
It is noteworthy that this amyloid suppression of long-term
potentiation appeared to be cytokine independent (data not shown).

Endothelial amyloids are heat stable, protease resistant, and RNase
and DNase insensitive (1). They exhibit certain features of prion disease
(10); for example, they are self-replicating and transmissible among cells
(1). Here, we provide evidence that nosocomial pneumonia induces lung
endothelial production of t and Ab oligomeric species that impair
neurological information processing, supporting the hypothesis that these
amyloids contribute to insidious end-organ dysfunction and suggesting
the need for a larger cohort trial addressing this issue. In our studies,
injurious amyloids were detected in the cerebrospinal fluid of infected, but
not in uninfected, patients. However, our current sample size is small, and
we have not determined whether other bacteria, viruses, fungi, or
inflammatory conditions, such as the systemic inflammatory response
syndrome, also elicit this endotheliopathy. Our studies focus on the acute
consequences of infection-induced amyloids; it remains unknown as to
whether the mechanisms tested here represent a cause of progressive and
persistent memory loss in ICU patients. Indeed, in studies moving
forward, it will be essential to determine the infection-induced t and Ab
oligomer fate within the lung, blood, and other peripheral organs,
including the brain. It will also be essential to determine whether
infection-induced amyloid production and biodistribution contributes
to cardiovascular disease, stroke, renal dysfunction, and pulmonary
dysfunction in the aftermath of critical illness. n
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Time of Day Affects Eosinophil Biomarkers in Asthma:
Implications for Diagnosis and Treatment

To the Editor:

Asthma is characterized by strong time-of-day rhythms: symptoms
worsen around 04:00 (1) along with increased airway narrowing, as
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reflected by a reduced peak expiratory flow or FEV1 (2). Clinically
useful biomarkers in asthma include sputum and blood eosinophils
(3), and results from several small studies looking at circadian
variations in airway inflammation in asthma are conflicting (4–9). The
sputum eosinophil percentage is used to guide management decisions
in severe-asthma clinics (3), and therefore any diurnal variation in
sputum eosinophilia could influence the management of patients.

We studied circadian variations in blood and sputum eosinophils
in a cohort of patients with mild/moderate, atopic asthma compared
with healthy control subjects. We then retrospectively compared
sputum eosinophil counts from a severe-asthma clinic cohort in
relation to the time of day of collection (morning vs. afternoon).

Methods
Ten healthy volunteers and 10 adults with mild/moderate, atopic
asthma (Asthma Control Questionnaire 7, 0.9 [0.8–1.1]) who were
on regular inhaled corticosteroids (equivalent to beclomethasone
dipropionate 400 mg [400–650 mg]) were recruited for this study.
The study protocol was approved by the Health Research Authority,
National Research Ethics Service Committee of North West–Greater
Manchester Central (REC 14/NW/1352). Written informed consent
was obtained from all participants. Spirometry, blood eosinophils,
induced sputum, and serum were collected during four visits, each 1
week apart, avoiding any potentiating effect of sputum induction on
a subsequent sample. Visit 1 (V1) occurred at 16:00, V3 was at 10:00,
and V4 was at 22:00. V2 involved an overnight stay, with sampling
occurring at 16:00, 22:00, 04:00, and 10:00 the following morning.

Next, a circadian analysis was performed retrospectively on
sputum eosinophil counts obtained from patients with severe
asthma attending either a morning or afternoon clinic.

The median (interquartile range) is reported. Wilcoxon’s test,
the Mann-Whitney U test, and two-way ANOVA were used to
analyze the data. A post hoc power analysis performed on the
sputum eosinophil data resulted in a power of 81.86% for our
observed effect size (1.057), and the minimum detectable effect size
was 1.037 given 80% power. Power calculations were based on a
Wilcoxon signed-rank test to detect the time-of-day difference in
asthma patients. General linear modeling was used to analyze the
severe-asthma cohort data and potential confounders. Chi-squared
Fisher’s exact test and the Pearson correlation coefficient were also
used for analyses. P< 0.05 was considered statistically significant.

Results

Mild/moderate asthma. Healthy and asthma groups were matched
for age (P = 0.63) and body mass index (P = 0.9). FEV1% predicted
was lower in the asthma group (82.3% [73.0–89.0%]) than in
the healthy group (97.7% [91.7–105.3%]; P, 0.001), with more
reversibility in the asthma group (255 ml [172.5–355 ml]) than in the
healthy group (35 ml [215 to 122.5 ml]; P, 0.01). There was a
nocturnal dip in FEV1 in the asthma group (P, 0.0001) at 04:00.

For patients with mild/moderate asthma and control subjects, the
number of blood eosinophils showed a time-of-day difference, peaking
at 04:00 (P, 0.01), with no difference between groups. Serum eotaxin
did not vary by time of day or between groups.

Among patients with mild/moderate asthma, the sputum
eosinophil percentages were significantly higher at 04:00 than at 16:00
(P, 0.05; Figure 1). There was no significant time-of-day variation in
sputum eosinophils in the healthy group (P = 0.63). Sputum eosinophil

percentages were significantly increased in the asthma group compared
with the healthy group (P, 0.01). Sputum eotaxin was significantly
increased at 04:00 compared with 16:00 in the asthma group (62.9
[28.2–120.4] vs. 33.0 [14.5–73] pg/ml; P, 0.05), but not in the healthy
group (29.7 [16.2–74.2] vs. 37.0 [25.5–54.5] pg/ml).

Severe asthma. A total of 131 patients attended the morning
clinic and 193 attended the afternoon clinic. Groups were well
matched for age (P = 0.11), body mass index (P = 0.25), FEV1%
predicted (P = 0.85), smoking status (P = 0.3), serum total IgE
(P = 0.23), fractional exhaled nitric oxide (P = 0.58), blood eosinophil
count (P = 0.58), and treatment (intramuscular triamcinolone [P =
0.71], oral prednisolone [P = 0.31], or daily inhaled corticosteroids
[beclomethasone dipropionate equivalent]; P = 0.31). Significantly
more subjects in the morning group produced sputum
spontaneously than by induction (77.1% vs. 62.1%; P , 0.005).

An analysis of the severe-asthma clinic cohort data revealed a
significant time-of-day effect: sputum produced in the morning
clinic contained a significantly higher percentage of sputum
eosinophils than that produced in the afternoon clinic (morning
sputum eosinophil percentage 1.25% [0.00–8.75%] vs. afternoon
0.5% [0.00–2.25%]; P = 0.008). A general linear modeling analysis
showed that the time-of-day effect persisted even if patients were
on high-dose steroids (P = 0.41) and was not affected by the type of
sputum (spontaneous vs. induced; P = 0.54).

A significantly higher proportion of patients with severe asthma
attending the morning clinic had positive sputum eosinophil counts
(>3%) compared with those attending the afternoon clinic (37.4%
vs. 21.6%; P = 0.002; Figure 2).

We found no difference in the proportion of cell counts
that were classed as eosinophilic (>3% eosinophils) between
spontaneously produced sputum and induced sputum (morning
P = 0.6, afternoon P = 1).
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Figure 1. Diurnal variation in blood and sputum eosinophils. Sputum
eosinophil percentages increased significantly at 04:00 compared with
16:00 in patients with asthma (*P, 0.05, Mann-Whitney U test). This was
not seen in the healthy group (P = 0.63). Sputum eosinophil percentages
were significantly higher in patients with asthma compared with healthy
control subjects (P, 0.01, two-way ANOVA). Shown are individual sputum
eosinophil percentages (dots) and medians (bars) for healthy control
subjects (gray) and patients with asthma (black). TCC = total cell count.
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Discussion
This is the most comprehensive circadian study of biomarkers
in asthma to date. We report, for the first time, a circadian
variation in sputum eotaxin, peaking at 04:00. We confirmed that
airway eosinophils showed a significant circadian rhythm in
induced sputum from patients with mild/moderate asthma, with
a peak influx at 04:00 coinciding with peak sputum eotaxin
concentrations suggesting a chemotactic mechanism. We
demonstrated that this was in antiphase with FEV1. In contrast to
airway eosinophils, blood eosinophils oscillated diurnally in
both healthy subjects and patients with asthma, suggesting
that the physiological mechanism that controls the circadian
variation in blood eosinophils is not upregulated in asthma. In
support of this, there was no difference in serum eotaxin levels
between the groups.

We noticed a nadir in sputum eosinophil levels at 16:00,
and although the difference was not statistically significant,
sputum eosinophil levels appeared to be higher at 10:00,
hinting at a possible time-of-day effect that would be relevant
within a clinical working day. We postulated that a patient
might produce a sputum sample with higher eosinophil
counts while attending a morning clinic versus an afternoon
clinic. In our retrospective evaluation, we identified that
patients with severe asthma attending a morning clinic were
almost twice as likely (37.4% vs. 21.6%) to have sputum
eosinophilia (>3%) than those attending an afternoon clinic.
These findings require confirmation in a prospective study;
however, the implications are clinically important. In patients
with severe asthma, increased sputum eosinophil counts are an
indicator for treatment escalation (3). Based on our results, we
propose that different clinical decisions could be made based
on whether the patient is allocated a morning or afternoon
appointment. n
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The Y Chromosome Regulates BMPR2 Expression via
SRY: A Possible Reason “Why” Fewer Males Develop
Pulmonary Arterial Hypertension

To the Editor:

Reduced lung BMPR2 (bone morphogenetic protein receptor type 2)
expression and female predominance are two major features of
most pulmonary arterial hypertension (PAH) subtypes (1). In
addition, germline mutations in BMPR2 are present in more than
75% of patients with heritable PAH, and about 20% of patients
with idiopathic PAH (2). However, only 14% of males, compared
with 42% of females, who harbor BMPR2 mutations develop
PAH (3).

There is a growing body of molecular and in vivo work
supporting the concept that sex and BMPR2 are intimately related to
each other, to PAH pathogenesis, and perhaps to right ventricular
adaptation. For example, estrogen receptor a binds to the BMPR2
promoter in Cos-7 cells, leading to decreased expression and
signaling of BMPR-II, whereas female human pulmonary artery
smooth muscle cells exhibit estrogen-driven suppression of BMPR-II
signaling (4, 5); however, estrogen signaling appears to support right
ventricular response to stress (6). Although likely relevant, a focus
only on sex hormones ignores an obvious difference between females
and males: the sex chromosomes (XX vs. XY). Importantly, recently
in the Journal, Umar and colleagues demonstrated a protective effect
of the Y chromosome in murine hypoxia-induced pulmonary
hypertension (7). We explored the hypothesis that the higher female
incidence in PAH is driven in part by factors specific to the Y
chromosome that enhance BMPR2 expression, with a focus on the
transcription factor SRY (sex-determining region Y).

To start, we analyzed BMPR2 proximal regulator sequences
using the transcription element search system and transcription
factor database (http://www.gene-regulation.com). These analyses
predicted BMPR2 upstream regulatory regions had at least five
SRY binding sites. This suggested to us that SRY may regulate
BMPR2 mRNA expression.

We next evaluated SRY expression in different cell types and
found that SRY expression was low in multiple different male lung
vascular cell lines but high in dermal fibroblast cell lines from
multiple control patients and patients with PAH (data not shown).
We then sought to determine whether SRY regulates native
BMPR2 expression. We used RNA interference to knockdown
SRY expression in fibroblasts from a male patient with PAH. We
found that reducing SRY expression resulted in decreased BMPR2
mRNA and protein expression (Figure 1A). Although Smad 1/5/8
protein expression was not demonstratively reduced (data not
shown), the breadth of canonical and noncanonical BMPR2 signaling
was not assessed. We then used a SRY expression construct to
overexpress SRY in a female HEK293 cell line (which does
not express SRY). We found that SRY overexpression resulted
in z20% increased BMPR2 expression compared with control
(Figure 1B).

We next investigated whether BMPR2 is regulated by SRY
in a dose-dependent manner. A BMPR2 promoter expression
construct pGL3-BMPR2-Luciferase (containing the predicted SRY
binding sites) was used in a cotransfection assay with a varying
amount of SRY expression construct. We found that an increased
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Figure 1. SRY (sex-determining region Y) positively regulates BMPR2

(bone morphogenetic protein receptor type 2) expression in human
cells. (A) SRY knockdown resulted in lower BMPR2 mRNA and protein
expression in male fibroblasts. The dermal fibroblasts, derived from a
male patient with pulmonary arterial hypertension, were transfected with
scrambled siRNA or SRY siRNA. BMPR2 mRNA levels were quantified by
real-time PCR, and protein levels by Western blot. (B) SRY overexpression
resulted in increased BMPR2 mRNA expression in female HEK293 cells
(which do not express native SRY). HEK293 cells were transfected with
plasmids: control pCMV or pCMV-FLAG-SRY (which expressed SRY).
BMPR2 mRNA levels were quantified by real-time PCR.
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