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Abstract

Background: Genome-wide association studies have identified many susceptibility loci for 

obesity. However, missing heritability problem is still challenging and ignorance of genetic 

interactions is believed to be an important cause. Current methods for detecting interactions 

usually do not consider regulatory elements in non-coding regions. Interaction analyses within 

chromatin regulatory circuitry may identify new susceptibility loci.

Methods: We developed a pipeline named interaction analyses within chromatin regulatory 

circuitry (IACRC), to identify genetic interactions impacting body mass index (BMI). Potential 

interacting SNP pairs were obtained based on Hi-C datasets, PreSTIGE (Predicting Specific Tissue 

Interactions of Genes and Enhancers) algorithm, and super enhancer regions. SNP × SNP analyses 

were next performed in three GWAS datasets, including 2286 unrelated Caucasians from Kansas 

City, 3062 healthy Caucasians from the Gene Environment Association Studies initiative, and 

3164 Hispanic subjects from the Women’s Health Initiative.

Results: A total of 16,643,227 SNP × SNP analyses were performed. Meta-analyses showed that 

two SNP pairs, rs6808450–rs9813534 (combined P = 2.39 × 10−9) and rs6808450–rs3773306 

(combined P = 2.89 × 10−9) were associated with BMI after multiple testing corrections. Single-

SNP analyses did not detect significant association signals for these three SNPs. In obesity 

relevant cells, rs6808450 is located in intergenic enhancers, while rs9813534 and rs3773306 are 

located in the region of strong transcription regions of CAND2 and RPL32, respectively. The 

expression of CAND2 was significantly downregulated after the differentiation of human 

Simpson–Golabi–Behmel syndrome (SGBS) preadipocyte cells (P = 0.0241). Functional 

validation in the International Mouse Phenotyping Consortium database showed that CAND2 was 

associated with increased lean body mass and decreased total body fat amount.
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Conclusions: Detecting epistasis within chromatin regulatory circuitry identified CAND2 as a 

novel obesity susceptibility gene. We hope IACRC could facilitate the interaction analyses for 

complex diseases and offer new insights into solving the missing heritability problem.

Introduction

Obesity is a worldwide health problem. It is associated with various diseases, particularly 

cardiovascular disease, type 2 diabetes and certain types of cancer. In addition, obesity is 

becoming more widespread and it is estimated that the number of obese individuals would 

be more than 1.12 billion by 2030 [1]. Genetic studies aimed to discover genetic variations 

that can be used in the prevention and treatment of obesity have drawn wide public concern.

Genome-wide association studies (GWASs) are extremely powerful to investigate the 

genetic architecture of complex diseases [2]. With the help of GWASs, many loci associated 

with obesity have been identified. However, missing heritability, which is defined as the fact 

that variants identified so far can explain only a small proportion of the observed heritability 

of diseases, is still a big challenge. For example, with up to 339,224 individuals, Locke et al. 

[3] identified 97 body mass index (BMI)-associated loci, which only account for 2.7% of 

BMI variation. In contrast, the heritability of BMI was estimated as 40–70% [4, 5]. One 

significant limitation of GWASs is that it examines the effect of each locus independently. 

However, complex diseases often arise from genetic interactions [6]. In addition, ignorance 

of genetic interactions is believed to be an important cause for a substantial proportion of the 

missing heritability in studies of complex diseases/traits [7]. Therefore, researchers have 

tried to detect epistasis. However, interaction analyses using SNPs in the whole genome 

usually suffer from the problem of a very stringent significance [8]. Therefore, it is 

important to select regions of interest to discover the association signal. To solve this 

problem, previous studies usually restricted the search to a few candidate genes [9, 10], risk 

SNPs that had weak marginal effects [11, 12], known GWAS hits, protein–protein 

interactions, or pathway information [13]. However, none of them have specifically 

considered the interactions between regulatory elements in non-coding regions and their 

target genes.

Recently, with the release of regulatory data from Encyclopedia of DNA Elements 

(ENCODE) [14] and Roadmap Epigenomics Project [15], researchers began to realize the 

importance of regulatory elements in non-coding regions. Diseases associated with 

susceptibility SNPs identified by GWASs are found to be enriched in cellspecific regulatory 

elements, mostly enhancers [16, 17]. Of the heritability explained by susceptibility SNPs 

identified by GWASs, SNPs in regulatory elements were estimated to account for 79% of the 

variance [18]. Variants in enhancers often regulate target gene expression through long-range 

interaction [19]. In addition, analyses of 3D genomic architecture showed that enhancers 

within a gene’s regulatory circuitry can physically interact with one another and collectively 

regulate the expression of the target gene [20]. Considering the important roles of enhancers 

for genetic predisposition to diseases, it is possible that interaction analyses within 

chromatin regulatory circuitry may identify new susceptibility loci for obesity.
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In this study, we developed a pipeline named interaction analyses within chromatin 

regulatory circuitry (IACRC), to identify genetic interactions impacting BMI. IACRC would 

automatically select chromatin regulatory circuit regions with Hi-C datasets, PreSTIGE 

(Predicting Specific Tissue Interactions of Genes and Enhancers) algorithm [21], or super 

enhancer regions [22]. SNP × SNP interaction analyses were then performed in regions 

within chromatin regulatory circuits. Our results would identify novel genes that may 

contribute to the development of obesity. The pipeline can also be used to detect epistasis 

within chromatin regulatory circuitry for other complex diseases.

Materials and methods

GWAS datasets

Three GWAS datasets were used. Basic characteristics for samples in all datasets are listed 

in Table 1. The first dataset (KCS) comprises 2286 unrelated US Caucasians of Northern 

European origin living in Kansas City and its surrounding areas. The description of this 

study has been detailed in our previous study [23]. The second dataset was downloaded from 

the Database of Genotypes and Phenotypes (dbGaP) with the accession number of 

phs000091.v2. p1. This study is part of the Gene Environment Association Studies initiative 

that aimed to identify genetic factors that contribute to type 2 diabetes mellitus 

(GENEVA_T2D). Data from 3062 healthy Caucasian controls were used in our analyses. 

The third dataset was also downloaded from the dbGaP database and the accession number 

is phs000386.v7.p3. This dataset belongs to the Women’s Health Initiative (WHI) project 

and we used the data from 3164 Hispanic subjects in our analyses. The genotyping platform 

for all three datasets was the Affymetrix 6.0 array.

Acquisition of potential interacting regions

The outline of the current study is shown in Fig. 1. An inhouse python script, which can be 

freely downloaded from the web resource (https://github.com/studentyaoshi/IACRC/), was 

used to obtain potential interacting regions within chromatin regulatory circuits meeting one 

of the following conditions. Firstly, Hi-C chromatin interacting regions for the obesity 

relevant cells were downloaded from published articles and the 4DGenome chromatin 

interaction database (https://4dgenome.research.chop.edu/). The significance threshold of 

interaction bins with unusually high counts was set as P < 0.05. Chromatin states of the 

obesity relevant cells/tissues (supplementary Table S1) were obtained from the Roadmap 

database to get the enhancer region information and annotate the interacting regions. We 

collected Hi-C interactions for which there was a protein coding gene in one locus that was 

paired to an enhancer in the other. These pairs were further used to collect enhancers that 

were associated with the same target gene. We also collected interactions with both loci 

annotated as enhancers. Secondly, The PreSTIGE algorithm [21] was used to predict 

enhancer-gene interactions from disease relevant cells. We set the threshold that maximizes 

the number of predictions made while maintaining an estimated positive prediction rate 

>60%, i.e., the Shannon entropy Q score had to be below 6.1 for the enhancer and below 6.8 

for the gene paired to that enhancer [21]. Enhancer pairs with same target genes were also 

collected. Thirdly, super-enhancers previously defined for disease relevant cells/tissues [22] 

were also used. All genes within 100 kb of super-enhancers were defined as putative target 
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genes. Interactions may also occur within the super-enhancer region. We used data from the 

GM12878 cell line to obtain Hi-C [24–27] and PreSTIGE-based interacting regions. Data 

for obesity relevant tissues/cells (supplementary Table S2) were used to obtain super- 

enhancer-based interacting regions. The interacting regions supported by at least one method 

were used in subsequent analyses.

Acquisition of SNP pairs and SNP pruning

After interacting region collections, SNP pairs were obtained from these interacting regions 

by using an inhouse script that can also be downloaded from the web resource. SNP quality 

control was then performed with the following criteria: individual missing rate <5%, SNP 

call rate >95%, minor allele frequency (MAF)>5%, and Hardy–Weinberg equilibrium 

(HWE) P-value> 0.001. SNP pairs with two SNPs in linkage disequilibrium (LD, r2>0.1) 

with each other were removed.

SNP × SNP interaction analyses and meta-analyses

SNP × SNP interaction analyses were finally performed by using the regression function 

(linear regression for quantitative trait and logistic regression for qualitative trait) in R 

(version 3.3.2) for the remaining SNP pairs. For each population, the principal components 

were calculated by using the GCTA software [28]. The first five principal components, age, 

and sex were used as potential covariates. Finally, the METAL software [29] was used to 

combine SNP × SNP interaction results obtained from different populations. We used the 

Bonferroni correction method [30] to account for the multiple testing problems, ie., the 

significant threshold was set as 0.05/(number of SNP pairs).

Differential expression analysis

The Gene Expression Omnibus (GEO) dataset GSE76131 was used to check whether the 

identified susceptibility genes were differentially expressed during the adipogenesis of 

human Simpson–Golabi–Behmel syndrome (SGBS) preadipocyte cells (0 vs. 384 h).

Genetically modified animals used for functional validation

We used the International Mouse Phenotyping Consortium (IMPC) database, which aims to 

discover the biological functions of every protein-coding gene through generating null 

alleles in mice on a C57BL/6 genetic background [31], for the functional investigation of 

identified susceptibility genes by our pipeline.

Results

SNP × SNP interaction analyses

Detail statistics of intermediate stages are shown in Fig. 2. A total of 16,643,227 SNP × SNP 

analyses were performed and the significant threshold after multiple testing correction was 

set as combined P < 3.0 × 10-9.

Meta-analyses results showed that two SNP pairs, rs6808450–rs9813534 (combined P = 

2.39 × 10−9) and rs6808450–rs3773306 (combined P = 2.89 × 10−9) were associated with 

BMI after multiple testing corrections (Table 2). However, single-SNP analyses did not 

Dong et al. Page 4

Int J Obes (Lond). Author manuscript; available in PMC 2019 March 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



detect significant association signals for these three SNPs (P > 0.05, supplementary Table 

S3). Rs9813534 and rs3773306 are in high LD with each other, with the r2 of 0.97, 0.97, and 

0.80 in KCS, GENEVA_T2D, and WHI, respectively. We further checked whether the effect 

of the minor allele “C” of rs9813534 on BMI was different between subjects carrying 

different rs6808450 genotypes by using the beta coefficient. As shown in supplementary 

Figure S1A, in all three populations, the “C” allele was positively associated with BMI in 

subjects carrying “CC” genotypes of rs6808450. However, in subjects carrying “TT” 

genotypes of rs6808450, the “C” allele of rs9813534 was negatively associated with BMI. 

Similarly, the minor “C” allele of rs3773306 was also positively associated with BMI in 

subjects carrying “CC” genotypes of rs6808450 but negatively associated with BMI in 

subjects carrying “TT” genotypes of rs6808450 (supplementary Figure S1B).

Differential expression analysis

As shown in Fig. 3, in obesity relevant cells, rs6808450 is located in intergenic enhancers, 

while rs9813534 and rs3773306 are located in the region of strong transcription regions of 

CAND2 and RPL32, respectively. Therefore, CAND2 and RPL32 are the target genes in 

regulatory circuits and they may be new obesity susceptibility genes.

We next checked whether CAND2 and RPL32 were differentially expressed during the 

differentiation of SGBS cells. The results showed that only the expression of CAND2 was 

significantly downregulated after the differentiation of SGBS (Fig. 4, P = 0.0241).

Functional validation in IMPC

Information from the IMPC database further supported the functional involvement of 

CAND2 in obesity. This gene is associated with increased lean body mass and decreased 

total body fat amount (http://www.mousephenotype.org/data/genes/MGI:1914338#section-

associations) in mice model.

Code availability

IACRC: https://github.com/studentyaoshi/IACRC.

Discussion

Considering the important roles of enhancers for genetic predisposition to diseases, here we 

developed a pipeline named IACRC, to perform interaction analyses within chromatin 

regulatory circuits for BMI.

We identified two significant interaction pairs associated with BMI, rs6808450–rs9813534 

and rs6808450–rs3773306. The relationships between these SNPs and obesity or other 

diseases have not been reported by previous GWASs before. According to the annotation 

results, CAND2 and RPL32 are the target genes in regulatory circuits. Further differential 

expression analyses in SGBS cells and functional validation in the mice model suggested 

CAND2 may be a novel obesity susceptibility gene. However, the relationship between 

RPL32 and obesity were not further validated. Since rs9813534 and rs3773306 are in high 

LD with each other, it is possible that the interaction between rs6808450 and rs3773306 was 
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detected due to LD. CAND2 is located on chromosome 3p25.2 (chr3:12838171-12876313, 

Reference GRCh37.p13 Assembly) and encodes TATA-binding protein-interacting protein 

120B (TIP120B). The association between CAND2 and obesity or BMI has not been 

reported before. A previous study revealed that TIP120B could inhibit the ubiquitination of 

myogenin through binding to Cullin1, resulting in the stabilization of myogenin and 

acceleration of the myogenic differentiation process [32]. In addition, our analyses using 

SGBS cells showed that CAND2 was downregulated after the differentiation of human 

SGBS cells, suggesting that it might suppress the adipogenesis process. Since the imbalance 

between adipose and muscle mass is a hallmark of obesity [33], it is possible that CAND2 
might be associated with obesity through promoting myogenesis and suppressing 

adipogenesis.

Limitations of the current study should be addressed. Since the current Hi-C and PreSTIGE 

data for obesity relevant cell/tissues are still limited, so we only used the Hi-C and 

PreSTIGE data from the GM12878 cell line to collect interacting regions in these two 

conditions. When data for other obesity relevant cell/tissues are available, other interactions 

associated with BMI may be detected with the IACRC pipeline.

In summary, in this study, we developed IACRC to perform interaction analyses within 

chromatin regulatory circuitry and identify genetic interactions impacting BMI. We 

identified two SNP pairs, rs6808450-rs9813534 and rs6808450-rs3773306 were associated 

with BMI after multiple testing corrections. Further annotation, differential expression 

analysis, and functional validation results supported that CAND2 may be a novel obesity 

susceptibility gene. We hope IACRC could facilitate interaction analyses and identify new 

genetic interactions for other complex diseases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Schematic diagram of IACRC. Interacting regions were firstly obtained based on Hi-C data 

(panel a), PreSTIGE (Predicting Specific Tissue Interactions of Genes and Enhancers) 

algorithm (panel b), and super-enhancer data (panel c). SNP pairs were next extracted from 

these interacting regions. SNP pairs with SNPs that failed quality control were removed. 

SNP pairs with two SNPs in linkage disequilibrium (LD, r2>0.1) with each other were also 

removed. SNP × SNP interaction analyses were performed by using the linear regression 

function in R (version 3.3.2) for the remaining SNP pairs. The METAL software were used 

to combine SNP × SNP interaction results obtained from different populations
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Fig. 2. 
Statistics of intermediate stages in the analyses for BMI
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Fig. 3. 
a Annotation of rs6808450. The vertical red line refers to rs6808450. b Annotation of 

rs9813534 and rs3773306. The two vertical red lines refer to rs9813534 and rs3773306, 

respectively. HMM refers to the chromatin states predicted by hidden Markov model based 

on combinations of histone modification marks

Dong et al. Page 11

Int J Obes (Lond). Author manuscript; available in PMC 2019 March 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Differential expression analyses results (384 vs. 0 h) in the adipogenesis of human Simpson–

Golabi–Behmel syndrome (SGBS) preadipocyte cell for CAND2 and RPL32
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Table 1

Basic characteristics of all subjects

Population
KCS
Caucasian

GENEVA_T2D
Caucasian

WHI
Caucasian

Sample size 2286 3062 3164

Age (years) 51.37 ± 13.76 57.11 ± 7.65 60.07 ± 6.67

Height (cm) 166.35 ± 8.47 170.14 ± 9.54 156.79 ± 5.66

Weight (kg) 75.27 ± 17.54 73.45 ± 13.90 71.90 ± 14.57

BMI (kg/m2) 27.14 ± 5.75 25.31 ± 4.10 29.20 ± 5.78

Note: Data are shown as mean ± standard deviation

KCS Kansas City study, GENEVA_T2D Gene Environment Association Studies initiative that aimed to identify genetic factors that contribute to 
type 2 diabetes mellitus, WHI Women’s Health Initiative, BMI body mass index
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