA2-IR and FPG measured in fasting plasma. Samples 

were drawn from baseline visits (2001–2003) in 59 participants from the Strong Heart Family 

Study, a family-based cohort study of American Indians aged ≥14 years from Arizona, Oklahoma, 

and North/South Dakota.

Results: In unadjusted analyses, a 5% increase in DMA% was associated with higher HOMA2-

IR (geometric mean ratio (GMR)= 1.13 (95% CI: 1.03, 1.25)) and waist circumference (mean 

difference=3.66 (0.95, 6.38). MMA% was significantly associated with lower HOMA2-IR and 

waist circumference. After adjustment for OCM-related metabolites (SAM, SAH, cysteine, 

glutamate, lysophosphatidylcholine 18.2, and three phosphatidlycholines), associations were 

attenuated and no longer significant.

Conclusions: These preliminary results indicate that the association of lower MMA% and 

higher DMA% with diabetes-related outcomes may be influenced by OCM status, either through 

confounding, reverse causality, or mediation.
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1. INTRODUCTION

Inorganic arsenic is a known human carcinogen and chronic exposure has been associated 

with increased risk for numerous health outcomes including metabolic effects, such as type 2 

diabetes and the metabolic syndrome.1–6 After ingestion, inorganic arsenic is metabolized 

through multiple oxidative methylation and reduction reactions ultimately converting 

inorganic arsenic (AsIII and AsV) (iAs) to the methylated metabolites monomethylarsonic 

acid (MMA) and dimethylarsinic acid (DMA), which are excreted in the urine together with 

inorganic arsenic.7–9 Typically, arsenic metabolism is evaluated in epidemiological studies 

by computing relative percentages of inorganic arsenic, MMA, and DMA over their sum 

(iAs%, MMA%, DMA%).10–13

Inter-individual differences in methylation capacity have been associated with risk for 

subsequent health outcomes. Several studies have reported higher percentages of MMA 

(MMA%) and lower percentages of DMA (DMA%) in the urine to be associated with 

greater risk for many arsenic-induced health effects including skin lesions14–16, cancers of 
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the skin, bladder, lung17–22 and cardiovascular disease,23–25 even after controlling for 

arsenic exposure levels. However, for metabolic-related health outcomes, including diabetes 

and metabolic syndrome, higher MMA% and lower DMA% is associated with a lower risk.
3, 26–28 The reasons for the contrasting association between arsenic metabolism and 

metabolic outcomes versus other arsenic-associated health outcomes are not clear. Some 

studies have suggested that one-carbon metabolism (OCM) may play a role given its strong 

association with both metabolic outcomes29–35 and arsenic metabolism.8, 9, 36–42 OCM, a 

biochemical pathway that is dependent on folate, facilitates the generation of S-

adenosylmethionine (SAM), a central metabolite, which serves as the methyl donor for 

numerous methylation reactions including the methylation of arsenic.43

In this study, we explored potential mechanistic pathways that may explain the associations 

between arsenic metabolism and metabolic outcomes through the targeted evaluation of 

specific metabolites. The association between arsenic metabolism and metabolic profiles has 

been relatively unexplored. However, metabolic profiling has already identified metabolites, 

including those related to OCM, that can predict risk for diabetes beyond traditional diabetes 

risk factors.44–48 Our analyses expanded on these findings by evaluating associations 

between OCM- and diabetes-associated metabolites, arsenic metabolism biomarkers, and 

diabetes-related outcomes including waist circumference, fasting plasma glucose and 

HOMA2-IR. Our selection of these outcomes was informed by previous work conducted in 

our study population that have reported associations between arsenic metabolism and 

diabetes3, a homeostasis model assessment index (HOMA2-IR),49 body mass index 

(BMI)50, waist circumference51 and metabolic syndrome51; all of these outcomes are linked 

to insulin resistance. Previous evaluation of the association between arsenic metabolism and 

other metabolic outcomes in this study population, including triglycerides and high density 

lipoprotein cholesterol, yielded null results and were therefore not evaluated in this analysis.

Using data from the Strong Heart Family Study (SHFS), a family-based cohort study 

comprised of American Indian tribal members aged 14 years and older from Arizona, 

Oklahoma, and North and South Dakota, we conducted a pilot study including 59 

participants. We analyzed nine OCM-specific metabolites in addition to the Biocrates P180 

metabolite panel (188 endogenous metabolites including amino acids, lipids, and 

carbohydrates, many of them related to OCM) in baseline plasma samples collected in 

2001–2003. For our analyses, of the 188 metabolites, we a priori selected only metabolites 

that are involved in OCM or have been prospectively associated with incident diabetes in 

previous studies (n=33 metabolites) (Supplemental Table 1).44–48, 52–57 Given the small 

sample size, our analyses are considered exploratory and aim to describe the relationship of 

OCM-specific metabolites and previously identified incident diabetes-associated metabolites 

with arsenic metabolism and metabolic outcomes including fasting glucose levels, insulin 

resistance and waist circumference.

2. METHODS

2.1 Study population

The SHFS recruited a total of 3,838 participants for baseline visits in 1998–1999 and 2001–

2003 from three centers: Arizona, Oklahoma and North/South Dakota. The age range of the 
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participants in the SHFS was 14 to 93 (mean 42) years. At each visit, in-person interviews, 

physical examinations and biological specimens were obtained. Methods have been 

described in detail previously.58 For this pilot study, we randomly selected 20 participants 

per study region among those with a baseline visit in 2001–2003 and with complete data on 

the following variables: urinary arsenic and creatinine, education, smoking status, body mass 

index (BMI), estimated glomerular filtration rate (eGFR), alcohol intake, dietary intake 

information and telomeres. One participant was excluded because of a missing sample, 

leaving 59 participants in the pilot evaluation of plasma metabolites. All participants 

provided informed consent before participation and study protocols were approved by 

multiple institutional review boards, participating communities and The Indian Health 

Service.

2.2 Data Collection

2.2.1 Urinary Arsenic—Morning spot urine samples were collected in polypropylene 

tubes, frozen within 1 to 2 hours of collection, shipped buried in dry ice and stored at −70°C 

in the Penn Medical Laboratory, MedStar Research Institute, Washington, DC for up to 18 

years. The freezers have been operating under a strict quality control system to guarantee 

secure sample storage. For arsenic analyses, urine samples were thawed and up to 1.0 mL 

from each urine sample was transferred to a small vial, transported on dry ice to the Trace 

Element Laboratory at Graz University, Austria and stored at −80°C until analyses. The 

urine concentrations of arsenite, arsenate, MMA and DMA were measured using high 

performance liquid chromatography/inductively coupled plasma mass spectrometry (HPLC/

ICPMS). The limits of detection were 0.1 μg/L for arsenite, arsenate, MMA and DMA. The 

inter-assay coefficients of variation for arsenite, arsenate, MMA, DMA and total arsenic 

were 14.7%, 6.9%, 6.4%, 6.0% and 4.7% respectively. For participants with concentrations 

below the limit of detection (less than 5% for all species) for total arsenic or for the arsenic 

species we imputed the corresponding limit of detection divided by the square root of two.

2.2.2 Outcome Measurements—Participants were asked to fast for 12 hours before 

blood sample collection. Biological specimen aliquots were stored at −70°C at the Texas 

Biomedical Research Institute (Texas Biomed) in San Antonio, TX. Most baseline 

laboratory determinations have been performed at the MedStar Health Research Institute, 

Washington DC under strict quality control procedures including enzymatic methods for 

fasting plasma creatinine and glucose and radioimmunoassay for fasting insulin. HOMA2-

IR was used as a surrogate measure of insulin resistance and was calculated with the 

computed solved model for HOMA2-IR59 using fasting glucose and insulin values.60, 61 

Waist circumference was measured by centrally trained nurses following a standardized 

protocol at the same visit of spot urine and fasting blood sample collection.58

2.2.3 OCM Metabolomics and P180 Panel—Plasma samples were used to measure 

OCM nutrients and nutrient intermediates. Some OCM intermediates can be affected by 

freeze-thaw cycles and were measured in samples that had never been thawed before. 

Targeted OCM metabolomic analysis of plasma was by liquid chromatography tandem mass 

spectrometery (LC-MS/MS) at the Center of Metabolomics, Baylor Research Institute under 

the direction of Dr. Teodoro Bottiglieri. Targeted metabolomic analysis of SAM, S-
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adenosylhomocysteine (SAH), methionine, choline, betaine, cysteine, cystathionine, 

homocysteine (Hcys), 5-methyltetrahydrofolate (5-MTHF), in plasma samples were 

performed using validated LC-MS/MS methods.62–64 This metabolic panel provides a 

quantitative comprehensive assessment of OCM. Each plasma sample (<300 μL) was 

processed by addition of labeled-isotope internal standards followed by deproteinization. 

Processed extracts of samples were transferred to a 96 well microtiter plate for analysis. The 

compounds were detected by multiple reaction monitoring using positive-electrospray 

ionization as previously described.62–64 Sample injection and separation was performed by a 

Shimadzu Nexera UPLC System interfaced with a 5500QTRAP® (Sciex). All data were 

collected and analyzed using Analyst software version 1.5.2. Stable isotopes were used for 

each metabolite to account for matrix effects related ion-suppression, and the quantitative 

values obtained were expressed as μmol/L. Quality control samples (2 levels) were 

positioned at the start, in the middle and at the end of each batch of samples analyzed. The 

inter assay coefficients of variability for all metabolites were <20%, with most <15%.

The P180 Panel (Biocrates Life Sceinces, Innsbruck, Austria) covers carefully selected 

metabolic pathways which includes 188 metabolites from 6 compound classes including 

hexoses, amino acids, biogenic amines, acylcarnitines, glycerophospholipids and 

sphingolipids. For a more targeted analysis, we selected metabolites that have been 

previously associated with incident diabetes.

2.2.4 Other Variables—A standardized questionnaire was conducted during the in-

person interviews and included sociodemographic data (age, sex), smoking history, alcohol 

use, and medical history.65 Physical exam measures (waist circumference, height and 

weight) were performed by centrally trained nurses following a standardized protocol; this 

visit included collection of spot urine and fasting blood samples.58 Estimated daily averages 

of dietary intake of OCM related micronutrients, including vitamins B2, B6 and folate, as 

well as supplement data, were measured during the baseline visit through an interviewer-

administered Block 119-item food frequency questionnaire (FFQ). The Block questionnaire 

is one of the most widely used questionnaires with demonstrated reliability and validity.66 

To enhance accuracy of the questionnaire in this cohort, additional questions relating to 

foods commonly consumed by American Indians were included.66

2.3 Statistical Analysis

Arsenic exposure was estimated as the sum of inorganic (arsenite, arsenate) and methylated 

(MMA and DMA) arsenic species adjusted by urine creatinine to correct for urine dilution 

(∑As). ∑As was log-transformed to better approximate a normal distribution. Arsenic 

metabolism was estimated as percentages of inorganic arsenic, MMA and DMA, (iAs%, 

MMA%, DMA%) by dividing the corresponding concentration for each species by the sum 

of the inorganic and methylated species.67, 68 Arsenic species percentages were modeled in 

their original scale.

Arsenic, metabolites and outcome related variables were coded into related groups in the 

analyses: 1) Arsenic exposure and metabolism biomarkers (∑As, iAs%, MMA% and DMA

%); 2) OCM-specific metabolites (Hcys, cysteine, methionine, betaine, choline, SAM, SAH, 
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SAM/SAH, cystathionine and 5-MTHF); 3) Amino-acids (glutamine, glutamate, glycine, 

histidine, isoleucine, leucine, phenylalanine, serine, tryptophan, tyrosine, valine); 4) 

Acylcarnitines (propionylcarnitine); 5) Glycerophospholipids (lysophosphatidylcholine 

(LPC) a C16:0, LPC 18.2, phosphatidylcholine (PC) aa 32:1, PC aa 36:1, PC aa 38:3, PC aa 

40:5, PC ae 34:3, PC ae 40:6, PC ae 44:4 and PC ae 44:5); 6) Sphingolipids (sphingomyelin 

(SM) C16:1); 7) Diabetes related outcomes (fasting plasma glucose (FPG), HOMA2-IR and 

waist circumference).

First, we computed Spearman correlations for metabolites, biomarkers and outcomes within 

and between the seven group types listed in the previous paragraph and displayed those 

correlations graphically in correlation globes (Figure 1). Correlations greater than |0.15| 

were represented by colored lines between the two metabolites and were displayed as solid 

colored lines for correlations with p-values < 0.05 and as transparent colored lines for p-

values ≥ 0.05. Metabolites with correlation p-values < 0.05 between both an arsenic 

metabolism biomarker (iAs%, MMA%, DMA%) and a metabolic outcome (HOMA2-IR, 

FPG, waist circumference) were considered “metabolites of interest” and evaluated further. 

P-values were not corrected for multiple comparisons due to the limited sample size. 

Correlations between metabolites of interest and both arsenic metabolism biomarkers and 

diabetes-related outcomes were also graphically and numerically displayed through a 

correlation and scatterplot matrix (Figure 2).

Linear regression analyses were conducted to evaluate the associations of diabetes-related 

outcomes, including HOMA2-IR, FPG and waist circumference, separately, with each 

metabolite of interest as well as with the arsenic metabolism biomarkers iAs%, MMA% and 

DMA%. HOMA2-IR was log-transformed in analyses to better approximate a normal 

distribution. FPG and waist circumference were normally distributed and therefore included 

in analyses in their original scale. Metabolites of interest were also normally distributed, 

however, they were standardized (N,0) to reduce variability. Results are presented as the 

geometric mean ratios (GMR) for HOMA2-IR, and mean differences for waist 

circumference and FPG, comparing the 75th to 25th percentile (IQR increase) of each 

metabolite of interest or 5% increase in arsenic metabolism biomarker. Crude models report 

unadjusted associations and adjusted models report associations fully adjusted for all other 

metabolites. Variance inflation factors (VIF) were used to evaluate multicollinearity in 

adjusted models which included all OCM metabolites. Finally, we constructed directed 

acyclic graphs (DAGs) of possible pathways between arsenic metabolism, one carbon 

metabolism and diabetes-related outcomes based on our findings (Figure 3).

3. RESULTS

The median age of the study population was 35 years with slightly more females (53%) than 

males (Table 1). Most participants were overweight or obese (76%) and met or exceeded the 

recommended daily allowance (RDA) for intake of vitamins B2
69 and B6

70 despite most 

participants not taking supplements of either vitamin (78%). The majority of participants 

were below the RDA for of folate intake70 (63%) and did not take folate supplements (75%), 

although RDAs used to categorize inadequate folate intake are based on dietary folate 

equivalents (DFEs), which incorporate different forms of folate (e.g., folic acid) and could 
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not be measured in this dataset. Therefore, the true percentage of participants with 

inadequate folate intake is likely lower. Evaluation of plasma folate (5-MTHF) confirmed no 

participants were folate deficient (5-MTHF ≤9 nmo/L) (data not shown). Further, only seven 

participants had hyperhomocysteinemia (homocysteine >11.4 μmol/L and 10.4 μmol/L for 

men and women, respectively) suggesting vitamin B12 status was also likely sufficient in 

this population as well (data not shown). Median (IQR) plasma folate and homocysteine 

levels were 51.3 (40.2, 63.9) and 7.53 (5.85, 8.98), respectively. Forty-two percent of 

participants were never smokers, 22% were former smokers and 36% were current smokers. 

A total of 14% of participants reported never drinking alcohol, 25% reported former 

drinking and 61% reported current drinking. Median (IQR) for ∑As, iAs%, MMA% and 

DMA% were 3.66 (2.64, 8.27) μg/g creatinine, 10.7 (7.29, 16.4)%, 15.3 (11.3, 19.9)% and 

72.9 (65.9, 78.8)%, respectively. Median (IQR) for diabetes-related outcomes were 1.44 

(1.06, 2.62) for HOMA2-IR, 93.0 (89.0, 101.5) mg/dL for FPG and 105.0 (91.5, 117.5) cm 

for waist circumference. Participant characteristics were similar in the pilot sample 

compared to the full cohort.

Eight metabolites were identified as metabolites of interest due to correlations with both an 

arsenic metabolism variable (iAs%, MMA% or DMA%) and a metabolic outcome 

(HOMA2-IR, FPG, waist circumference) that reached statistical significance p<0.05. These 

metabolites included SAM, SAH, cysteine, glutamate, LPC 18.2, PC ae 34:3, PC ae 40:6 

and PC aa 38:3. Spearman correlations between arsenic metabolism variables, diabetes-

related outcomes and metabolites of interest are displayed in Figure 2. SAM, SAH, cysteine, 

glutamate and PC aa 38:3 were positively correlated with adverse diabetes-related outcomes 

and DMA%, and negatively correlated with MMA% and iAs%. LPC 18:2 and acyl-alkyl 

PCs (PC ae 34:3 and PC ae 40:6) were negatively correlated with adverse diabetes-related 

outcomes and DMA% and positively correlated with MMA% and iAs%. DMA% had a 

significant positive correlation with HOMA2-IR (0.34) and waist circumference (0.36). 

MMA% was significantly negatively correlated with HOMA2-IR, FPG and waist 

circumference.

In unadjusted regression analyses evaluating HOMA2-IR as the outcome, a 5% increase of 

MMA% was associated with a GMR of 0.75 (95% CI: 0.63, 0.89) (Table 2). After 

adjustment for all eight metabolites (SAM, SAH, cysteine, glutamate, LPC 18.2, PC ae 34:3, 

PC ae 40:6 and PC aa 38:3), higher MMA% remained associated with reduced HOMA2-IR 

although the association was markedly attenuated and no longer significant (0.90 (0.74, 

1.09)). For DMA%, the positive association with HOMA2-IR (GMR 1.13, 95% CI: 1.03, 

1.25) became entirely null (GMR 0.99, 95%CI 0.89, 1.11) after adjustment for the other 

metabolites. Six of the eight metabolites were also significantly associated with HOMA2-IR 

in unadjusted models (increased risk for SAM, SAH, glutamate and PC aa 38:3; decreased 

risk for LPC 18:2 and PC ae 40:6). After adjustment for other metabolites, associations were 

attenuated and no longer significant except for PC aa 38:3 which remained borderline 

significantly associated with increased HOMA2-IR. iAs% was not significantly associated 

with HOMA2-IR or any other diabetes-associated outcome (data not shown).

Similarly, in unadjusted analyses for waist circumference, an inverse association was 

observed with a 5% increase in MMA% (−7.83, 95% CI: −12.8, −2.90, cm) and a positive 
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association was observed with a 5% increase in DMA% (3.66, 95% CI: 0.95, 6.38, cm) 

(Table 2). After adjustment for the other metabolites, the association with MMA% was 

attenuated to the null (0.93, 95% CI: −4.04, 5.90, cm) and the association with DMA% even 

reversed direction (−1.16, 95% CI: −3.99, 1.67, cm). Several other metabolites were also 

significantly associated with waist circumference in unadjusted models in the same direction 

as the associations seen between these metabolites and HOMA2-IR. After adjustment for the 

other metabolites, glutamate remained significantly associated with increased waist 

circumference and both LPC 18:2 and PC ae 40:6 remained significantly associated with 

reduced waist circumference. The direction of associations between MMA%, DMA% and 

OCM metabolites with FPG was the same as for the other diabetes-related outcomes, 

however none of the associations were significant. Variance inflation factor (VIF) values 

were below 4 for all variables in fully OCM-adjusted models, and therefore, 

multicollinearity was not considered a significant concern.

4. DISCUSSION

In this pilot study of 59 men and women from the SHFS, we observed significant 

correlations between eight metabolites (SAM, SAH, cysteine, glutamate, LPC 18:2, PC ae 

34:3, PC ae 40:6 and PC aa 38:3) and both a metabolic outcome (HOMA2-IR, FPG, waist 

circumference) and at least one arsenic metabolism biomarker (iAs%, MMA% or DMA%). 

Before adjustment, higher MMA% was associated with lower HOMA2-IR and waist 

circumference, and higher DMA% was associated with higher HOMA2-IR and waist 

circumference. After adjustment for these eight “metabolites of interest”, associations 

between arsenic metabolism and diabetes-related outcomes were substantially attenuated 

and no longer significant. For the metabolites of interest, glutamate, LPC 18:2 and PC ae 

40:6 remained statistically significantly associated with waist circumference even after 

adjustment for other metabolites and for arsenic metabolism biomarkers. Together, our 

results suggest that these metabolites play a key role in the relationship between arsenic 

metabolism and diabetes-related outcomes and may explain the difference in association 

seen between arsenic metabolism and diabetes-related outcomes compared to the 

associations reported for arsenic metabolism and other health outcomes.

Inorganic arsenic exposure has been associated with numerous health outcomes including 

cancer, cardiovascular disease, skin lesions and birth outcomes.1, 2, 15, 71–74 Further, an 

arsenic metabolism profile reflecting higher percentages of MMA% and lower percentages 

of DMA%, has been associated with greater risk for these outcomes, even after controlling 

for exposure levels.14, 75–77 These findings, as well as the shorter half-life and rapid 

excretion in the urine of DMA compared to iAs, has led to the characterization of higher 

DMA% and lower iAs% and MMA% in urine as a more efficient arsenic metabolism 

profile.78 Inorganic arsenic exposure has also been associated with diabetes at high (≥100 

μg/L)79–83 and moderate (<100 μg/L)27, 28, 67, 84–88 levels of exposure, with mixed findings 

at low levels.3, 89–91 However, in contrast to other arsenic-associated health outcomes, a 

more efficient arsenic metabolism profile (i.e., higher DMA% but lower iAs% and MMA%) 

has been associated with increased risk for diabetes3, 77 and other diabetes-related outcomes 

including higher BMI,50 insulin resistance92, elevated waist circumference51 and metabolic 

syndrome.93 The mechanism behind the reported contrasting associations is unclear. Some 
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studies have suggested the association between higher DMA% and increased risk for 

metabolic-related outcomes may be due to DMAIII, as trivalent methylated arsenicals are 

considered the most toxic metabolites; this intermediate is difficult to measure analytically 

as it rapidly oxidizes to DMAV.3, 27, 28 Other studies have considered confounding by diet, 

particularly greater intake of OCM nutrients.3, 26 All eight of the metabolites of interest in 

our study that were related both to arsenic metabolism and to a metabolic outcome are 

connected to the OCM pathway, as outlined below (study metabolites underlined) and in 

Figure 4, and provide a potentially relevant mechanism behind the association between 

arsenic metabolism and diabetes-related outcomes.

OCM facilitates the generation of SAM, the methyl donor for numerous substrates, which 

are essential to many biological processes including cellular signaling, DNA methylation, 

the synthesis of proteins, lipids, hormones and carbohydrates, and arsenic metabolism.43 

SAH is a product of SAM-dependent methylation reactions, and is hydrolyzed to Hcys, 

which can be remethylated to form methionine and activated to regenerate SAM.43 SAH is a 

potent inhibitor of most transmethylation reactions, including arsenic, through its binding 

with methyltransferases.41 SAH is removed from methyltransferases when Hcys is pulled 

forward for the remethylation of Hcys to form methionine or diverted to the transsulfuration 

pathway for glutathione synthesis. Glutathione is a tripeptide consisting of cysteine, 

glutamate, and glycine and is critical to the body’s antioxidant response (in its reduced form 

as GSH), including detoxification of heavy metals.94 OCM is dependent on essential 

nutrients - including folate, vitamin B12, vitamin B6, vitamin B2 and choline – for the 

recruitment and transfer of methyl groups.9 Indeed, in our study we observed greater SAM 

in participants with sufficient folate intake versus those with low intake. Choline can provide 

methyl groups for the remethylation of Hcys through conversion to betaine. Choline is also 

used in the synthesis of phosphatidylcholine (PC), an abundant phospholipid involved in 

maintenance of hepatic lipid metabolism.95 Four of the eight OCM-related metabolites 

included in this analysis were PCs, which may also be synthesized through the methylation 

of phosphatidylethanolamine using SAM as the methyl donor.96 aaPCs consist of glycerol 

linked to phosphocholine and two fatty acid residues, and removal of one fatty acid produces 

LPCs. aePC’s comprise an ether linkage to one alkyl chain and one polyunsaturated fatty 

acid.48

The positive associations that we observed in our study between glutamate and both 

HOMA2-IR and waist circumference, before and after adjustment for other OCM 

metabolites and arsenic metabolism, are consistent with several previous prospective and 

cross-sectional studies, reporting a positive relationship between glutamate and diabetes,
97–101 including prospective metabolomic analyses.54, 56, 102 Further, elevated cerebral 

glutamate measured via proton magnetic resonance spectroscopy in occipitoparietal grey 

matter has been reported in adults with metabolic syndrome.103 In vitro studies in human 

islet cells have shown chronic exposure to glutamate through treated cell media causes dose-

dependent increases in insulin secretion as well as β-cell apoptosis.104 The mechanism 

behind these associations is likely due to glutamate’s role in a regulatory system in which 

dietary protein ingestion stimulates ß-cells to stimulate insulin secretion: The increase in 

branched-chain amino acids following a protein-containing meal activates glutamate 

dehydrogenase in ß-cells which oxidizes glutamate to α-ketoglutarate and there is a 
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consequent increase in the ATP/ADP ratio.105 Insulin secretion is very sensitive to this 

because it closes the ATP-gated K+ channel which depolarizes the cell and activates a 

voltage-gated Ca2+ channel.105 The increase in Ca2+ then triggers insulin release.105 

Further, excess extracellular levels of glutamate have been shown to inhibit the glutamate/

cysteine antiporter system, which depletes the cells of cysteine, in turn limiting the 

production of glutathione, thus decreasing the antioxidant defense.104, 106

SAM, SAH and cysteine were also significantly associated with increases in HOMA2-IR 

and waist circumference before adjustment for the other OCM metabolites and arsenic 

metabolism. Research on these metabolites and diabetes outcomes is limited, with some 

evidence suggesting the association may be due to reverse causality. An in vitro study found 

that when hepatic cells were exposed to elevated insulin and glucose, SAM concentrations 

increased.107 In addition, animal models have shown insulin resistance and diabetes can alter 

one carbon metabolism-related metabolites and enzymes, including increases in hepatic 

SAM, and that administration of insulin can prevent these perturbations.108, 109

SAM, SAH, glutamate and cysteine all correlated positively with a more efficient arsenic 

metabolism profile characterized by higher DMA%. This is consistent with observational 

studies from Bangladesh which reported greater SAM to be associated with lower iAs%110 

and greater cysteine to be associated with lower MMA% and higher DMA%,111 as well as 

indirect evidence provided by experimental studies reporting a protective effect of SAM in 

regard to arsenic toxicity.112, 113 We found one study that has evaluated the association 

between glutamate and arsenic metabolism.114 In contrast to our findings, this study 

reported glutamate having an inverse correlation with DMA%, however, the study was 

conducted in pregnant women which may have influenced results. Further, both glutamate 

and cysteine are critical for glutathione synthesis, and increases in glutathione when 

glutathione levels are low have been shown to accelerate arsenic metabolism, supporting our 

findings.115

The findings in our study between PCs and diabetes-related outcomes are consistent with 

previous studies which have reported inverse associations between ae PCs and LPCs with 

diabetes risk and BMI, but positive associations between aa PCs and diabetes risk.116–118 

The mechanisms behind the contrasting associations between ae PCs and LPCs versus aa 

PCs are not clear and warrant further investigation. Further, some evidence suggests the 

association between PCs and diabetes is due to reverse causality. Animal studies have shown 

significant alterations in both hepatic and blood PC levels in diabetic versus control rats.109 

Regardless, the strong associations between the PCs and LPCs with multiple diabetes-related 

outcomes in our study are not surprising given the established link between PCs (the most 

abundant phospholipid), dyslipidemia and obesity-associated insulin resistance.119

Research on the association between arsenic metabolism and PCs is limited. An 

experimental study found a strong effect of arsenic (+3 oxidation state) methyltransferase 

(As3mt), the key enzyme for inorganic arsenic methylation, knockout on both plasma and 

urine PCs in mice.120 This is the first study to evaluate the association between arsenic 

metabolism and PCs in humans. Our particularly strong (meeting Bonferroni correction 

criteria (p=0.0015)) correlations between LPC and all three arsenic metabolite percentages is 
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intriguing. LPC is formed by the hydrolysis of aaPCs, during which a fatty acid is freed.52 In 

turn, LPCs are hydrolyzed to choline.121 As choline assists in the remethylation of Hcys to 

methionine in the OCM pathway through conversion to betaine, we might expect LPCs to be 

associated with enhanced arsenic metabolism. However, our results suggest the opposite and 

may reflect the fact that the PC/LPC pathway for choline synthesis, one of two choline 

synthesis pathways, consumes three molecules of SAM per molecule of choline.96, 122, 123 

This is supported by the significant inverse correlation (−0.35) between SAM and LPC 18:2 

in this study.

Together, our results provide evidence that OCM metabolites may have an instrumental role 

in the previously observed associations between arsenic metabolism and diabetes-related 

outcomes. In our regression analyses, we show strong attenuations and loss of significance 

for associations between both DMA% and MMA% with HOMA2-IR and waist 

circumference after adjustment for OCM metabolites. We propose 3 potential pathways for 

how these OCM metabolites may influence the observed relationships between arsenic 

metabolism and diabetes-related outcomes. First, as represented in DAG 1 (Figure 3), OCM 

metabolites may be acting as confounders. All of the OCM metabolites were positively 

associated with HOMA2-IR and waist circumference were also positively associated with 

enhanced arsenic metabolism capacity. Likewise, the metabolites negatively correlated with 

those two diabetes-related outcomes were also associated with reduced arsenic metabolism 

capacity. Further, the previous paragraphs have summarized the consistency of these 

findings with other studies. In this way, OCM metabolites could cause a spurious association 

between enhanced arsenic metabolism and higher HOMA2-IR and waist circumference.

Second, as represented in DAG 2 (Figure 3), the associations seen between both OCM 

metabolites and arsenic metabolism with diabetes-related outcomes may be a result of 

reverse causality. Despite multiple metabolomic studies showing an association between 

most of our metabolites of interest with incident diabetes, it is still possible diabetes 

converters were in early stages of disease progression, causing early metabolite alterations, 

which in turn affected arsenic metabolism.

Finally, as represented in DAG 3 (Figure 3), OCM may still directly affect diabetes-related 

outcomes and arsenic metabolism (per DAG 1), however, in this scenario, part of the effect 

of OCM metabolites on HOMA2-IR and waist circumference is through its influence on 

arsenic metabolism. The results of this study provide evidence that arsenic metabolism alone 

is not responsible for the associations reported between arsenic metabolism and diabetes-

related outcomes. However, it is still possible arsenic metabolism has some effect on 

diabetes-related outcomes and is not simply confounded by OCM metabolites (DAG 1) or an 

outcome of insulin resistance (DAG 2); instead it is acting as a partial mediator in the 

association between OCM and diabetes outcomes. Robust mechanistic evidence is lacking 

for this pathway, however, the trivalent forms of DMA (DMAIII) and MMA (MMAIII) have 

been shown to be potent inhibitors of insulin signal transduction in experimental models,
124, 125 providing some explanation for greater diabetes risk with higher DMA%, although 

we are not able to distinguish between DMAIII and DMAV. Still it is unclear how this would 

lead to lower MMA% being inversely associated with diabetes outcomes, unless it was just 

an indirect association due to an increased risk with DMA%. Another theory postulates that 
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increased methylation reactions of methyl-consuming xenobiotics, such as arsenic, may lead 

to a depletion of the endogenous methyl pool and generation of reactive oxygen species, and 

in turn tissue injury.126 We feel this to be unlikely, as the methylation of As consumes a very 

small proportion of SAM (< 4%).127

This study was limited by a small sample size and therefore conclusions should be 

interpreted with caution. Further, due the small sample size, final models did not include 

other confounders for arsenic metabolism diabetes-related outcomes, such as age and sex. 

Final models also did not account for family relatedness. However, in sensitivity analyses 

adjusting for those factors resulted in similar findings. Finally, availability of just a single 

urine and blood sample prevented prospective analyses, which are needed to confirm 

direction of associations as well as mediation analyses.

5. CONCLUSIONS

We found that several OCM-related metabolites were significantly and relatively strongly 

associated with both arsenic metabolism and diabetes-related outcomes. LPC 18:2 had the 

strongest association with arsenic metabolism, a novel finding that warrants additional 

research. In addition, glutamate, LPC 18:2 and PC ae 40:6 remained significantly associated 

with waist circumference after adjustment for both arsenic metabolism and all other 

metabolites, highlighting a potential role of these three metabolites in the development or 

physiological consequences of central adiposity. Adjusting arsenic metabolism biomarkers 

for all OCM-related metabolites in models evaluating the association between arsenic 

metabolism and both HOMA2-IR and waist circumference resulted in significant 

attenuations and losses in statistical significance. Our findings provide evidence that the 

OCM pathway may be - either directly or indirectly - influencing the previously reported 

relationship between arsenic metabolism and diabetes-related outcomes. Further, this 

pathway may, in part, explain the contrasting associations seen between arsenic metabolism 

and diabetes-related outcomes versus arsenic metabolism and other arsenic-related health 

outcomes.
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HIGHLIGHTS

• One carbon metabolism, arsenic and diabetes appear to be interconnected

• Arsenic metabolism was associated with diabetes outcomes

• Adjustment for one carbon metabolism metabolites removed this association

• Glutamate and phosphatidylcholines may be of particular importance

• Findings need confirmation in larger prospective cohorts
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Figure 1. Correlation matrices between and within metabolite and biomarker groups.
Transparent lines reflect correlations ≥ |15|. Solid lines represent correlations with p-values ≤ 

0.05. Abbreviations: ∑As (sum of inorganic arsenic and its methylated metabolites); iAs 

(inorganic arsenic); DMA (dimethylarsinic acid); FPG (fasting plasma glucose); LPC 

(lysophosphatidylcholine); MMA (monomethylarsonic acid); OCM (one carbon 

metabolism); PC (phosphatidylcholine); SAH (S-Adenosylhomocysteine); SAM (S-

Adenosylmethionine); WC (waist circumference)
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Figure 2. Spearman Correlations between arsenic metabolism biomarkers, diabetes-related 
outcomes, and metabolites of interest.
∑As and HOMA2-IR are log-transformed. P-value <0.05 for correlations ≥0.26; P-value 

<0.01 for correlations ≥0.33; P-value <0.001 for correlations ≥0.42. Blue shading reflects 

negative correlations, red shading reflects positive correlations. Darker shades of both colors 

reflect stronger correlations. Abbreviations: Sum As (sum of inorganic arsenic and its 

methylated metabolites); DMA (dimethylarsinic acid); FPG (fasting plasma glucose); 

HOMA (homeostasis model assessment); iAs (inorganic arsenic); LPC 

(lysophosphatidylcholine); MMA (monomethylarsonic acid); PC (phosphatidylcholine); 

SAH (S-Adenosylhomocysteine); SAM (S-Adenosylmethionine); WC (waist circumference)
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Figure 3. Directed acyclic graphs of proposed pathways between arsenic metabolism, one carbon 
metabolism and diabetes-related outcomes.
Abbreviations: OCM (one carbon metabolism)
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Figure 4. Study Metabolites in the One Carbon Metabolism Pathway.
One carbon metabolism metabolites of interest (i.e., metabolites significantly correlated with 

both arsenic metabolism and a metabolic outcome) are highlighted in pink (a-f). OCM 

facilitates the generation of SAM (a), the methyl donor for numerous substrates, which are 

essential to many biological processes including arsenic metabolism. SAH (b) is a product 

of SAM-dependent methylation reactions, and is hydrolyzed to Hcys, which can be 

remethylated to form methionine and activated to regenerate SAM. SAH is a potent inhibitor 

of most transmethylation reactions, including arsenic, through its binding with 

methyltransferases. SAH is only removed from methyltransferases if Hcys is pulled forward 

for the remethylation of Hcys to form methionine or diverted to the transsulfuration pathway 

for glutathione synthesis. Glutathione is a tripeptide consisting of cysteine (c), glutamate (d), 

and glycine and is critical to the body’s antioxidant response (in its reduced form as GSH), 

including detoxification of heavy metals. Choline can provide methyl groups for the 

remethylation of Hcys through conversion to betaine. Choline is also used in the synthesis of 

phosphatidylcholine (PC) (e), an abundant phospholipid involved in maintenance of hepatic 

lipid metabolism. PCs may also be synthesized through the methylation of 

phosphatidylethanolamine (PE) using SAM as the methyl donor. aaPCs consist of glycerol 

linked to phosphocholine and two fatty acid residues, and removal of one fatty acid produces 

LPCs (f). aePC’s comprise an ether linkage to one alkyl chain and one polyunsaturated fatty 

acid. Abbreviations: As (inorganic arsenic); DMA (dimethylarsinic acid); GSH 

(glutathione); LPCs (lysophosphatidilycholines); MMA (monomethylarsonic acid); PCs 

(phosphatidylcholines); SAH (s-adenosylhomocysteine); SAM (S-adenosylmethionine)
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Table 1.

Participant Characteristics, Pilot versus Full Strong Heart Family Study Cohort

Pilot (N=59) Full Cohort (N=1577)
a

Age (years), median (IQR) 35.3 (26.4, 46.3) 35.3 (23.6, 46.3)

Sex

    Male, n (%) 28 (47.5) 654 (41.6)

    Female, n (%) 31 (52.5) 923 (58.4)

Smoking

    Never, n (%) 25 (42.4) 647 (41.1)

    Ever, n (%) 13 (22.0) 325 (20.6)

    Current, n (%) 21 (35.6) 604 (38.3)

Alcohol Intake

    Never, n (%) 8 (13.6) 173 (11.0)

    Ever, n (%) 15 (25.4) 406 (25.8)

    Current, n (%) 36 (61.0) 997 (63.3)

BMI (kg/m2) 31.6 (25.9, 38.0) 29.8 (25.5, 35.0)

Vitamin B6 intake (mg) 1.60 (1.05, 2.65) 1.70 (1.10, 2.60)

    <RDA
b
, n (%)

21 (35.6) 545 (34.6)

    ≥RDA
b
, n (%)

38 (64.4) 1032 (65.4)

Vitamin B2 intake (mg) 1.60 (1.00, 2.30) 1.70 (1.10, 2.70)

    <RDA
c
, n (%)

19 (32.2) 358 (22.7)

    ≥RDA
c
, n (%)

40 (67.8) 1219 (77.3)

Folate intake (μg) 348 (226, 518) 360 (234, 559)

    <RDA
d
, n (%)

37 (62.7) 890 (56.4)

    ≥RDA
d
, n (%)

22 (37.3) 687 (43.6)

Plasma Folate (nmol/L) 51.3 (40.2, 63.9) ---

Plasma Homocysteine (μmol/L) 7.53 (5.85, 8.98) ---

ΣAs (μg/g) 3.66 (2.64, 8.27) 4.59 (3.02, 7.49)

iAs% 10.7 (7.29, 16.4) 10.0 (6.94, 14.1)

MMA% 15.3 (11.3, 19.9) 14.5 (11.1, 18.2)

DMA% 72.9 (65.9, 78.8) 74.6 (67.8, 80.8)

HOMA2-IR 1.44 (1.06, 2.62) 1.44 (0.97, 1.44)

Fasting Plasma Glucose (mg/dL) 93.0 (89.0, 101.5) 93.0 (87.0, 100.0)

Waist Circumference (cm) 105.0 (91.5, 117.5) 99.0 (88.0, 111.0)

Abbreviations: RDA (recommended dietary allowance); ΣAs (sum of inorganic arsenic and its methylated metabolites); iAs (inorganic arsenic); 
MMA (monomethylarsonic acid);DMA (dimethylarsinic acid)

a
Excluding participants with missing data on variables in table

b
RDA for B6: Males (≤50 years=1.3 mg; >50=1.7 mg); Females (14–18 years=1.2 mg; 19–50 years=1.3 mg; >50 years=1.5 mg)

c
RDA for B2: Males (≥14 years =1.3 mg); Females (14–18 years=1.0 mg; >18 years=1.1 mg)
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d
RDA for folate: Males and Females ≥14 years=400 μg
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Table 2.

Associations between MMA%, DMA% and OCM Metabolites with Diabetes-Related Outcomes

Model 1
a
: Unadjusted Model 2

b
: Metabolite 

Adjusted
Model 3

c
: Metabolite 

Adjusted +MMA%
Model 4

d
: Metabolite 

Adjusted +DMA%

Geometric Mean Ratio (95%CI) of HOMA2-IRe

MMA% 0.75 (0.63, 0.89) 0.90 (0.74, 1.09) --------------------- ---------------------

DMA% 1.13 (1.03, 1.25) 0.99 (0.89, 1.11) --------------------- ---------------------

SAM 1.46 (1.22, 1.76) 1.19 (0.87, 1.63) 1.23 (0.90, 1.70) 1.19 (0.86, 1.64)

SAH 1.41 (1.08, 1.85) 1.16 (0.81, 1.67) 1.10 (0.75, 1.60) 1.17 (0.79, 1.73)

Cysteine 1.10 (0.82, 1.48) 0.76 (0.56, 1.03) 0.74 (0.55, 1.01) 0.76 (0.56, 1.04)

Glutamate 1.45 (1.19, 1.77) 1.13 (0.90, 1.42) 1.11 (0.88, 1.40) 1.13 (0.90, 1.43)

LPC 18:2 0.74 (0.59, 0.91) 0.80 (0.65, 0.99) 0.84 (0.67, 1.06) 0.79 (0.61, 1.03)

PC ae 40:6 0.74 (0.59, 0.93) 0.80 (0.62, 1.03) 0.83 (0.64, 1.09) 0.80 (0.61, 1.04)

PC ae 34:3 0.81 (0.66, 1.00) 1.04 (0.82, 1.31) 1.02 (0.81, 1.29) 1.04 (0.82, 1.31)

PC aa 38:3 1.35 (1.09, 1.67) 1.23 (1.00, 1.52) 1.22 (0.99, 1.50) 1.23 (0.99, 1.53)

Mean Difference (95%CI) of Waist Circumferencee

MMA% −7.83 (−12.8, −2.90) 0.93 (−4.04, 5.90) --------------------- ---------------------

DMA% 3.66 (0.95, 6.38) −1.16 (−3.99, 1.67) --------------------- ---------------------

SAM 10.3 (4.99, 15.6) −3.70 (−11.8, 4.39) −4.00 (−12.3, 4.32) −4.36 (−12.6, 3.92)

SAH 11.3 (3.73, 18.8) 5.84 (−3.49, 15.2) 6.35 (−3.45, 16.1) 7.28 (−2.72, 17.3)

Cysteine 9.22 (1.12, 17.3) 3.46 (−4.43, 11.4) 3.67 (−4.37, 11.7) 3.52 (−4.4, 11.4)

Glutamate 12.8 (7.55, 18) 8.43 (2.52, 14.3) 8.62 (2.57, 14.7) 8.46 (2.53, 14.4)

LPC 18:2 −11.5 (−17.3, −5.81) −8.52 (−14, −3.05) −8.97 (−15.0, −2.94) −10.0 (−16.7, −3.41)

PC ae 40:6 −10.2 (−16.6, −3.9) −7.28 (−13.9, −0.69) −7.63 (−14.5, −0.72) −7.98 (−14.8, −1.15)

PC ae 34:3 −8.9 (−14.4, −3.43) −1.17 (−7.08, 4.75) −1.04 (−7.05, 4.96) −0.76 (−6.78, 5.26)

PC aa 38:3 5.49 (−0.797, 11.8) 2.48 (−2.92, 7.87) 2.56 (−2.90, 8.02) 2.96 (−2.58, 8.50)

Mean Difference (95%CI) of FPGe

MMA% −2.08 (−4.35, 0.18) −1.28 (−4.24, 1.68) --------------------- ---------------------

DMA% 0.75 (−0.49, 1.99) 0.14 (−1.56, 1.85) --------------------- ---------------------

SAM 2.28 (−0.23, 4.80) 1.75 (−3.1, 6.60) 2.15 (−2.80, 7.11) 1.83 (−3.17, 6.82)

SAH 2.07 (−1.43, 5.57) 1.17 (−4.42, 6.76) 0.47 (−5.37, 6.31) 1.00 (−5.04, 7.03)

Cysteine 0.75 (−2.94, 4.43) −1.27 (−6.00, 3.46) −1.56 (−6.35, 3.23) −1.28 (−6.06, 3.50)

Glutamate 2.08 (−0.57, 4.73) 0.59 (−2.95, 4.13) 0.32 (−3.29, 3.93) 0.59 (−2.99, 4.16)

LPC 18:2 −1.77 (−4.56, 1.02) −1.61 (−4.89, 1.67) −0.98 (−4.58, 2.61) −1.42 (−5.42, 2.57)

PC ae 40:6 −1.84 (−4.81, 1.13) −1.77 (−5.71, 2.18) −1.28 (−5.39, 2.84) −1.68 (−5.8, 2.44)

PC ae 34:3 −0.59 (−3.18, 1.99) 1.46 (−2.08, 5.01) 1.29 (−2.28, 4.87) 1.41 (−2.22, 5.04)

PC aa 38:3 0.32 (−2.49, 3.14) −0.64 (−3.87, 2.60) −0.75 (−4.01, 2.50) −0.70 (−4.04, 2.64)

Abbreviations: DMA (dimethylarsinic acid); FPG (fasting plasma glucose); LPC (lysophosphatidylcholine); MMA (monomethylarsonic acid); PC 
(phosphatidylcholine); SAH (S-Adenosylhomocysteine); SAM (S- Adenosylmethionine)

a
Model 1: unadjusted

b
Model 2: adjusted for the seven OCM-related metabolites (SAM, SAH, cysteine, glutamate, LPC 18:2, PC ae 40:6, PC ae 34:3, PC aa 38:3)
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c
Model 3: Model 2 adjustments plus additional adjustment for MMA%

d
Model 4: Model 2 adjustments plus additional adjustment for DMA%

e
Per 5% increases for arsenic metabolites and per IQR increases for OCM metabolites
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