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Abstract

Accurate estimation of energy expenditure (EE) from accelerometer outputs remains a challenge 

in older adults. The aim of this study was to validate different ActiGraph (AG) equations for 

predicting EE in older adults. Forty older adults (age = 77.4 ± 8.1 yrs) completed a set of 

household/gardening activities in their residence, while wearing an AG at the hip (GT3X+) and a 

portable calorimeter (MetaMax 3B – criterion). Predicted EEs from AG were calculated using five 

equations (Freedson, refined Crouter, Sasaki and Santos-Lozano (vertical-axis, vectormagnitude)). 

Accuracy of equations was assessed using root-mean-square error (RMSE) and mean bias. The 

Sasaki equation showed the lowest RMSE for all activities (0.47 METs) and across physical 

activity intensities (PAIs) (range 0.18–0.48 METs). The Freedson and Santos-Lozano equations 

tended to overestimate EE for sedentary activities (range: 0.48 to 0.97 METs), while EEs for 

moderate-to-vigorous activities (MVPA) were underestimated (range: −1.02 to −0.64 METs). The 

refined Crouter and Sasaki equations showed no systematic bias, but they respectively 

overestimated and underestimated EE across PAIs. In conclusion, none of the equations was 

completely accurate for predicting EE across the range of PAIs. However, the refined Crouter and 

Sasaki equations showed better overall accuracy and precision when compared with the other 

methods.
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INTRODUCTION

Accelerometers are widely used to assess physical activity (PA), as they have the potential to 

measure intensity, duration and frequency of PA in free-living environments objectively, and 

with detailed time-resolution. However, accurate estimation of energy expenditure (EE) from 

accelerometer outputs remains a challenge (Freedson, Bowles, Troiano, & Haskell, 2012; 

Kamada, Shiroma, Harris, & Lee, 2016; Lyden, Kozey, Staudenmeyer, & Freedson, 2011). 

When deciding which method to use, researchers are faced with a choice of several different 

equations, developed with diverse statistical approaches, including regressions, decision 

trees, and machine-learning methods. Researchers also have to choose the appropriate data 

extraction techniques (e.g. raw data, epochs, etc.) for the age and health of the population 

being studied (Crouter, Kuffel, Haas, Frongillo, & Bassett, 2010; Lyden, Keadle, 

Staudenmayer, & Freedson, 2014; Strath, Pfeiffer, & Whitt-Glover, 2012). Although, there 

are several available options for accelerometer data analysis, because of their simplicity, 

most researchers use cut-points derived from predictive equations.

To date, most of the equations for predicting EE from accelerometer data for adults have 

been developed in young and middle-aged populations, using activities such as cycling, 

treadmill walking and sports such as basketball (Crouter et al., 2010; Freedson, Melanson, & 

Sirard, 1998). Older adults show different activity and movement patterns from younger 

adults, reflecting the biological, physical and social changes associated with aging (Strath et 

al., 2012; Taraldsen, Chastin, Riphagen, Vereijken, & Helbostad, 2012). However, few 

studies have developed predictive equations for older adults, using activities that reflect the 

range or intensity of activities typically undertaken by this group.

The ActiGraph (AG) accelerometer is commonly used for objective measurement of 

physical activity (Montoye, Moore, Bowles, Korycinski, & Pfeiffer, 2016) with acceleration 

counts analysed using different equations for predicting EE in children and adults. The 

Freedson equation (Freedson et al., 1998) was developed for data collected with the first 

generation of AG in 1-minute epochs for the vertical axis. Even though its validation was 

based only on treadmill exercise at three different speeds (Freedson et al., 1998), it has been 

widely used in large-scale studies, both for estimating EE and for categorising physical 

activity at different intensity levels (Arnardottir et al., 2013; Gennuso, Gangnon, Matthews, 

Thraen-Borowski, & Colbert, 2013; Matthews et al., 2013). Another commonly used method 

is the two-regression model developed and refined by Crouter et al. (2010); it uses 1-second 

counts in 10-second increments to differentiate walk/run from lifestyle activities before 

assigning nonlinear EE predictive equations to each type. Estimates of EE from this method 

have shown good agreement with EE measured with whole-room calorimetry (24-h semi-

structured protocol of activities at different intensities) and doubly labelled water (14 days in 

free-living conditions) in an adult sample (Rothney, Brychta, Meade, Chen, & Buchowski, 

2010). The refined Crouter equation has also been tested in adults in free-living 

environments, but significantly underestimated time in sedentary behaviours (SB) and 

overestimated time spent in light, moderate, and vigorous PA (Crouter, DellaValle, Haas, 

Frongillo, & Bassett, 2013). Also, Sasaki, John, and Freedson (2011) developed a EE 

predictive equation for moderate, vigorous and very vigorous intensities in adult populations 

using the triaxial feature of the AG under laboratory conditions on a treadmill. A specific 
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model for predicting EE in older adults was developed by Santos-Lozano et al. (2013) using 

a test protocol that comprised 6 conditions (resting, sit-to-stand and treadmill at different 

speeds), measured with indirect calorimetry. From this study, equations for the AG were 

obtained for the vertical axis (Santos-Lozano VT) and using the vector magnitude of the 

three axes (Santos-Lozano VM). None of these equations have been tested in older adults in 

free-living environments.

To reduce this knowledge gap, the primary aim of this study was to validate the accuracy of 

five predictive EE equations (Freedson, Refined Crouter, Sasaki, Santos-Lozano VT and 

Santos-Lozano VM) by comparing accelerometer data against indirect calorimetry-measured 

values, in a group of healthy older adults in their natural daily living settings.

Methods

Participants

Forty community-dwelling participants aged 65 and over were recruited using flyers 

displayed at organizations with large numbers of older adults, as well as a recruitment notice 

circulated through emails and letters within a network of previous volunteers. Eligibility 

criteria included being able to walk (with or without assistive devices but not requiring 

assistance from another person) and ability to sign the consent form. Exclusion criteria were 

cognitive or physical disabilities which limited their capacity to perform the activities that 

were in the protocol. Before commencing, participants gave written informed consent; the 

consent form and study protocol were approved by the Behavioural & Social Sciences 

Ethical Review Committee of the University of Queensland, Australia.

Experimental protocol

Testing was conducted in each participant’s home. Age, gender, general health information, 

and physical activity level were assessed with a questionnaire. Exercise capacity was 

estimated with the Veterans Specific Activity Questionnaire (VSAQ) (Rankin, Briffa, 

Morton, & Hung, 1996). Height and weight were measured using a floor scale and a 

stadiometer and used to calculate body mass index (BMI = kg·m−2). The participants wore a 

portable calorimetry system, MetaMax 3B (MetaMax, Cortex Biophysik GmbH, Leipzig, 

Germany), and a tri-axial raw-signal accelerometer at the right hip, ActiGraph GT3X+ (AG; 

ActiGraph, Pensacola, FL, USA), during periods of sitting, lying down, self-paced walking 

and 4 self-selected household/gardening activities. Before commencing the tests, every 

participant selected activities based on their usual daily tasks.

Measured activities

In total, 16 different activities were measured across the sample. Sitting (n = 36) and lying (n 

= 37) were performed quietly in a comfortable position. Self-paced walking (n = 40) was 

measured outdoors on a flat and firm surface, which allowed walking without interruption. 

The participants were instructed to walk at a comfortable pace (i.e. speed used for 

transportation) that would allow talking. Walking speed was not measured, but step 

accumulation per minute was estimated using the AG (mean 82.4 ± 13.17 steps/min). Eight 

different household activities were measured across the whole sample, including sweeping 
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(n = 18), tidying up (n = 5), washing windows (n = 6), dusting (n = 20), washing dishes (n = 

26), vacuuming (n = 21), ironing (n = 5) and laundry, folding or hanging clothes (n = 5). 

Five gardening activities were measured in this sample: mowing the lawn (n = 7), trimming 

and weeding (n = 9), pruning (n = 11), watering plants and garden (n = 16), and raking the 

lawn (n = 4). No specific instructions were given on how to conduct the household and 

gardening activities. The activities were measured on the same day in a random order, except 

for the resting activities which were performed at the beginning. All the activities lasted at 

least 5 minutes, but participants were allowed to perform the activities for a longer duration 

when necessary. To avoid anticipation which may affect the activity pattern, the research 

team informed participants about the time remaining for each activity, as they tended to stop 

or slow down before the time was finished. The participants were asked to remain silent 

during the activity, except to indicate any inconvenience or emergency. After each activity, 

recovery time was allowed and the following activity started after resting heart rate values 

were attained.

Instruments

For each activity, ventilation and expired gas concentrations were measured breath-by-breath 

to measure EE with the previously validated and calibrated MetaMax as the reference 

standard (Macfarlane & Wong, 2012). The system included an analyser unit, which was 

secured to a neoprene chest harness, and a soft and flexible mask, held with a neoprene head 

harness. The additional weight of the equipment (650 gr) was considered in the participant 

body mass to compensate for the additional energy cost increase. The portable system was 

calibrated and prepared according to the manufacturer’s instructions before each 

measurement. MetaMax data were recorded and downloaded with Metasoft software v3.9.7 

(Cortex Biophysik GmbH, Leipzig, Germany). To filter data and match them with 

accelerometry, the duration of each activity was recorded using the Metasoft software, with a 

synchronized watch as back up.

The AG was placed on the anterior axillary line of the iliac crest using an elastic belt. AGs 

were initialized and downloaded using ActiLife 5 Software v5.7.4 (ActiGraph, Pensacola, 

FL, USA). Data were recorded with a sampling rate of 30 Hz at all three axes.

Data analysis

In order to ensure date and time matching, all the instruments were initialized and 

synchronized on the same computer. For the calorimetry, a steady state was selected for each 

of the activities by eliminating the first 150s and retaining the remaining data, as a plateau 

(variability below 5% for oxygen consumption) was reached after 150s in all observations. 

This elimination procedure was based on a previous study (Hall, Howe, Rana, Martin, & 

Morey, 2013) and the overall time taken to observe a steady state in our sample. The AG 30 

Hz data were integrated with Stata 13.0 (StataCorp. College Station, TX, USA) into 10-s or 

1-min epochs using the start and end time for each activity. The Metamax data were 

averaged into the respective 10-s or 1-min epochs. This allowed precise matching of the 

MetaMax and AG data for the specific requirements of each equation (Table 1). 

Accelerometer data processing was completed with a customized Stata syntax. EE 
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(METstandard) was derived from calorimetry-measured VO2 and VCO2 using Weir’s 

equation (Weir, 1949) and then divided by3.5 ml·kg−1·min−1.

Statistical analysis

All statistical analyses were performed using Stata 13.0 (StataCorp. College Station, TX, 

USA) and p < 0.05 was considered statistically significant. Predicted EE (METpredicted) was 

calculated with the AG equations (Freedson, Refined Crouter, Sasaki, Santos-Lozano VT 

and Santos-Lozano VM; Table 1) and compared with METstandard values from indirect 

calorimetry during the protocol.

Root mean square error (RMSE; expresses deviation of the predicted values from their 

mean), mean absolute percent error (MAPE; measures accuracy in relative terms), and mean 

bias with 95% limits of agreement (compares individual differences between predicted and 

measured results) were used to assess the accuracy of each equation, for all activities and by 

PAIs. METpredicted values, derived from the equations were compared with METstandard for 

each activity using t-tests.

Results

40 participants completed the study; their average age was77.4 years (Standard Deviation 

[SD] = 8.13, range 66–99), mean BMI was 26.0 kg∙m−2 (SD = 3.67, range 19.0–36.0) and 

median exercise capacity was 6.9 METs [interquartile range 4.59, 9.39]. Only 10% rated 

their health as poor or fair, and 53.9% reported less than 1 h/week of physical activity. No 

differences were observed between male and female participants. In total, 16 different 

activities were assessed and the average total measured time with indirect calorimetry in the 

test was 49.4 min (SD = 6.50). Preparation and breaks without the mask were not considered 

in the measured time estimation.

The Freedson, Santos-Lozano VT and VM equations tended to overestimate EE for lower 

intensity activities by about 1 MET, while EEs for activities with higher intensity were 

underestimated by approximately 1.5 METs (Figures 1 and 2). In contrast, both the refined 

Crouter and Sasaki equations showed no systematic bias when compared with indirect 

calorimetry. Overall mean biases between METstandard and METpredicted ranged from −0.23 

METs (Sasaki) to 0.47 METs (refined Crouter) with wide limits of agreements (LoA, 2–3 

METs) (Figures 1 and 2). Overall mean biases were different for men and women when 

using both the Santos-Lozano VT (0.26 (LoA: 0.11, 0.42) vs −0.54 (LoA:−0.65,−0.43) 

METs, p < 0.001) and VM (0.22 (LoA: 0.11, 0.34) vs −0.54 (LoA: −0.62,−0.46), p < 0.001) 

equations. The accuracy of the five equations for predicting energy expenditure for all 

activity levels is shown in Table 2. The lowest RMSE for all activities was observed with the 

Sasaki equation (0.47 METs), while the highest was obtained with Santos-Lozano VT (0.89 

METs). For comparisons of METstandard and METpredicted (for overall activities) MAPE 

ranged from 8.6% (Freedson) to 38.6% (Santos-Lozano VT).

When comparing predicted EE with indirect calorimetry by PAIs (Table 2), RMSEs were 

similar across equations for sedentary EE (range 0.18–0.19). The Sasaki equation appeared 

to perform best, in comparison with the other EE predictive equations, for most PAIs. 
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Assessing sedentary PAI was challenging for all predictive equations because all showed 

large relative differences with the measured EE (range 23.1%−107.6%).

When comparing each activity type individually with the predicted EE from equations, mean 

biases ranged from −1.97 (Freedson, mowing lawn) to 0.81 METs (refined Crouter, watering 

plants) (Figure 3). The number of activities for which METpredicted significantly differed 

from METstandard was 15 for the Freedson equation, 8 for the refined Crouter equation, 8 

and 4 for the Santos-Lozano VT and VM equations and 4 for the Sasaki equation. None of 

the equations correctly predicted the EE for sedentary activities and mean biases ranged 

from −0.29 (Sasaki, sitting) to1.01 (Santos-Lozano VT, lying quietly).

Discussion

The purpose of this study was to determine the validity of different AG equations for 

predicting EE in older adults in their habitual-living environments. We tested a variety of 

common activities, and measured individual EE with a portable indirect calorimeter.

We assessed the validity of the five equations for predicting the EE of each activity type, 

activities by MET intensity levels, and overall activities combined. While the performances 

varied widely, the refined Crouter and Sasaki equations showed no systematic bias and the 

Sasaki equation had the lowest RMSE and second lowest MAPE for overall activities. Our 

results confirmed earlier findings reported for the refined Crouter equation in adults (Crouter 

et al., 2013). In contrast, the Freedson, Santos-Lozano VT and Santos Lozano VM equations 

all tended to overestimate sedentary and light intensity activities and underestimated 

moderate to vigorous activities. Similar findings were reported for the Freedson equation 

when tested in younger adults (Lyden et al., 2011; Rothney, Schaefer, Neumann, Choi, & 

Chen, 2008). In our study, when using the Freedson equation, the lowest EE value when 0 

counts were recorded was 1.44 METs, thus resulting in overestimation, as the EE of most 

resting activities is close to 1 MET.

When comparing our findings with studies conducted in adults (Crouter et al., 2013; Lyden 

et al., 2014), the relative differences for all activities were higher in this sample of older 

adults. Lyden et al. (2014) reported overall percent biases ranging from −13.0% (Freedson) 

to 0.7% (refined Crouter), while the equations in the current study exhibited overall 

differences from −13.8% (Sasaki) to38.6% (Santos-Lozano VT). Therefore, these large 

differences suggest that results obtained for younger to middle-aged adults may not be 

generalised to older adults.

Although overall absolute mean biases for the two Santos-Lozano equations were 

comparable with those from the Freedson and Sasaki equations, and lower than those from 

the refined Crouter equation, these equations exhibited high MAPE for sedentary activities 

(82.8–107.6%). As sedentary activities represent about 65–80% of the total activities 

performed by older adults on an average day (Harvey, Chastin, & Skelton, 2015), these high 

MAPEs would result in overestimation of the daily EE. This may be partially explained by 

the fact that the equations were validated in a laboratory setting that not included sendentary 
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activities, resulting in a high intercept (2.89–2.59). Thus, the Santos-Lozano equations 

should be used with caution for estimating overall EE and sedentary behavior in older adults.

Evidence suggests that light PA promotes health in older adults (Foong et al., 2016), and 

provides a starting opportunity for changing PA behavior (Eijsvogels, George, & Thompson, 

2016). When comparing the performance of the equations for estimating EE in light 

activities, all equations exhibited similar RMSE, but MAPEs and mean biases were 

particularly lower for Santos-Lozano VT(4.9%, 0.06 METs) and Sasaki (7.5%, 0.16 METs) 

equations. These findings are relevant, as older adults spend about 15% of their day in light 

PA (Husu et al., 2016). This may result, as similarly described for sedentary activities, in 

significant differences in total daily EE when applying some equations in this age group.

In terms of RMSE, our findings were similar across equations for estimating EE in MVPA, 

but the refined Crouter and Sasaki equations performed better, as they showed lower MAPEs 

and mean biases. The refined Crouter equation tends to overestimate EE predictions in 

MVPA as similarly found by Rothney et al. (2010) and Crouter et al. (2013) in 

heterogeneous age cohorts. The Freedson equation showed the highest MAPE (27.2%) and 

mean bias (−1.02 METs) of all the equations. Its application for estimating total EE for these 

activities is therefore limited in older adults.

The number of activities that had significantly different METpredicted and METstandard values 

varied across equations. The largest differences in relative terms were observed for sedentary 

activities, especially with the two Santos-Lozano equations (mean bias 0.77–1.01 METs). 

Importantly, the lowest EE values for the Santos-Lozano VM equation, when 0 counts per 

minute were recorded, were 1.30 and 1.94 METs for men and women respectively, which 

would lead to significant overestimation of EE at rest. Differences between METstandard and 

METpredicted for each activity may also be explained by the fact that these equations assume 

linear relationships between counts and EE. The relationships may not be linear when 

activities are performed intermittently in short bouts and at different intensities (for example, 

mowing lawn), as is often the case in free-living environments.

Although simple linear regression equations were widely accepted methods for model 

development in the past, other methods are now being employed or are in development. 

Crouter et al. (2006) developed the two-regression method, including more features, such as 

the coefficient of variation (CV), in order to differentiate walking/running from lifestyle 

activities. This method was refined to improve the identification of the initiation of rhythmic 

locomotor activities in 2010 (Crouter et al., 2010). However, both the first and refined model 

showed similar validity for pure sedentary or pure walking activities, with better 

performance for the refined Crouter equation for activities where walking was interspersed 

with rest periods (Crouter et al., 2010). Despite these corrections, in our study, the refined 

Crouter equation tended to overestimate EE in moderate intensity activities, including 

walking. In contrast with our findings, a study that used this method showed no difference in 

total EE, total minutes in bouts and the number of bouts of activity that qualify towards 

meeting the physical activity guidelines, when compared with direct observation in a 

younger sample (Lyden et al., 2014). This may suggest that CV<10 may not be appropriate 

for detecting locomotion in older adults in free-living environments, but this requires further 
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research. In our study, some activities were more frequently selected by participants than 

others (eg indoor cleaning vs outdoor activities), which affected some comparisons. 

However, activities selected by few participants were were spread across ages and both 

genders. Therefore, differences between METpredicted and METstandard may be mostly 

explained by the diversity of skills and effort, rather than by demographic characteristics.

Strengths and limitations

To our knowledge, this is the first study to assess these methods in older adults in their 

habitual-living enviroments. We included a wide age range and participants with varying PA 

levels and exercise capacities. Moreover, a range of meaningful activities was selected by the 

participants. Although we used the best method available for measuring EE in free-living 

environments, we recognise that this method has some limitations. We were unable to 

conduct a valid measurement of resting metabolic rate (Compher, Frankenfield, Keim, Roth-

Yousey, & Evidence Analysis Working, 2006) that may have favoured the adjustment of 

measured EE with this basal estimate (Kozey, Lyden, Staudenmayer, & Freedson, 2010). 

The calculation of METs based on the measured resting EE (rather than the standard 3.5 

ml·kg−1·min−1) is important in older adults, as EE at rest decreases with age (Byrne, Hills, 

Hunter, Weinsier, & Schutz, 2005). Thus, use of standard resting EE may have led to 

underestimation of the estimated METs (Kozey et al., 2010; McMurray, Soares, Caspersen, 

& McCurdy, 2014). However, we conducted a secondary analysis with a proxy of the resting 

metabolic rate based on the measured EE while lying down (5 minutes) and findings were 

generally similar. The measurement period was limited to a period of about two hours, as 

these older participants would have become fatigued with a longer protocol, but this time 

was sufficient for measuring each activity without interruptions in all participants. Also, 

although the activities were self-selected (except for lying, sitting and walking), the duration 

was influenced by our suggestion (at least 5 minutes). Some of the selected activities may 

usually require less time to be completed, thus affecting the activity pattern or effort. 

Although we attempted to simulate free-living conditions, patterns and intensity may have 

been affected by our presence and the calorimeter, despite our encouragement to perform 

activities as they were usually done on a daily basis.

Conclusion

None of the equations was completely accurate in all domains for predicting EE and PAIs.

However, the refined Crouter and Sasaki equations showed better accuracy and precision 

when compared with other methods, particularly when assessing MVPA. Researchers should 

consider the strengths and weaknesses described here when analysing data and extrapolating 

results from equations, because issues such as individual variability in terms of patterns and 

nature of movement remain an important limitation of all these methods.
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Figure 1. 
Plots representing the difference between measured (MetaMax 3B) and predicted 

(ActiGraph equations using the vertical axis) energy expenditure (METs) for all activities 

combined The black solid line represents the trend, grey solid line represents mean bias and 

the dashed lines represent the 95% limits of agreement. Open circles represent women and 

filled circles represent men. EE: Energy expenditure; MET: Metabolic equivalent; VT: 

vertical axis.

Aguilar-Farias et al. Page 11

J Sports Sci. Author manuscript; available in PMC 2019 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Plots representing the difference between measured (MetaMax 3B) and predicted 

(ActiGraph equations using the vector magnitude) energy expenditure (METs) for all 

activities combined. The black solid line represents the trend, grey solid line represents 

mean bias and the dashed lines represent the 95% limits of agreement. Open circles 

represent women and filled circles represent men. EE: Energy expenditure; MET: Metabolic 

equivalent; VM: vector magnitude.
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Figure 3. 
Mean bias and 95% limits of agreement for steady-state energy expenditure (METs) 

estimated from different predictive equations and indirect calorimetry (MetaMax 3B) for 16 

different activities in older adults. *Significantly different from measured energy 

expenditure (p < 0.05). LoA: limits of agreement; EE: energy expenditure; METs: metabolic 

equivalent; VM: vector magnitude.
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Table 1.

AG prediction equations and cut-points included in the analysis.

EE prediction equation (METs)

Freedson 1.439008 + 0.000795·(VT cpm)

Refined Crouter Sedentary equation
 If the VT counts·10 sec−1 are ≤ 8: EE = 1.0 MET,

Walk/run equation (VT cnts·10 sec−1 > 8, and CV* ≤ 10)
 2.294275·(exp(0.00084679 · VT counts·10 sec−1))

Lifestyle equation (cnts·10 sec−1 > 8, and CV*>10)
 0.749395+[0.716431·(Ln(VT counts·10 sec−1)] – [0.179874 · (Ln(VT counts·10 sec−1))2] + [0.033173 · (Ln(VT 
counts·10 sec−1))3]

Santos-Lozano VT 2.8867 + 0.00067·(VT cpm)-0.6807·Gender

Santos-Lozano VM 2.5878 + 0.00047·(VM cpm)-0.6453·Gender

Sasaki 0.000863·(VM cpm) + 0.668876

Abbreviations: AG: ActiGraph; EE: energy expenditure; SEE: standard error of measurement; METs: Metabolic equivalents; VT: vertical axis; 
cnts: counts; cpm: counts per minute, CV: coefficient of variation of the vertical axis in 10 seconds; G: gender (female: 1; male: 2); VM: vector 
magnitude.

*
The lowest coefficient of variation (CV) is selected from those calculated for each 10-second epoch, and all combinations of the five surrounding 

10-second epochs. This CV is used to identify whether the 10-second epoch was part of sedentary activity, rhythmic locomotor activity (i.e. 
walking or running) or intermittent lifestyle activity
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