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Abstract

The alcohol research field has amassed an impressive number of gene expression datasets 

spanning key brain areas for addiction, species (humans as well as multiple animal models), and 

stages in the addiction cycle (binge/intoxication, withdrawal/negative affect, and preoccupation/

anticipation). These data have improved our understanding of the molecular adaptations that 

eventually lead to dysregulation of brain function and the chronic, relapsing disorder of addiction. 

Identification of new medications to treat alcohol use disorder (AUD) will likely benefit from the 

integration of genetic, genomic, and behavioral information included in these important datasets. 

Systems pharmacology considers drug effects as the outcome of the complex network of 

interactions a drug has rather than a single drug-molecule interaction. Computational strategies 

based on this principle that integrate gene expression signatures of pharmaceuticals and disease 

states have shown promise for identifying treatments that ameliorate disease symptoms (called in 
silico gene mapping or connectivity mapping). In this Review, we suggest that gene expression 

profiling for in silico mapping is critical to improve drug repurposing and discovery for AUD and 

other psychiatric illnesses. We highlight studies that successfully apply gene mapping 

computational approaches to identify or repurpose pharmaceutical treatments for psychiatric 

illnesses. Furthermore, we address important challenges that must be overcome to maximize the 

potential of these strategies to translate to the clinic and improve healthcare outcomes.
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Introduction

Developing more effective pharmacotherapies to treat disease is an important goal in public 

health. This is especially true for complex psychiatric diseases like Alcohol Use Disorder 

(AUD), where there are limited pharmaceutical treatment options. We use AUD throughout 

this Review for consistency as this is the terminology used in the current edition of the 
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Diagnostic and Statistical Manual of Mental Disorders (DSM5), but this does not exclude 

previous DSM version diagnostic criteria or preclinical/clinical trials based on those. AUD is 

a chronic, relapsing disease that devastates individuals, families, and society, and is a major 

public health problem. Though recovery is possible regardless of disease severity, there are 

few pharmaceutical treatments available to aid in the recovery process. There are several 

points of intervention along the time course of AUD where pharmacotherapies might be 

effective, including AUD initiation (initial alcohol use), development (sporadic intermittent 

alcohol use; the binge-intoxication phase), progression (regular use), early abstinence (the 

withdrawal - negative affect stage) or protracted abstinence (the preoccupation - anticipation 

(craving) stage) (Koob et al. 2009; Kreek et al. 2002). Sleep disturbances are a key 

contributor to relapse in abstinence and therefore offer another target for treatment (Brower 

2015; Miller et al. 2017). Therapeutic interventions at any point along this continuum could 

improve the health of the individual.

Pharmaceutical treatments can either be developed de novo for a specific drug target, 

repurposed, or rescued. While the usage and definition of the terminology “drug 

repurposing” and “drug rescue” can be complex (Langedijk et al. 2015), here we define drug 

repurposing as finding a novel clinical use for an approved drug and drug rescue as finding a 

clinical use for a stalled drug (whether the drug is in development but not yet approved or 

failed for one indication but could be useful for another disease or patient subgroup; Phase 2 

or beyond). Drug repurposing (also referred to as drug repositioning) is appealing since it 

reduces the overall costs of drug development and expedites the availability of treatments to 

those who need them (Nosengo 2016). Drug repurposing has largely centered around side 

effect data, and, while this approach has been somewhat successful for brain diseases, there 

is a great need for improved strategies for drug selection. De novo drug development has 

traditionally relied on target identification through basic research. Over four decades of 

alcohol research has identified key neurotransmitter systems and brain regions that 

contribute to the various stages of AUD pathology and represent potential targets for 

pharmaceutical development. Despite these advancements, there has been sparse 

translational success clinically. There are only three FDA approved drugs for AUD: 

naltrexone (oral: ReVia®, injectable: Vivitrol®), acamprosate (Campral®) and disulfiram 

(Antabuse®), the most recent of which, acamprosate, was approved in 2004. This gap 

between advances in basic research (conducted primarily at academic institutions) and 

pharmaceutical development (primarily undertaken by industry, e.g., pharmaceutical 

companies) has been dubbed the “valley of death” (Butler 2008).

The explosion of both the quantity and availability of various types of molecular datasets 

(e.g., gene sequence/genotype, gene expression, epigenetic marks, metabolic measures) and 

computational strategies to exploit them, offers new solutions to this problem and is moving 

disease diagnosis and treatment into the molecular realm. Many computational (or in silico) 
strategies exist, and all are concerned with finding the “similarity” between diseases and 

drugs. The computational strategies highlighted in this Review involve integrating molecular 

profiles of a disease state with those of pharmaceuticals to predict effective treatments. 

Molecular profiles can be derived from multiple molecular phenotypes, including gene 

expression, protein targets (see the issue in this article for proteome targets in the accumbens 

by Clyde Hodge and colleagues), genetic variants (single nucleotide polymorphisms 
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(SNPs)), and others, though the focus of this Review will be on gene expression. Another 

approach to computational repurposing uses crystal structures of receptors to conduct 

structure-based ligand discovery (Heusser et al. 2013). In this Review, we focus on the 

aforementioned computational approaches and will not discuss structure-based ligand 

discovery in detail, but interested readers are referred to a review (Howard et al. 2014).

Traditional Approach

Drug Development

Disease-related drug development begins with mechanistic studies of target identification 

followed by validation (see the Review in this issue by Ciccocioppo and colleagues for an 

indepth discussion of target validation), preclinical and clinical trials, and FDA review. 

Typically, a single cellular or molecular target is sourced from the results of much 

neurobiological research (Fig 1). Despite clear scientific evidence for its involvement in 

disease pathology at multiple levels of analysis (e.g., molecular, neuropharmacological, 

neurocircuitry, behavior), the single target approach has largely been a failure for brain 

diseases (Hutson et al. 2017). A striking example of this is for Huntington’s disease, where 

the single causative gene (HTT) has been known since 1993 (MacDonald et al. 1993). 

Despite this single, well-validated target, no drug nor therapeutic options have been 

developed as treatments. One example of this for AUD is the corticotrophin releasing factor 

(CRF) system, which has tremendous research support for its involvement in AUD 

pathology, yet CRF inhibitors have produced disappointing results in double-blind, placebo 

controlled trials (Kwako et al. 2015; Pomrenze et al. 2017; Schwandt et al. 2016).

Despite the vital insights gained from neurobiological research (both in humans and animal 

models), these findings have not translated into therapeutic success. There are a number of 

possible reasons for this, including genetically heterogeneous human populations and the 

complexities of alcohol’s many targets (Most et al. 2014; Pomrenze et al. 2017). The brain is 

highly complex, and psychiatric diseases are characterized by numerous symptoms. 

Reducing this complexity to a single target is appealing for its simplicity but perhaps 

misguided, and expecting modulation of a single gene or molecule to ameliorate all 

symptoms of complex diseases is likely to produce disappointing results.

Targets (molecules) do not work in isolation, but function as part of a system (or network) to 

accomplish biological functions. The hypothesis that a disease state represents a shift from 

normal physiological homeostasis and can be thought of as a network perturbation has been 

proposed and described in detail, and is attractive for several reasons (Barabasi et al. 2011; 

Chen and Butte 2013; Jacunski and Tatonetti 2013; Kolodkin et al. 2012; Silbersweig and 

Loscalzo 2017; Silverman and Loscalzo 2013). First, there could be many network 

perturbations that lead to the same disease classification, which fits with the heterogeneous 

patient populations we observe in AUD. Secondly, the other side of this argument is that if a 

disease represents a perturbed state of a biological network, there could be multiple 

pharmacological intervention points to reverse those perturbations and return the system to 

homeostasis. Targeting the network at several points might be more efficient (or even 

necessary) to shift the system back to normal homeostasis. This also provides a basis for 

polypharmacology (the use of drug combinations to treat a disease) and could guide the 
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selection of drug combinations, which will not be discussed in depth in this Review, but 

interested readers are referred to (Ryall and Tan 2015) for more information. For these 

reasons, we and others propose that to maximize the likelihood of successful treatment for 

complex disorders, it is imperative to “drug the network” rather than focus solely on single 

targets (see Computational Approaches section below).

Drug Repurposing

Traditionally, getting a drug to market takes 13–15 years and costs 2–3 billion dollars on 

average (Nosengo 2016). Many drugs that are currently FDA approved could be beneficial 

for diseases other their original indication. Additionally, pharmaceutical companies have 

invested considerable resources into developing drugs that passed initial safety trials but 

failed in efficacy trials (sometimes referred to as shelved compounds) that are waiting for a 

suitable indication (Nosengo 2016). Often, successful drug repurposing has been 

serendipitous (Fig 1). There are many examples spanning a variety of conditions, from the 

classic example of sildenafil (Viagra®), a PDE5 inhibitor being developed for hypertension, 

that was repurposed for erectile dysfunction (Goldstein et al. 1998), to bimatoprost 

(Lumigan® / Latisse®), a prostaglandin analog, that was repurposed for a cosmetic 

application as it was noticed to lengthen and darken the eyelashes as a side effect of those 

using it to treat glaucoma (Tosti et al. 2004).

Drug repurposing has also been successful for brain diseases. For example, buprenorphine, a 

mixed partial agonist opioid receptor modulator, was originally used for pain relief and was 

repurposed to treat opiate dependence (Jasinski et al. 1978). Ropinirole (Requip), a 

dopamine agonist used an anti-Parkinson’s agent, was repurposed for treatment of both 

Restless Legs Syndrome and SSRI-induced sexual dysfunction (Cheer et al. 2004; 

Worthington et al. 2002). Additional examples include bupropion (depression to smoking 

cessation) (Lief 1996), dimethyl fumarate (psoriasis to multiple sclerosis) (Bomprezzi 

2015), and guanfacine (hypertension to ADHD) (Strange 2008).

Several FDA approved or shelved compounds have shown promise in treating AUD and 

many are currently undergoing human lab testing or are in clinical trials 

(ClinicalTrials.gov_AUD), including gabapentin, topiramate, varenicline, ABT-436, 

mifepristone (RU-486), citicoline, baclofen, nalmefene, and others (Litten et al. 2016; Lyon 

2017) (Table 1). Gabapentin (Neurontin) was initially used as an anti-epileptic, then later 

approved for neuropathic pain and amyotrophic lateral sclerosis. Baclofen (Liorsel) is a 

GABAB receptor agonist, was originally made as an anti-epileptic with disappointing 

results, but showed remarkable effectiveness for treating spasticity in many conditions, 

especially for spinal cord injury, cerebral palsy, and multiple sclerosis. As mentioned, it is 

being considered for treatment of AUD (with mixed findings) (Farokhnia et al. 2017).

Computational Approaches

The generation and accumulation of publicly accessible, high-throughput genomic datasets 

make it possible to integrate large-scale drug and disease signatures at the molecular level to 

predict compounds with the potential to treat a disease based on multiple targets (e.g. gene 

networks). These data-rich resources include public repositories (primary archives), 
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integrative databases, and value-added databases (these tools are designed to process, 

analyze and annotate complex information from primary data sources to lower the 

computational barriers to access primary data). A selection of these resources is summarized 

in Table 2.

There are two essential datasets from these resources that are required to match disease and 

drug: (1) measurements of a molecular phenotype induced by a disease state and (2) 

measurements of the same molecular phenotype induced by drugs. Obtaining this type of 

reliable drug library is not trivial. Surprisingly, attaining a list of approved drugs and their 

indications is not a straightforward task. These difficulties are the result of poor data storage 

and electronic retrieval mechanisms, complex and rapidly changing nomenclature (drugs can 

be called by their common name, chemical name, simplified molecular-input line-entry 

system (SMILES), International Chemical Identifier (InChI)), and legal issues surrounding 

off-label advertisement of pharmaceuticals. Fortunately, many of these challenges have been 

overcome largely by the pioneering work by a collaborative effort of the Broad Institute and 

funding from a National Institutes of Health Common Fund (https://commonfund.nih.gov/

lincs). They have compiled the Library of Integrated Network-based Cellular Signatures 

(LINCS-L1000) database which contains gene expression responses to genetic and 

pharmacologic manipulation across a diverse set of human cell lines (Subramanian et al. 

2017). They also maintain a repurposing hub that contains over 5,000 manually-curated 

drugs that are either FDA approved or in clinical trials (Corsello et al. 2017). The availability 

of these tremendous resources is a primary reason we focus on gene expression as the 

molecular phenotype, as other molecular responses to drugs are not as well characterized in 

such a systematic manner or as accessible for analysis. With the two required datasets 

described above, there are three main steps to proceed from gene networks to candidate 

compounds (see Fig 2), which then can be tested in a preclinical animal model or human 

laboratory study:

1. Generate an input signature that captures the genomic state of interest (gene 

expression differences between disease and healthy state, for example).

2. High-throughput identification of compounds using an in silico screen (similarity 

metric).

3. Prioritize candidate compounds.

The details of each step are described below.

Generate an input signature that captures the genomic state of interest.

The purpose of the signature is to capture the molecular changes that are the most relevant to 

the biological state of interest at a given point in time. There are many different options for 

constructing an input signature. Applying such approaches to brain diseases is still in its 

infancy and understanding the optimal input parameters is a major challenge (see the 

Challenges section below). Genetic variation (genotyping or exome / whole genome 

sequencing data) has been the primary approach used for genomic medicine / precision 

medicine for cancer (Letai 2017). A functional genomic measure, such as gene expression 

can also be used. This is referred to as in silico gene mapping, gene mapping, or 
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connectivity mapping, the latter named after one of the first characterizations of the method 

using the Broad Institute’s database called the Connectivity Map (CMap) (Lamb et al. 

2006). Importantly, the AUD research field has generated an incredible library of gene 

expression data that spans multiple species (human, mouse, monkey, rat), conditions/

treatments (genetic predisposition, various acute or chronic ethanol exposures or paradigms), 

various brain regions, and isolated cell types (including microglia and astrocytes) (Table 2).

High-throughput identification of compounds using an in silico screen (similarity metric).

At their core, the various approaches used for in silico gene mapping aim to compare drug 

and disease signatures. If an effect size measure (such as fold change) is available, a 

correlation coefficient could be calculated, to reflect the correlation between gene expression 

changes between drug and vehicle and those between disease and normal. Positive 

correlations would indicate that the drug mimics the disease’s effects on transcription levels, 

while negative correlations would indicate that the drug reverses it. An alternative approach 

is to use an enrichment score to assess the overlap between two lists of differentially 

expressed genes, such as the hypergeometric statistic or the rank-based gene set enrichment 

analysis (GSEA; corresponds to a weighted Kolmogorov-Smirnov) (Subramanian et al. 

2005). For example, list A contains the top differentially expressed genes between disease 

and healthy samples, and list B contains the top differentially expressed genes between drug 

and vehicle samples. The hypergeometric statistic would give the probability of the overlap 

between list A and list B (the genes changed by both drug and disease). GSEA, the approach 

implemented by the Connectivity Map (CMap) and LINCS – L1000, avoids using arbitrary 

cut-offs (the p – value which designates differential expression between two conditions or 

treatments) by considering all of the genes in an experiment. Ranked methods for the 

hypergeometric test have also been described and offer the same benefits as GSEA (Plaisier 

et al. 2010).

Prioritize candidate compounds.

Regardless of which statistical test is chosen, the output of the previous step will include a 

list of predicted compounds with a corresponding similarity score (also called a connectivity 

score). Because only a handful of drugs can be tested in vivo, this list must be filtered to 

select the most promising candidate compounds. The working hypothesis is that negative 

scores would predict reversal of gene expression from disease back to normal state. 

However, this hypothesis is rarely tested directly (see Challenges), though it does have some 

support (Chen et al. 2017; Delahaye-Duriez et al. 2016; Wagner et al. 2015). Regardless, 

drugs with either the highest absolute value or the most negative similarity scores should be 

prioritized, as these reflect the drugs that affect the most disease-related genes.

Beyond the sign (+/−) and magnitude of the connectivity score, there are additional practical 

considerations for prioritizing candidate compounds (Oprea and Overington 2015). For 

example, any identified high-priority candidate drugs for AUD treatment would also benefit 

from having 1) known oral dosing data available, 2) have little or no safety warnings 

(especially regarding liver toxicity), 3) have low abuse liability, 4) low drug-drug interaction 

potential, 5) negligible cytotoxic actions 6) high brain penetrability, among others. These 

considerations alone will assist in narrowing the pool of potentially “testable” compounds 
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considerably, if the information is available (which is frequently not the case). Upon first 

glance, it might seem that the challenge is selecting only a few compounds from hundreds of 

candidates generated by in silico screens to test clinically or pre-clinically. However, this is 

not the case. Meeting the ideal practical considerations outlined above could eliminate 

virtually all candidate compounds (Oprea and Overington 2015). In that case, medicinal 

chemistry approaches could be used to modify the chemical structure to suit the desired 

product profile.

Drug prioritization should also depend on the reliability of the analytical results. That is, the 

connectivity score should be reproducible for strong candidates. This is especially important 

to consider since small changes in the genes that makeup the input signature can result in the 

identification of different candidate compounds. The above mentioned CMap database 

utilizes a statistical measure of reliability (permutation test) to achieve this goal. Stricter 

statistical measures have also been developed for CMap. For example, the statistically 

significant connectivity map (ssCMap) was developed (Zhang and Gant 2009), which 

includes a measure of stability by removing single genes from the input in a systematic 

manner and assessing reproducibility (McArt and Zhang 2011). However, for larger datasets, 

such as LINCS-L1000, implementation of permutations tests becomes computationally 

expensive and less straightforward. Currently, the web app for querying the LINCS-L1000 

data (https://clue.io/l1000-query) uses the “sig_gutc” tool (Subramanian et al. 2017) to 

summarize the connectivity scores and provide a measure of reliability. Each compound has 

been profiled under multiple experimental conditions (different cell lines, drug doses, and 

exposure time points). To attain a compound-level analysis, sig_gutc reports a summary 

score of the distribution of scores for a compound across all experiments. The tool then 

ranks the connectivity score between the query signature and the compound signature, based 

upon the compound’s pre-computed distribution of connectivity scores with the other 

hundreds of thousands of signatures in the LINCS-L1000 database. This provides a measure 

of the likelihood of a connectivity score for a drug given that drug’s connectivity with the 

database as a whole, thus mitigating false positives from drugs with widespread effects on 

transcription. However, an appropriate statistical framework with which to interpret LINCS-

L1000 results needs to be developed.

Application to Brain Diseases

While initially used in cancer research (for review see (Chen and Butte 2016)), these 

computational repurposing strategies have also been applied to brain diseases, albeit in a 

more limited capacity. However, it should be noted that although not used as widely, the 

studies using these computational approaches for drug discovery for brain diseases have 

provided promising leads for variety of disease states. Because there are few applications so 

far for psychiatric disorders, this Review includes the use of in silico gene mapping 

strategies for any disease in which brain is the primary affected organ, for which there have 

been 19 studies so far to the best of our knowledge (Table 3).

Regarding the construction of the input genomic signature, the studies fall into two main 

categories: those that use genotype data (i.e., SNPs related to a disease phenotype discovered 

from genome-wide association studies (GWAS)) and those that use gene expression data. 
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Gene expression measurement technology (RNA sequencing or microarray) provides the 

expression levels of all genes in the genome simultaneously, supplying a functional genomic 

readout of the effects of the combination of the genetic variants that could be contributing to 

disease. Gene expression is by far the primary input used by the studies in Table 3, the idea 

being to compare the gene expression levels between disease and healthy tissue and to use 

the top differentially expressed genes as the input signature, as this is thought to best capture 

the molecular differences driving disease phenotypes. However, there is no consensus on the 

optimal threshold or number of differentially expressed genes to use. Differentially 

expressed genes can be subdivided into groups of genes with highly correlated expression 

levels. Indeed, several studies incorporate gene co-expression networks or protein-protein 

interaction networks to refine the genomic input signature (Chandran et al. 2016; Delahaye-

Duriez et al. 2016; Gao et al. 2014). One study compared the performance of using only 

differentially expressed genes between Parkinson’s and normal brain to query CMap versus 

a combined approach that used both differential expression and gene coexpression network 

information (Gao et al. 2014). They calculated the number of known Parkinson’s 

therapeutics in the top 50 ranked compounds from each approach. Using the top 20 genes 

from the combined method outperformed using the top 20 genes from differential expression 

alone. They were not able to assess the performance of using only the gene coexpression 

network as a query for lack of up-regulated genes in the coexpression module. Interestingly, 

using more than the top 20 genes from the combined approach led to a decrease in 

performance. Since gene coexpression network modules are driven by variability in the data, 

and cell type is a major contributor to gene expression variability, it is possible that network 

based approaches could be more useful for diseases that primarily affect a specific cell type 

(like is the case for Parkinson’s disease). One downside of using gene expression data is that 

human brain tissue can only be obtained postmortem and the transcriptional signature can be 

confounded by a lifetime with the disease or pharmaceutical management of the disease (see 

Challenges and Future Directions).

Genotype/gene sequence data, on the other hand, is readily available, easy to attain, and is 

relatively static throughout the patient’s lifetime, but it is not without its drawbacks. Many 

genes contribute to the genetic risk of most complex psychiatric disorders, each contributing 

a small effect. A minority of disease-associated SNPs are mapped to protein-coding regions 

of the genome, and there are few drugs that specifically target particular gene products. 

Despite these challenges, Papassotiropoulos et al, (2013) used intragenic SNPs related to 

aversive memory performance to select the antihistamine, diphenhydramine, as a potential 

drug that would reduce aversive memory recall (Papassotiropoulos et al. 2013). This was 

verified in a double-blind, placebo-controlled, cross-over study in which a single 

administration of diphenhydramine (50 mg) compared with placebo significantly reduced 

delayed recall of aversive, but not of positive or neutral, pictures.

Most disease-associated SNPs, however, occur in non-coding regions and their impact on 

disease outcome is difficult to causally link to gene expression, although this is an active 

area of research and databases exist trying to relate SNPs with gene expression in a variety 

of tissues including brain (e.g., Genotype-Tissue Expression Project; https://

www.gtexportal.org/home/). One study approached this problem in an innovative way for 

psychiatric illnesses and could be considered a hybrid approach since the authors inferred 
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gene expression data from genotype data (So et al. 2017). The approach relied on an 

algorithm called MetaXcan (Barbeira et al. 2016), that incorporated GTEx data to build 

statistical models for predicting expression levels from SNPs in a reference transcriptome 

data set, and these prediction models were used to impute the expression z-scores (i.e., z-

statistics derived from association tests of expression changes with disease status) based on 

GWAS summary statistics. Transcriptome profiles were imputed for 7 psychiatric conditions 

based on GWAS summary statistics and compared to drug-induced changes in gene 

expression using CMap to identify potential treatment candidates. Novel compounds were 

not tested; however, it was promising that the top 15 predicted compounds for some of the 

psychiatric disorders were enriched with known and predicted psychiatric medications 

according to several drug-disease indication measures (Anatomical Therapeutic Chemical 

(ATC) codes, ClinicalTrials.gov, MEDication Indication (MEDI) resource).

Once the input genomic signature is defined, it can be compared to a database of drug 

signatures. Most of the studies in Table 3 (13/19) use the original CMap database. The 

benefit of CMap is that it is smaller and simpler to perform statistics to assess a connectivity 

score’s reliability. However, the trade-off is fewer drugs and cell lines, the latter of which is 

especially important for brain diseases since CMap contains no brain cell lines, whereas 

LINCS-L1000 contains 2 brain cell lines with considerable data, NEU and NPC. 

Unfortunately, at this time, these cell lines are not included in the implementation on their 

query app at clue.io, however, the LINCS-L1000 datasets can also be downloaded from 

Gene Expression Omnibus (GEO) (accession numbers GSE70138 and GSE92742). Efforts 

are underway to include more brain cell lines in the LINCS-L1000 database to facilitate its 

relevance to brain diseases (RDM, personal communication).

To compare the disease and drug signatures the KS-like statistic (as described by (Lamb et 

al. 2006; Subramanian et al. 2017) is the most frequently used similarity metric, although 

several studies also use Spearman or Pearson correlation coefficients (Azim et al. 2017; 

Siavelis et al. 2016; So et al. 2017) or Fischer’s Exact Test (Delahaye-Duriez et al. 2016). 

Most studies operate under the transcriptional “reversal hypothesis”, which assumes that 

drugs with negative connectivity scores (i.e., with gene expression signatures that revert the 

disease’s effects on gene expression to the control state) would ameliorate disease 

phenotype. Five of the 19 studies outlined in Table 3 have functionally validated this 

hypothesis, in that the candidate compounds ameliorated some disease phenotype when 

tested behaviorally (though none have confirmed that the beneficial effects of the compound 

were due to the restoration of gene expression to the “normal” state) (Chandran et al. 2016; 

Ferguson et al. 2017; Mirza et al. 2017; Papassotiropoulos et al. 2013; Smalley et al. 2016).

These studies provide a functional rationale for prioritizing negatively-scoring compounds, 

i.e., those that have opposing effects on gene expression associated with the disease state. 

However, in addition to reflecting gene expression changes that drive the disease or 

represent deleterious aspects of a disease state, the differentially expressed genes between 

disease and healthy samples could also reflect protective homeostatic compensations within 

the system. Because some of the differentially expressed genes might be beneficial, it is 

reasonable to also consider drugs with high positive connectivity scores.

Ferguson et al. Page 9

Psychopharmacology (Berl). Author manuscript; available in PMC 2018 December 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The rationale for the reversal hypothesis was tested directly utilizing a gene expression 

signature comprised of the top 100 differentially expressed genes identified in Huntington’s 

disease (HD). Data were obtained from the caudate nucleus from disease vs sex-and age-

matched human controls followed by CMap query (Smalley et al. 2016). The top 12 positive 

and negative scoring compounds were tested in in vitro caspase-activation assays to assess 

the degree to which they modulated mutant huntingtin (HTT)-induced apoptosis in a PC12 

cells. None of the positive scoring compounds affected caspase activity, while 7/12 negative 

scoring compounds decreased caspase activity, two of which had neuroprotective effects in 
vivo in a drosophila model of HD. This outcome supports the “reversal hypothesis”. 

However, because the caspase activity was approaching 100% (i.e. a ceiling effect), the 

ability to observe increased caspase activity precluded experimental outcomes predicted 

from positive scores that might mimic/worsen disease phenotypes (the converse of the 

reversal hypothesis).

One study does provide in vivo validation of the converse of the reversal hypothesis: that 

drugs with positive scores (i.e., with gene expression signatures that are similar the disease’s 

effects on gene expression) would mimic the state of interest. Azim and colleagues (2017) 

sought to identify small molecules to mobilize endogenous stem cells and direct their fate as 

a therapy for neurodegenerative and demyelinating disorders (Azim et al. 2017). These 

studies used the transcriptional signatures of neural stem cells (NSCs) in the ventral/lateral 

subventricular zone (SVZ) of the dentate gyrus which give rise to interneurons of the 

olfactory bulb and cortical areas, and of NSCs in the dorsal SVZ which give rise to 

glutamatergic neurons and oligodendrocytes. The authors prioritized positively-scoring 

compounds with the hopes that that would reproduce the lineage-specific transcriptional 

signatures. Indeed, the most promising candidates, LY-294002, an inhibitor of PI3K/Akt, 

promoted development of oligodendrocytes, and AR-A014418, an inhibitor of GSK3β, 

rejuvenated the NSC lineage. Furthermore, another GSK3β inhibitor promoted regeneration 

in a mouse model of hypoxic brain injury, by recruiting new oligodendrocytes and 

glutamatergic neurons into the cortex.

In addition to gene expression signatures of drug perturbation, the LINCS-L1000 database 

also catalogs gene expression response to genetic perturbation. One study utilized this 

resource and compared the input genomic signature to those of gene knockdown or 

overexpression in LINCS-L1000 to gain mechanistic insight into how morphine tolerance 

alters response to lipopolysaccharide (LPS), and found that VPS28 may be one of the genes 

responsible for the alterations associated with morphine tolerance (Chang et al. 2017). In 

addition to looking at the negatively-correlated drugs for treatment candidates, several 

studies also analyzed the positively-correlated drugs for mechanistic insight into the disease, 

as these would be predicted to produce similar effects on gene expression and mimic or 

worsen disease phenotype (Chen et al. 2013; Slonim et al. 2009).

Challenges and Future Directions

The CMap and LINCS-L1000 databases contain multiple experiments for the same 

compound. It is clear that the compound’s effects on gene expression are greatly affected by 

variables such as cell line, dose, and time point at which gene expression is assayed (Chen et 
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al. 2017). Some researchers make no attempt to summarize across cell lines, doses, and time 

points to attain a composite compound-level view, which could lead to spurious results, 

particularly if the cell line is vastly different from the cellular makeup of the tissue used to 

generate the genomic signature used as the input query. For these reasons, we propose that 

using multiple expression datasets, algorithm parameter settings, and methods for 

prioritizing compounds (as taken by (Ferguson et al. 2017; Gao et al. 2014; Guedj et al. 

2016; Siavelis et al. 2016)) are critical to identify an effective drug candidate, at least until 

proper gold standard datasets exist with which to benchmark the optimal settings (see 

below).

An important limitation of in silico gene mapping approaches is that they rely on 

comparisons of brain gene expression data to gene expression data from cell culture, and are 

therefore constrained by the same limitations of any in vitro system. Brain gene expression 

is a complex combination of direct and indirect expression changes occurring in multiple 

cell types and brain regions. Even if brain-relevant cell lines were included in the expression 

profiles of LINCS-L1000 or other databases of drug-related transcriptomes, it is unclear how 

relevant in vitro results are to the biology of an intact organism, which is why in vivo 
experimental validation is critical. Only 6 of the 19 studies for brain disease listed in Table 3 

performed in vivo validation of the proposed pharmaceutical candidates (Azim et al. 2017; 

Chandran et al. 2016; Ferguson et al. 2017; Mirza et al. 2017; Papassotiropoulos et al. 2013; 

Smalley et al. 2016), and none directly tested the underlying assumption of in silico 
connectivity mapping. Specifically, it is important to address the following question: if a 

candidate compound is effective in treating a given disease phenotype, was it the result of a 

reversal in expression of disease-related genes by the compound? This is difficult to assess 

given the complexity of the regulation of gene expression. Parameters such as drug dose and 

treatment times are critical for determining meaningful gene expression changes. Therefore, 

a range of doses and time points would need to be measured, and although the cost of whole 

genome sequencing is decreasing, to do this with the required samples sizes would be cost 

prohibitive. In addition to L1000 technology, the development of less expensive sequencing 

techniques, such TagSeq, improve feasibility to test this hypothesis which will provide 

important mechanistic insight into in silico gene mapping approaches (Lohman et al. 2016; 

Meyer et al. 2011).

Each of the 6 studies discussed in the previous paragraph used a different approach to 

identify a candidate compound that ameliorated disease phenotype when tested (Azim et al. 

2017; Chandran et al. 2016; Ferguson et al. 2017; Mirza et al. 2017; Papassotiropoulos et al. 

2013; Smalley et al. 2016), and it is critical to identify the approach(s) with the greatest 

predictive accuracy. In other words, which choices at each of the main steps outlined above 

are the most likely to identify compounds that actually ameliorate the disease state? It is 

currently difficult to address this question because of the low throughput nature of 

behavioral testing and the non-existence of gold standard data with which to benchmark 

various approaches.

A benchmark approach requires a gold standard dataset comprised of two components from 

the same population: (1) gene expression and/or genotyping data. Ideally, gene expression 

data would be obtained from multiple brain areas, cell types (single cell or cell-type 
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transcriptomes) and tissue types (peripheral blood mononuclear cells (PBMCs), liver, gut 

microbiome, etcetera), and (2) drug response. This should be the same measurement for 

each drug and there would ideally be a large range of drug effects. This continuous variable 

would lend itself to correlation analysis (rather than a binary measure of 0: drug was 

ineffective and 1: drug was effective). Drugs that are known to affect the phenotype (true 

positives) and drugs that are known to not effect phenotype (true negatives) should be 

present to assess how well the approach can discriminate (assign high scores to the true 

positives and poor scores to the true negatives). A benchmarking test-case scenario using 

this ideal gold standard dataset would systematically vary the input, algorithm, and 

prioritization scoring choice and assess the outputs for their predictability (Table 4).

One caveat to this benchmarking strategy outlined here, is that it is unreasonable to assume 

that all compounds with therapeutic potential would be identified by in silico gene mapping. 

The best way to evaluate these approaches would be to take a heuristic testing strategy and 

select a few compounds nominated from various combinations at each of the 3 steps to test 

behaviorally, but as mentioned previously, behavioral testing is low throughput and this 

would be resource-intensive.

As discussed before, the affected tissue (brain) is not available for testing until postmortem, 

which certainly poses a problem if computational approaches that rely on gene expression 

measures are to be incorporated into drug repurposing / personalized medicine endeavors for 

brain diseases. Moreover, analysis of postmortem brain expression is plagued with the 

“chicken and the egg” conundrum. Meaning that it is impossible to know if the observed 

gene expression changes are the cause or the effect (due to years of alcohol use, for 

example) of the disease. This is one reason why animal models are key in studying brain 

diseases, and using animal models with high predictive validity for selecting therapeutic 

compounds is one way around this problem. Another option would be to identify a surrogate 

for brain gene expression, and this is an active area of research. Great hope has arrived with 

the discovery of inducible pluripotent stem cells (iPSC’s) that can be differentiated into 

various neuronal types (Takahashi and Yamanaka 2006). There are also methods that skip 

the induced pluripotent steps allowing direct conversion into functional neurons, called 

induced neurons, or iN’s (for review see (Drouin-Ouellet et al. 2017)). Although these cell 

models hold promise for improving treatment of psychiatric diseases (Oni et al. 2016; Stern 

et al. 2017), the protocols are long and tedious to produce adult-like neurons and the 

relevance to in silico gene mapping remains unexplored. Another surrogate for brain gene 

expression could be in peripherally accessible cell types, like PBMCs, especially 

considering the impressive evidence for immune involvement in AUD (for reviews see 

(Crews et al. 2017; de Timary et al. 2017; Mayfield and Harris 2017)). Another option that 

does not require access to brain tissue is imputing gene expression from GWAS summary 

data as discussed above (So et al. 2017). However, the latter approach has yet to be validated 

in vivo and will likely improve as the databases used to make the imputations improve, for 

example, by increasing samples in GTEx to better detect eQTLs. The GTEx Consortium 

plans to include up to 1,000 donors in the final data release and collect complementary 

molecular data on subsets of samples, including epigenetic and protein data (Consortium et 

al. 2017). Using GTEx data to impute transcriptomes for diverse groups of people should be 
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approached with caution, as the donors are currently 83.7% European American and 15.1% 

African American (with the v7 Release) (Consortium et al. 2017).

Conclusion

The benefits of using computational strategies to transition to a more molecularly-informed 

healthcare system are numerous. For example, diagnoses could be more precise and 

treatments more successful. Patients diagnosed with the same disease often represent a 

heterogeneous mixture of different underlying disorders, since there are numerous molecular 

disruptions that could lead to similar clinical presentations. This is especially true for AUD 

and other brain diseases, where a molecular readout of the affected organ is limited. It is no 

surprise, then, that the standard treatments fail for many because of incomplete knowledge 

regarding the underlying cause of a patient’s disruptive symptoms. As we become more 

advanced in our ability to construct and interpret a molecular signature underlying disease 

symptoms, healthcare will advance towards personalized medicine, where each patient is 

treated to his or her individual profile.

The systems pharmacology approaches discussed in this Review have two main beneficial 

outcomes that should be considered independently. The first is an effective treatment and the 

other is mechanistic insight. It might be that the effectiveness of a compound is understood 

before its mechanism of action. However, progressing promising pharmaceutical treatment 

should not wait for the full understanding of the mechanism, as the mechanism underlying 

some of the most long-standing and successful treatments in medicine are still poorly 

understood (Letai 2017). In fact, as suggested by (Hajjo et al. 2012), one of the main 

benefits of this approach is to identify potentially therapeutic compounds without 

necessarily understanding the underlying target-specific mechanism.

Much hope has been placed on information contained within large genomic datasets and 

network approaches to drive clinical treatment towards personalized medicine and 

revolutionize healthcare. And, indeed, bioinformatics approaches have shown some success 

for identifying novel treatments for brain diseases. However, this research is still in its 

infancy, and many questions remain to be answered if these high expectations are to be met. 

Here, we have proposed the steps required for in silico gene mapping for the purpose of drug 

discovery and repurposing, reviewed state-of-the-art applications of these approaches to 

brain diseases, and highlighted some of the critical challenges facing the field. Success relies 

on the integration of enormous amounts of sequence and phenotype data from public and 

private sector sources. Ultimately, it will take a collaborative effort from academia, industry 

and government to advance drug development and repurposing for AUD (Litten et al. 2014).
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Fig1. 
Traditional approach to drug discovery and drug repurposing: Existing knowledge of a 

disease state (built upon basic science) is applied to select a compound designed for a single 

target (chosen for its involvement in a disease process) and these are tested in vitro and/or in 
vivo. Brain gene expression levels (Brain Omics) are measured for drugs that ameliorate 

disease phenotype which helps further elucidate the mechanisms of action (MOAs) of drugs 

and suggests other molecules that can be targeted by candidate drugs. Traditionally, drug 

repurposing (finding new indications for existing compounds) has been largely based on side 

effect data, adverse events, existing literature or structural similarity between compounds 

used to treat different diseases (the idea being that the compound of one disease might be 

able to treat another since it shares structural similarity with compounds used to treat that 

disease). Drug repurposing efforts would benefit greatly if there was a system established to 

report positive side effects as is the case for “adverse events”. Capsule images from http://

smart.servier.com/category/general- items/drugs-and-treatments/. Servier Medical Art by 

Servier is licensed under CC BY 3.0 (https://creativecommons.org/licenses/by/3.0/)
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Fig2. 
Computational approach to drug discovery and drug repurposing: Disease state can be either 

acquired (disease or substance of abuse changes gene networks and these changes drive 

disease) or predisposed (genetic variants cause disruptions in gene networks). The goal of in 
silico gene mapping is to integrate the targets (gene networks) of disease and drugs to find a 

drug (or combination of drugs) that affect similar targets as the disease. Drugs that oppose 

the disease-state’s molecular disruption (many targets) are chosen as candidate compounds 

to ameliorate disease phenotype. There are 3 steps to go from gene expression datasets to 

candidate compounds: (1) generate an input genomic signature or network. Shown is a gene-

gene coexpression network of genes related to a disease state: nodes = genes, edges = gene-

gene expression correlation, yellow = up-regulated genes, blue = down-regulated genes), (2) 

compare the disease signature to those induced by drugs to identify drugs that would reverse 

the disease signature. Shown are the effects of 3 different drugs in the reference database 

(e.g., LINCS-L1000) on the disease-related genes that served as the input, (3) prioritize 

candidate compounds for in vivo testing. The blue drug that received a perfect negative score 

would be prioritized since it down-regulated the genes that were up-regulated in the disease 

state and up-regulated the genes that were down-regulated in the disease state. The yellow 

drug would be predicted to mimic or worsen the disease state. Had the input been a desirable 

biological state (e.g., the gene expression profile of patients with AUD who had prolonged 

recovery vs those who relapsed quickly after ceasing alcohol consumption), then the yellow 
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drug would be prioritized since it is predicted to mimic the beneficial biological state. 

Capsule images from http://smart.servier.com/category/general-items/drugs-and-treatments/. 

Servier Medical Art by Servier is licensed under CC BY 3.0 (https://creativecommons.org/

licenses/by/3.0/). AUD = alcohol use disorder.
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Table 1:

Drugs with Potential to be Repurposed for AUD

Drug Name Target Original
Indication

Novel
Indication Clinical Trial Refs

Quetiapine (Seroquel)

Atypical Antipsychotic
Antagonist: D1 and D2 
dopamine receptors, alpha 1 
and alpha 2 adrenoreceptors, 
and 5-HT1A and 5-HT2 
serotonin receptors, histamine 
H1 receptor (and others)

Schizophrenia (Scz) Bipolar disorder (BD) 
Major depressive disorder (MDD) (along 
with an SSRI)

AUD and 
Bipolar; Sleep 
disturbances in 
abstinence; 
Schizophrenia 
and SUD; AUD 
and anxiet

NCT00457197
NCT00114686
NCT00223249
NCT00550394
NCT00434876
NCT00156715
NCT00352469

(Jensen et 
al. 2008; 
Schotte et 
al. 1996) 
(Litten et al. 
2012)

Aripiprazole (Abilify)

Atypical antipsychotic
Antagonist: D1 and D2 
dopamine receptors, alpha 1 
and alpha 2 adrenoreceptors, 
and 5-HT1A and 5-HT2 
serotonin receptors, histamine 
H1 receptor (and others)

Scz BD MDD (along with an SSRI) AUD and Bipolar NCT02918370

(Anton et 
al. 2008; 
Kenna et al. 
2009; 
Martinotti 
et al. 2009; 
Martinotti 
et al. 2007; 
Shapiro et 
al. 2003; 
Voronin et 
al. 2008)

Duloxetine (Cymbalta) Serotonin–norepinephrine 
reuptake inhibitor (SNRI)

MDD GAD Muscle pain Peripheral 
neuropathy AUD NCT00929344 (Bymaster 

et al. 2001)

Venlafaxine (Effexor) SNRI MDD GAD Panic disorder Social anxiety 
disorder AUD and anxiety NCT00248612

(Bymaster 
et al. 2001; 
Ciraulo et 
al. 2013; 
Upadhyaya 
et al. 2001)

Rolipram Phosphodiesteras e-4 inhibitor Shelved compound; Phase 3 for MDD 
(Fleischhacker et al, 1992) AUD

(Bell et al. 
2017; 
Dominguez 
et al. 2016; 
Gong et al. 
2017; Hu et 
al. 2011; 
Liu et al. 
2017; Ray 
et al. 2014; 
Wen et al. 
2012)

Ibudilast Phosphodiesterase inhibitor Asthma (Japan) AUD NCT02025998

(Bell et al. 
2015; 
Crews et al. 
2017; Ray 
et al. 2017; 
Ray et al. 
2014)

Fenofibrate (Tricor) Fibrate PPARα agonist Hypercholesterolemia Hypertriglyceridemia AUD NCT02158273

(Blednov et 
al. 2015; 
Blednov et 
al. 2016a; b; 
Ferguson et 
al. 2014; 
Haile and 
Kosten 
2017; 
Karahanian 
et al. 2014; 
Rivera-
Meza et al. 
2017)
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Drug Name Target Original
Indication

Novel
Indication Clinical Trial Refs

Gabapentin (Neurontin)

Anticonvulsant binds to the 
α2δ subunit of the 
voltagedependent calcium 
channels (Pregabalin is 
structurally related to 
gabapentin)

Seizures Restless leg syndrome 
Postherpetic neuralgia Shingles

AUD; 
Abstinence 
initiation in 
AUD; AUD (in 
combination with 
naltrexone); 
Sleep 
disturbances in 
AUD; AUD (in 
combination with 
flumazenil for 
withdrawal and 
relapse 
prevention); 
AUD (in 
combination with 
lorazepam for 
withdrawal); 
Comorbid 
alcohol and 
opioid abuse

NCT02771925
NCT01141049
NCT00391716
NCT00183196
NCT01014533
NCT00262639
NCT03274167
NCT00011297
NCT03205423
NCT02252536

(Geisler and 
Ghosh 
2014; 
Guglielmo 
et al. 2012; 
Litten et al. 
2016; 
Mason et al. 
2014a; 
Mason et al. 
2014b; 
Nunes 
2014)

Pregabalin (Lyrica)

Anticonvulsant binds to the 
α2δ subunit of the 
voltagedependent calcium 
channels

Epilepsy Neuropathic pain Fibromyalgia 
Generalized anxiety disorder (GAD)

AUD; AUD and 
PTSD

NCT03256253
NCT02884908
NCT00929344

(Guglielmo 
et al. 2012; 
Li et al. 
2011)

Topiramate (Topamax)

Anticonvulsant
Blocks voltagegated Na+ 
Channels, PAMs of subunits 
of the GABAA Receptor 
Modulates AMPA/kainite 
glutamate receptors. Blocks 
carbonic anhydrase (CA) CA 
I1 and CA IV

Epilepsy Migraines

AUD; AUD and 
PTSD; AUD and 
Borderline 
Personality 
Disorder; AUD 
and BD; AUD 
and cocaine 
dependence; 
AUD and 
nicotine 
dependence

NCT01135602
NCT01145677
NCT01749215
NCT00769158
NCT00463775
NCT00210925
NCT00572117
NCT00223639
NCT00884884
NCT00006205
NCT00571246
NCT03120468
NCT00802412
NCT00448825
NCT00329407
NCT00862563
NCT01182766
NCT00300742
NCT00167245
NCT02371889
NCT01764685
NCT01087736
NCT01408641
NCT00550394
NCT03018704

(Guglielmo 
et al. 2015; 
Ray and 
Bujarski 
2016; 
Shank et al. 
2000)

Varenicline (Chantix and 
Champix)

α7 nicotinic acetylcholine 
receptor agonist α4β2, α3β4, 
and α6β2 subtype s partial 
agonist weak agonist on the 
α3β2 containing receptors

Smoking cessation

AUD; AUD and 
tobacco 
dependence; 
AUD and 
cocaine 
dependence; 
AUD, SCZ and 
nicotine 
dependence

NCT01071187
NCT01146613
NCT00705523
NCT00846859
NCT00873535
NCT01553136
NCT01347112
NCT01151813
NCT01169610
NCT00727103
NCT01011907
NCT01092702
NCT01286584
NCT01592695
NCT02698215

(Falk et al. 
2015; Litten 
et al. 2013)

ABT-436 highly selective vasopressin 
V1B receptor antagonist

Shelved compound; Phase 2 for MDD 
(NCT01741142) AUD NCT01613014 (Ryan et al. 

2017)
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Drug Name Target Original
Indication

Novel
Indication Clinical Trial Refs

Mifepristone (RU-486) (Mifeprex)
glucocorticoid and 
progesterone receptor 
antagonist

Abortifacient Hyperglycemia Diabetes 
mellitus AUD

NCT02243709
NCT02179749
NCT02989662
NCT01548417

(Donoghue 
et al. 2016; 
Howland 
2013; Lyon 
2017; 
Vendruscolo 
et al. 2012; 
Vendruscolo 
et al. 2015)

Citicoline (Cebroton, Ceraxon, 
Cidilin, Citifar, Cognizin, more)

membrane permeability 
enhancer glutathione 
transferase stimulant 
(overthe-counter nutritional 
supplement)

Stroke Alzheimer’s disease Senile dementia 
Parkinson’s disease Attentiondeficit/
hyperactiv ity disorder (ADHD) Glaucoma

AUD; AUD and 
BD

NCT02074735
NCT02582905

(Secades 
and 
Lorenzo 
2006; 
Wignall and 
Brown 
2014)

Baclofen (Lioresal)

Central nervous system 
depressant; skeletal muscle 
relaxant
GABAB receptor agonist

Spastic movement disorders (commonly for 
spinal cord injury, cerebral palsy, and 
multiple sclerosis)

AUD; Alcohol 
withdrawal; 
AUD and 
Hepatitis C; 
AUD with liver 
disease; AUD 
and anxiety 
disorders

NCT02596763
NCT03034408
NCT03293017
NCT01008280
NCT02511886
NCT01711125
NCT01751386
NCT00877734
NCT00614328
NCT01266655
NCT01980706
NCT01738282
NCT01002105
NCT00802035
NCT02835365
NCT01604330
NCT02723383
NCT01076283
NCT01937364
NCT00525252
NCT02107352
NCT02771925

(Bell et al. 
2017; Borro 
et al. 2016; 
Colombo et 
al. 2004; 
Farokhnia 
et al. 2017; 
Geisel et al. 
2016; 
Imbert et al. 
2015; Litten 
et al. 2016; 
Liu and 
Wang 2017; 
Lyon 2017; 
Mirijello et 
al. 2015; 
Morley et 
al. 2014;
Muller et al.
2015; 
Ponizovsky 
et al. 2015; 
Rigal et al. 
2015; 
Rolland et 
al. 2015a; 
Rolland et 
al. 2015b; 
Weibel et 
al. 2015)

Nalmefene (Selincro)
Antagonist of the μ-opioid 
receptor weak partial agonist 
of the κ-opioid receptor

Antidote for opioid overdose Approved in 
Europe for AUD

AUD; AUD with 
cirrhosis; AUD 
and tobacco 
dependence; 
AUD and 
Borderline 
Personality 
Disorder; AUD 
and opioid use 
disorder

NCT00811720
NCT01969617
NCT00812461
NCT00811941
NCT02824354
NCT02382276
NCT02364947
NCT02197598
NCT02679469
NCT02372318
NCT02195817
NCT02492581
NCT00000450
NCT00000437
NCT02752503
NCT03034408
NCT03279562

(Litten et al. 
2016; 
Naudet 
2016; 
Naudet et 
al. 2016; 
Soyka 
2016; 
Soyka et al. 
2016)
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Table 2:

Data Resources

Primary Repositories

Name Description URL Ref

Gene Expression Omnibus Public functional 
genomics data 
repository for 
array- and 
sequencebased 
data.

ncbi.nlm.nih.gov/geo/ (Barrett et al. 2013)

ArrayExpress Public functional 
genomics data 
repository for 
array- and 
sequencebased 
data.

ebi.ac.uk/arrayexpress/ (Kolesnikov et al. 
2015)

ParkDB Repository for 
gene expression 
datasets related to 
Parkinson’s 
disease (PD)

www2.cancer.ucl.ac.uk/Parkinson_Db2/ (Taccioli et al. 
2011)

Integrative Databases

HUGO Gene 
Nomenclature Committee 
(HGNC) database

Repository of 
HGNC-approved 
gene 
nomenclature, 
gene families and 
associated 
resources 
including links to 
genomic, 
proteomic and 
phenotypic 
information.

genenames.org/ (Gray et al. 2015)

Online Mendelian 
Inheritance in Man 
(OMIM)

Publicly available 
dataset of human 
genes and genetic 
disorders and 
traits, with 
particular focus 
on the molecular 
relationship 
between genetic 
variation and 
phenotypic 
expression.

omim.org/ (Amberger and 
Hamosh 2017)

UK Brain Expression 
Consortium

Publicly available 
dataset of 
geneotyping and 
gene expression 
data from 134 
brains from 
individuals free of 
neurodegenerative 
disorders (up to 
twelve brain 
regions).

ukbec.wordpress.com/braineac.org/

ENCODE (Encyclopedia 
of DNA Elements)

Integrates 
multiple 
technologies and 
approaches in a 
collective effort to 
discover and 
define the 
functional 

encodeproject.org/ (Consortium 2011)
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Primary Repositories

Name Description URL Ref

elements encoded 
in the human 
genome, 
including genes, 
transcripts, and 
transcriptional 
regulatory 
regions, together 
with their 
attendant 
chromatin states 
and DNA 
methylation 
patterns.

Genotype–Tissue 
Expression (GTEx) 
project

Collection and 
analysis of 
multiple human 
tissues from 
donors who are 
also densely 
genotyped, to 
assess genetic 
variation within 
their genomes. By 
analyzing global 
RNA expression 
within individual 
tissues and 
treating the 
expression levels 
of genes as 
quantitative traits, 
variations in gene 
expression that 
are highly 
correlated with 
genetic variation 
can be identified 
as expression 
quantitative trait 
loci, or eQTLs.

gtexportal.org/home/ (Consortium 2013)

Depression Genes and 
Networks (DGN) cohort

RNA sequencing 
data and analyses 
from 922 
genotyped 
individuals, 
providing 
information 
regarding the 
regulatory 
consequences of 
genetic variation

dags.stanford.edu/dgn/ (Battle et al. 2014)

Psychiatric Genomics 
Consortium (PGC)

Psychiatric 
Genomics 
Consortium 
(PGC) unites 
investigators 
around the world 
to conduct meta- 
and megaanalyses 
of genome-wide 
genomic data for 
psychiatric 
disorders. There 
are samples from 
more than 
900,000 
individuals (and 
growing) 

med.unc.edu/pgc (O’Donovan 2015)
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Primary Repositories

Name Description URL Ref

collected by over 
800 investigators 
from 38 countries.

Library of Integrated 
Network-Based Cellular 
Signatures LINCS-L1000

Publicly available 
dataset from the 
Broad Institute. 
The 1.3M L1000 
cellular signatures 
catalog 
transcriptional 
responses of 
human cells to 
chemical and 
genetic 
perturbation. A 
total of 27,927 
perturbagens have 
been profiled to 
produce 476,251 
expression 
signatures. About 
half of those 
signatures make 
up the Touchstone 
(reference) 
dataset generated 
from testing well-
annotated genetic 
and small-
molecular 
perturbagens in a 
core panel of cell 
lines.

clue.io/ (Subramanian 2017)

Connectivity Map (CMap) Publicly available 
dataset from the 
Broad Institute. 
Connectivity Map 
Build 02 includes 
data from 7,056 
Affymetrix 
microarrays, for 
1,309 small-
molecule 
compounds, and 
6,100 treatment 
instances in 5 
human cell lines.

broadinstitute.org/cmap/ (Lamb et al. 2006)

Added-Value Databases and Tools

Genes

Enrichr Web tool for gene 
set enrichment 
analysis

amp.pharm.mssm.edu/Enrichr/ (Kuleshov et al. 
2016)

NetworkAnalyst Web tool for 
performing 
various common 
and complex 
meta-analyses of 
gene expression 
data

networkanalyst.ca/ (Xia et al. 2015)

Database for Annotation, 
Visualization and 
Integrated Discovery 
(DAVID)

Web tool for gene 
set enrichment 
analysis

david.ncifcrf.gov/ (Huang da et al. 
2009)

GeneMANIA Web tool for 
generating 

genemania.org/ (Montojo et al. 
2014)
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Primary Repositories

Name Description URL Ref

hypotheses about 
gene function, 
analyzing gene 
lists and 
prioritizing genes 
for functional 
assays. There is 
also a 
GeneMANIA 
Cytoscape plugin.

WebGestalt (WEB-based 
Gene SeT AnaLysis 
Toolkit)

Web tool for gene 
set enrichment 
analysis.

webgestalt.org (Wang et al. 2013)

PubMatrix Web tool that 
allows simple text 
based mining of 
the NCBI 
literature search 
service PubMed 
using any two 
lists of keywords 
terms, resulting in 
a frequency 
matrix of term 
cooccurrence.

pubmatrix.irp.nia.nih.gov/ (Becker et al. 2003)

Ingenuity Pathway 
Analysis (IPA®)

Tool for analyzing 
and visualizing 
data from ‘omics 
experiments

qiagenbioinformatics.com/products/ingenuity-pathwayanalysis/ (Kramer et al. 2014)

Gene-Set Enrichment 
Analysis (GSEA)

Web tool for 
determining 
whether an apriori 
defined set of 
genes shows 
statistically 
significant, 
concordant 
differences 
between two 
biological states 
(phenotypes).

broadinstitute.org/gsea/ (Subramanian et al. 
2005)

MetaXcan Algorithm that 
allows imputation 
of gene 
expression z-
scores based on 
GWAS summary 
statistics.

github.com/hakyimlab/MetaXcan (Barbeira et al. 
2016)

Kyoto Encyclopedia of 
Genes and Genomes 
(KEGG)

Database resource 
for understanding 
high-level 
functions and 
utilities of the 
biological system, 
such as the cell, 
the organism and 
the ecosystem, 
from molecular-
level information, 
especially large-
scale molecular 
datasets generated 
by genome 
sequencing and 
other high-
throughput 
experimental 

genome.jp/kegg/ (Ogata et al. 1999)
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technologies. (So 
et al. 2017) used 
KEGG to 
download the 
Anatomical 
Therapeutic 
Classification 
(ATC) for drugs

GeneGO’s Metacore Integrated 
software suite for 
functional 
analysis of 
experimental data 
based on a 
curated database 
of human 
proteinprotein, 
protein-DNA 
interactions, 
transcription 
factors, signaling 
and metabolic 
pathways, disease 
and toxicity, and 
the effects of 
bioactive 
molecules. Suite 
contains tools for 
data visualization, 
mapping and 
exchange, 
multiple 
networking 
algorithms and 
filters.

portal.genego.com/ (Ekins et al. 2006)

GeneWeaver Curated 
repository of 
genomic 
experimental 
results from 
published 
genome-wide 
association 
studies, 
quantitative trait 
locus, microarray, 
RNA-sequencing 
and mutant 
phenotyping 
studies with an 
accompanying 
tool set for 
dynamic 
integration of 
these data sets, 
enabling users to 
identify 
genefunction 
associations 
across diverse 
experiments, 
species, 
conditions, 
behaviors or 
biological 
processes.

geneweaver.org/ (Baker et al. 2012)

GeneCards Database of 
human genes that 
provides genomic, 

genecards.org (Stelzer et al. 2016)
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proteomic, 
transcriptomic, 
genetic and 
functional 
information on all 
known and 
predicted human 
genes. Developed 
and maintained 
by the Crown 
Human Genome 
Center at the 
Weizmann 
Institute of 
Science.

TransFind Web tool for 
predicting 
transcriptional 
regulators for 
gene sets

transfind.sys-bio.net/ (Kielbasa et al. 
2010)

JASPAR Web tool for 
predicting 
transcriptional 
regulators for 
gene sets

jaspar.genereg.net/ (Mathelier et al. 
2016)

TRANSFAC 
(TRANScription FACtor 
database)

Web tool for 
predicting 
transcriptional 
regulators for 
gene sets

generegulation.com/pub/databases.html (Matys et al. 2006)

Proteins

STRING Web tool / 
database that 
provides a critical 
assessment and 
integration of 
protein-protein 
interactions, 
including direct 
(physical) as well 
as indirect 
(functional) 
associations.

string-db.org (Szklarczyk et al. 
2015)

iRefWeb Web tool / 
database that 
integrates data on 
protein-protein 
interactions (PPI) 
consolidated from 
major public 
databases.

wodaklab.org/iRefWeb/ (Turinsky et al. 
2014)

Hippie Web tool to 
generate reliable 
and meaningful 
human protein-
protein interaction 
networks.

cbdm-01.zdv.unimainz.de/~mschaefer/hippie/ (Alanis-Lobato et 
al. 2017)

Drugs

sscMap Java application 
that performs 
connectivity 
mapping tasks 
using the CMap 
build 02 data. 

purl.oclc.org/NET/sscMap (Zhang and Gant 
2009)
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Users can add 
custom 
collections of 
reference profiles.

Searchable Platform 
Independent Expression 
Database Webtool 
(SPIEDw)

Web tool used for 
querying 
publically 
available gene 
expression data 
(including the 
CMap build 02 
drug data).

spied.org.uk/cgibin/HGNC-SPIED3.1.cgi (Williams 2012)

Drug-Set Enrichment 
Analysis (DSEA)

Web tool for 
identifying shared 
pathways whose 
genes are 
upregulated (or 
downregulated) 
by the drugs in 
the set.

dsea.tigem.it/ (Napolitano et al. 
2016)

ChemBioServer Web tool for 
mining and 
filtering chemical 
compounds used 
in drug discovery

bioserver-3.bioacademy.gr/Bioserver/ChemBioServer/ (Athanasiadis et al. 
2012)

Mode of Action by 
NeTwoRk Analysis 
(Mantra 2.0)

Web tool for the 
analysis of the 
Mode of Action 
(MoA) of novel 
drugs and the 
identification of 
known and 
approved 
candidates for 
“drug 
repositioning” 
using CMap drug 
data.

mantra.tigem.it/ (Carrella et al. 
2014)

Comparative 
Toxicogenomics Database 
(CTD)

Publicly available 
dataset describing 
relationships 
between 
chemicals, genes, 
and human 
diseases

ctdbase.org/ (Davis et al. 2017)

MEDication Indication 
resource (MEDI)

Compiled from 
four public 
medication 
resources, 
including 
RxNorm, Side 
Effect Resource 2 
(SIDER2), 
Wikipedia and 
MedlinePlus. A 
random subset of 
the extracted 
indications was 
also reviewed by 
physicians. The 
MEDI high-
precision subset 
(MEDIHPS), only 
includes drug 
indications found 
in RxNorm or in 
at least two of the 

vumc.org/cpm/centerprecision-medicineblog/medi-ensemblemedication-indicationresource (Wei et al. 2013)
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other three 
sources, with an

ClinicalTrials.gov Contains 
information about 
clinical trials.

ClinicalTrials.gov

National Institute for 
Occupational Safety and 
Health List of 
Antineoplastic and Other 
Hazardous Drugs

Contains drugs 
known to be 
toxic, according 
to published 
literature

cdc.gov/niosh/topics/hazdrug/default.html (Traynor 2014)

DrugBank Bioinformatics 
and 
cheminformatics 
resource that 
combines detailed 
drug data with 
comprehensive 
drug target 
information.

DrugBank.ca/ (Wishart et al. 
2006)

STITCH Database that 
includes 
information on 
chemical-protein 
interactions. The 
interactions 
include direct 
(physical) and 
indirect 
(functional) 
associations; they 
stem from 
computational 
prediction, from 
knowledge 
transfer between 
organisms, and 
from interactions 
aggregated from 
other (primary) 
databases. 
Currently it has 
9,643,763 
proteins from 
2,031 organisms.

stitch.embl.de/ (Szklarczyk et al. 
2016)

PharmGKB Repository for 
pharmacogenetic 
and 
pharmacogenomic 
data, and curators 
provide integrated 
knowledge in 
terms of gene 
summaries, 
pathways, and 
annotated 
literature.

pharmgkb.org (Owen et al. 2007)

SuperTarget Added-value 
database that 
integrates 
information about 
drugs, proteins 
and side effects 
from other 
databases to form 
drug-protein, 
protein-protein 
and drug-side-

insilico.charite.de/supertarget/ (Hecker et al. 2012)
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effect 
relationships and 
includes 
annotation about 
the source, ID’s, 
physical 
properties, 
references and 
much more.

KEGG Drug Comprehensive 
drug information 
resource for 
approved drugs in 
Japan, USA, and 
Europe unified 
based on the 
chemical 
structures and/or 
the chemical 
components, and 
associated with 
target, 
metabolizing 
enzyme, and other 
molecular 
interaction 
network 
information.

genome.jp/kegg/drug/ (Ogata et al. 1999)

AUD-Specific

INIA Texas Gene 
Expression Database 
(ITGED)

Contains the top 
statistical results 
from genomic 
studies focusing 
on models of 
excessive alcohol 
consumption.

inia.icmb.utexas.edu/

Ethanol-Related Gene 
Resource (ERGR)

Contains more 
than 30 large 
datasets from 
literature and 21 
mouse QTLs 
from public 
database (see data 
summary). These 
data are from 5 
organisms 
(human, mouse, 
rat, fly and worm) 
and produced by 
multiple 
approaches 
(expression, 
association, 
linkage, QTL, 
literature search 
etc)

bioinfo.uth.edu/ERGR/ (Guo et al. 2009)

Gene Network Contains large 
collections of 
genotypes (e.g., 
SNPs) and 
phenotypes that 
are obtained from 
groups of related 
individuals, 
including human 
families, 
experimental 
crosses of strains 

genenetwork.org/webqtl/main.py (Mulligan et al. 
2017)

Psychopharmacology (Berl). Author manuscript; available in PMC 2018 December 18.

http://genome.jp/kegg/drug/
http://inia.icmb.utexas.edu/
http://bioinfo.uth.edu/ERGR/
http://genenetwork.org/webqtl/main.py


A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ferguson et al. Page 39

Primary Repositories

Name Description URL Ref

of mice and rats, 
and organisms as 
diverse as 
Drosophila 
melanogaster, 
Arabidopsis 
thaliana, and 
barley.

Psychopharmacology (Berl). Author manuscript; available in PMC 2018 December 18.
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Table 4:

Benchmarking Test Case

1. Input 2. Similarity Metric 3. Prioritization

Tissue:
Whole brain Brain regions Cell type-specific 
transcriptome Single cell transcriptome
Genes:
SNPs Differentially-expressed (top 50, 100 →500) 
Coexpression modules

Correlation Enrichment 
(hypergeometric, Fischer’s, 
modified KS statistic) Pattern 
matching

Statistical methods Negative score vs absolute 
value of score Threshold (for example, −90 cut 
off) Median Combination of above
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