Table 1. Regression model results.
(A) | ||||||
---|---|---|---|---|---|---|
Coefficient | Std. error | Z | P>|z| | 95% Conf. Interval | ||
Subject loss | −0.7989 | 0.0226 | 35.3 | 0.0001 | 0.7546 | 0.8433 |
Organization gain | 0.1449 | 0.0120 | 12.04 | 0.0001 | 0.1213 | 0.1684 |
cTBS | 1.3760 | 0.5994 | 2.3 | 0.022 | 0.2011 | 2.5509 |
Gain organizationxcTBS | −0.0086 | 0.0075 | −1.14 | 0.254 | −0.0233 | 0.0061 |
constant | 0.2288 | 0.4353 | 0.53 | 0.599 | −0.6244 | 1.0820 |
(B) | ||||||
---|---|---|---|---|---|---|
Coefficient | Std. error | Z | P>|z| | 95% Conf. Interval | ||
Subject gain | 0.7415 | 0.0220 | 33.7 | 0.0001 | 0.6983 | 0.7846 |
Organization gain | −0.2064 | 0.0133 | −15.43 | 0.0001 | −0.2327 | −0.1802 |
cTBS | 0.0022 | 0.7063 | 0 | 0.997 | −1.3822 | 1.3866 |
Gain organizationxcTBS | 0.0376 | 0.0079 | 4.72 | 0.0001 | 0.0220 | 0.0533 |
constant | −1.6118 | 0.5126 | −3.14 | 0.002 | −2.6166 | −0.6069 |
Table 1(A):.
Equation 1: logit (prob. accept) = βo + β1*GS + β2*GO + α0*cTBS + α1*cTBS*GO.
Number of obs = 5800; Number of participants = 29; Obs per group: min = 200; max = 200; avg. = 200.
Integration points = 7, Wald chi2(4)=1342.55.
Log Likelihood = −1948.13, Prob > chi2=0.00001.
Estimate: 1.65; Standard error: 0.21; cTBS: group.
Table 1(B):.
Number of obs = 5800; Number of participants = 29; Obs per group: min = 200; max = 200; avg. = 200.
Integration points = 7, Wald chi2(4)=1294.59.
Log Likelihood = −1902.89, Prob > chi2=0.00001.
Estimate: 1.68; Standard error: 0.25; cTBS: group.