Skip to main content
. 2018 Dec 18;7:e40671. doi: 10.7554/eLife.40671

Table 1. Regression model results.

A, good organization; B, bad organization.

(A)
Coefficient Std. error Z P>|z| 95% Conf. Interval
Subject loss −0.7989 0.0226 35.3 0.0001 0.7546 0.8433
Organization gain 0.1449 0.0120 12.04 0.0001 0.1213 0.1684
cTBS 1.3760 0.5994 2.3 0.022 0.2011 2.5509
Gain organizationxcTBS −0.0086 0.0075 −1.14 0.254 −0.0233 0.0061
constant 0.2288 0.4353 0.53 0.599 −0.6244 1.0820
(B)
Coefficient Std. error Z P>|z| 95% Conf. Interval
Subject gain 0.7415 0.0220 33.7 0.0001 0.6983 0.7846
Organization gain −0.2064 0.0133 −15.43 0.0001 −0.2327 −0.1802
cTBS 0.0022 0.7063 0 0.997 −1.3822 1.3866
Gain organizationxcTBS 0.0376 0.0079 4.72 0.0001 0.0220 0.0533
constant −1.6118 0.5126 −3.14 0.002 −2.6166 −0.6069

Table 1(A):.

Equation 1: logit (prob. accept) = βo + β1*GS + β2*GO + α0*cTBS + α1*cTBS*GO.

Number of obs = 5800; Number of participants = 29; Obs per group: min = 200; max = 200; avg. = 200.

Integration points = 7, Wald chi2(4)=1342.55.

Log Likelihood = −1948.13, Prob > chi2=0.00001.

Estimate: 1.65; Standard error: 0.21; cTBS: group.

Table 1(B):.

Number of obs = 5800; Number of participants = 29; Obs per group: min = 200; max = 200; avg. = 200.

Integration points = 7, Wald chi2(4)=1294.59.

Log Likelihood = −1902.89, Prob > chi2=0.00001.

Estimate: 1.68; Standard error: 0.25; cTBS: group.