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Abstract
Purine metabolism is depending on a large amount of enzymes to ensure cellular homeostasis. Among these enzymes, we have
been interested in the 5′-nucleotidase cN-II and its role in cancer biology and in response of cancer cells to treatments. This
protein has been cited and studied in a large number of papers published during the last decade for its involvement in non-
cancerous pathologies such as hereditary spastic paraplegia, schizophrenia, and blood pressure regulation. Here, we review these
articles in order to give an overview of the recently discovered clinical relevance of cN-II.
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Introduction

Cytosolic 5′-nucleotidase II (cN-II) is a ubiquitously
expressed and highly conserved enzyme that dephosphory-
lates purine nucleoside monophosphates (preferentially IMP
and GMP) into their corresponding nucleosides and inorganic
phosphate. Its enzymatic activity and biochemical features
have been fairly well characterized on purified recombinant
protein [1], and the crystal structure is known since 2007 [2].
Since our first observation on its prognostic value in nucleo-
side analogue-treated patients with acute myeloid leukemia
showing that patients with high expression of cN-II in leuke-
mic blasts have a worse outcome than those with a lower
expression [3], the implication of cN-II in cancer cells and in
the response to anticancer treatment has been extensively
demonstrated [4]. Indeed, shRNA-based cell models with de-
creased cN-II expression are more sensitive to purine nucleo-
side analogues and nucleobases as compared to control cells
[5]. Additional work with cell models and animals suggest
important biological roles of this enzyme both in cancer cells
and in physiological conditions. The role of the enzymatic
activity of cN-II and the modifications in purine nucleotide

pools in these observations is not always demonstrated. We
showed that cN-II expression in human neuroblastoma cells
and in lung cancer cells correlated to cell proliferation [6, 7],
whereas it inhibition in human breast cancer cells was associ-
ated with a better defense towards reactive oxygen species and
a better adaptability to glucose deprivation in culture media
[8]. Further, the siRNA-mediated inhibition of cN-II expres-
sion in murine skeletal muscles induced an increase in the
AMP/ATP ratio and a subsequent increase in the activation
of AMPK [9], even though this was not confirmed in cN-II
deficient mice [10].

In parallel to such biological studies, a number of genetic
studies as well as genome wide association studies (GWAS)
have identified the cN-II encoding gene NT5C2 or some ge-
netic variants therein as being associated to various patholog-
ical conditions. Here, we give an overview of these recently
published data that show or suggest clinical importance of this
enzyme in hereditary spastic paraplegia, psychiatric disorders,
blood pressure, and body mass index.

Hereditary spastic paraplegia

Hereditary spastic paraplegia (HSP) is a group of neurodegen-
erative disorders with various genetic origins and clinical pre-
sentations [11, 12]. The locus harboring the NT5C2 gene
(10q24.3-q25.1) was identified as being associated with HSP
in a consanguineous family (Table 1) [13]. This locus, named
SPG45, contains 87 genes, and the authors suggested
MRPL43 to be the best candidate for the functionality of the
observed disease, due to its role in mitochondria regulation
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and protein-folding. The association between HSP and
NT5C2 was further confirmed in another study on 55 families
using whole-exome sequencing, where 5 families showedmu-
tations in this gene [14]. Out of the 5 mutations observed, 3
induced a modification on the protein with two premature stop
codons (R29X and R149X) and a frameshift (S409Vfs436X)
and two were splice site mutations (c.175 and c.988). Of in-
terest, two other proteins involved in nucleotide metabolism,
the nucleotidase CD39/ENTPD1 and AMP-deaminase 2
(AMPD2), were also found to be mutated in HSP families.
Both these enzymes, as well as cN-II, regulate the purine
nucleotide pools through their enzymatic activity. This, to-
gether with the fact that purine nucleotides have protective
roles in the brain [18], reinforces the possibility of the impli-
cation of cN-II activity in the development of HSP. NT5C2
mutations in SPG45 and the autosomal recessive transmission
mode were later validated with the observation of another
splice site mutation (c.1159) resulting in a shortened cN-II
protein in two brothers [15], a deletion of amino-acids 258–
271 in three siblings [16] and a missense mutation (L460P) in
three patients from another family [17]. NT5C2 is since rec-
ognized as being the functional gene in the SPG45 locus.

Schizophrenia

A large number of GWAS studies on different ethnic popula-
tions has been performed in order to identify genetic causes
for schizophrenia and other psychiatric diseases, and the
NT5C2-containing locus was reported in several cases
(Fig. 1). rs11191580 was first identified in a meta-analysis
from 17 independent studies and confirmed within a valida-
tion set [19], and later in a South Chinese Han population [20]
as well as for bipolar disorders in a Latino cohort [21].
rs11191580 was also confirmed in a meta-analysis, but the
role of AS3MT through rs7085104 situated on the same locus
was rather suggested as an important genetic variant in this
study [22]. rs17094683 was found in another GWAS study
[23] and rs1926034 in a Swedish cohort [24]. Later,

rs11191454 in AS3MT situated close to NT5C2 within 10q24
and in strong linkage disequilibrium with many surrounding
SNP was associated with five psychiatric disorders [25]. The
NT5C2-containing genomic region was further studied in a
Chinese population, and the association with schizophrenia
was again confirmed for rs11191419 and rs11191514 [26].
However, based on bioinformatics prediction of the involve-
ment of genetic variants in gene regulation, the authors sug-
gested that NT5C2 was not functional in this correlation, but
that rather other genes of the same cluster (AS3MT, CNNM2,
and CALHM1) would be responsible for the clinical onset of
schizophrenia. This was at least partially contested by a study
on the cis-regulatory effect of SNP in this region [27]. Indeed,
rs11191419 and rs202213518 influencedNT5C2 gene expres-
sion as shown by differential allelic expression studies. This is
in line with our previous study showing the presence of ge-
netic regulation of NT5C2 [28]. In addition to this,
rs11191548 was shown to alter the binding site of miR-1/
206/613 as the sequence with the minor allele (G) did not
response to miR-1/206613 [29]. Even though these results
do not show a clear functional role of cN-II in schizophrenia,
at least one SNP (rs11191548) identified in GWAS studies
regulates NT5C2 gene expression.

Blood pressure

Genetic variants within the locus 10q24 were associated with
high blood pressure in a large study including more than
84,000 individuals from European and Indian Asian origin
[30]. ATat the position of rs11191548 in the intergenic region
between NT5C2 and CNNM2 was associated with a higher
systolic blood pressure as compared to patients with a C at
the same position (p = 3.10−7). This was later confirmed in
studies on Europeans [31] and Asians [32], as well as on
Asians in a study where rs11191580 also was associated with
blood pressure [33]. The same region was also identified in
another large-scale study, but with a better score for a genetic
variant further away from NT5C2 (rs1004467) [34]. Also,

Table 1 Deleterious mutations
and genetic modifications
observed in HSP SPG45 patients

Patients Mutations Reference

5 members of consanguineous family 10q24.3-q25.1 [13]

2 siblings of a consanguineous family c.175+1 = splice variant [14]
2 sisters of a consanguineous family c.988-1 = splice variant

2 sisters of a consanguineous family c1225Gdel = premature stop at 436

3 siblings of a consanguineous family R29stop

2 brothers of a consanguineous family R149stop

2 brothers Qatari consanguineous family c.1159+1 = deletion of exon 14 [15]

3 siblings Iranian consanguineous family p.258-271del [16]

3 members of consanguineous family L460P [17]
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rs11191593 was associated with blood pressure [35]. Finally,
a gene expression study showed that military pilots with hy-
pertension had a lower cN-II expression than control pilots
[36]. Interestingly, there was also a decreased expression of
CD39/ENTPD1, confirming an additional link between these
two proteins after the one in HSP. The direct involvement of
cN-II in the regulation of blood pressure is not clearly dem-
onstrated and needs further studies to be confirmed. Indeed,
rs1004467 and rs11191548 have for example been reported to
modulate CYP17A1 and therefor potentially be functional
through this gene even though the latter SNP is quite far from
this gene.

Body mass index and body fat

Increased body mass and fat are risk factors for a number of
diseases, such as high blood pressure. One SNP (rs11191548)
already identified as a risk factor for increased blood pressure
was also associated with subcutaneous fat area, in particular in
women in a Japanese cohort [37]. However, the T-allele which
is associated with increased blood pressure was here found to
correlate with decreased fat. Another SNP (rs1004467), situ-
ated in the nearby CYP17A1 gene and in linkage disequilibri-
um with rs11191548, was also associated with modified body
fat. Another SNP (rs11191580) that is situated in a NT5C2
intron and that is in complete linkage disequilibrium with
rs11191548 was later found associated with body mass index
in East Asian people [38], whereas rs11191560 also situated in
an NT5C2 intron and between rs11191548 and rs11191580
was associated with higher body mass index in a European
meta-analysis [39]. Finally, rs3824755 was also associated to
BMI in a series of more than 17,000 individuals [40] and
further shown to increase within the population together with
BMI [41]. However, this SNP is situated within the CYP17A1
gene and not in NT5C2 as reported in some of these papers,
making the role for cN-II less evident. As for blood pressure,
these studies are solely showing correlations, and no function-
al involvement of cN-II in the regulation of BMI and body fat
exists today.

Relapsed leukemia and resistance
to chemotherapy

In addition to the cited work on associations between genetic
variants or germ-line mutations and pathologies, tumor-
specific NT5C2-mutations have been reported to play a major
role in leukemia relapse and their resistance to chemotherapy.
This was first seen with hyperactivating mutations in relapsed
pediatric patients with acute lymphoblastic leukemia (ALL)
[42, 43]. Additional mutations were found in a subsequent
study that also showed the relapse-specificity of the mutations
[44]. Such mutations were then shown to be very rare in new
leukemia and solid tumors, with only one case in adult acute
myeloid leukemia (E240Q) and one in colorectal carcinoma
(R363Q) from a total of 2496 tumors [45]. One ALL patient
with testicular relapses showed also NT5C2 mutations
(R367Q and D407V) [46], whereas they were quite frequent
in a series of 67 relapse leukemia patients [47] as well as in
relapsed T-ALL patients (5/13 patients) [48] and acute
promyelocytic leukemia patients [49]. The most frequent mu-
tation (R367Q) was recently shown to be a key driver in the
evolution of relapsed ALL [50], and additional mutations
were found in more patients by the same group [51, 52].
Overall, these studies show thatNT5C2mutations are frequent
in relapsed leukemia (Table 2) and that this has a direct con-
sequence on the response to treatments. However, this is
known to be due to the enzymatic activity of cN-II, at least
for the mutants for which the mutation has been shown to be
associated with an enzymatic hyperactivity.

Conclusive remarks

The studies reviewed here are mostly based on the association
between genetic variants or mutations and the risk to develop
given diseases, but do rarely give any information about the
potential molecular functionality of cN-II in the observed pa-
thologies. Therefore, additional studies are warranted and de-
pendent on various cell and animal models. cN-II deficient
mice were recently published in a study on the role of cN-II
in contracting muscles [10]. No particular phenotype or

Fig. 1 Genetic variants within the
studied genomic region with
possible association between
discussed pathologies and
NT5C2. a blood pressure; b BMI/
body fat; c schizophrenia
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behavior was described in this paper, but these mice could
constitute a model of choice for studying the development of
diseases discussed in this review.

cN-II is an extremely well-conserved protein with more
than 90% homology as far as to fish [53]. Such sequence
conservation not only limited to the active site is strongly
suggestive of additional roles independent from the enzymatic
activity and rather through protein-protein interactions. We
already identified and confirmed physical interaction with
the inflammation protein IPAF, even though we still have
not deciphered the role of this interaction [53]. Additional
interactions are highly possible and could explain many of
the observed phenotypes, but request a large amount of addi-
tional research, especially due to the fact that such interactions
could be specific over time during development as well as in
particular cells expressing the two interacting proteins at the
same time and in the same subcellular location. One possibil-
ity within this hypothesis is the presumed interaction between
cN-II and the multimodal protein Kidins220 [53]. This phys-
ical interaction has not yet been confirmed in mammalian

cells, but Kidins220 has been suggested to be implicated in
Alzheimer’s disease [54] and a recent study also showed a
potential role of cN-II in this disease [55].

Another explanation is of course that all roles of cN-II are
due to its enzymatic activity and regulation of the purine me-
tabolism. This could be supported by the involvement of other
genes in this metabolism as they could also have important
effects on purine homeostasis. As already mentioned,
AMPD2 and CD39/ENTPD1 were also involved in HSP
[14]. AMPD2 converts AMP into IMP by deamination,
whereas CD39 degrades extracellular ATP into AMP, and
both enzymes thus regulate purine nucleotide pools together
with cN-II. Other studies have shown that these are involved
in cognitive disorders for CD39/ENTPD1 [56], in the matura-
tion of neurons together with CD73 [57], and in the neurode-
generative brainstem disorder pontocerebellar hypoplasia for
AMPD2 [58–61]. Finally, purine metabolism is shown to be a
major regulator both in Parkinson’s disease and in schizophre-
nia [62, 63]. As both several enzymes of purine metabolism
are associated with neurological diseases and purine

Table 2 NT5C2mutations reported in various cancer patients at diagnosis or relapse. A total of 129 mutations are reported. ALL acute lymphoblastic
leukemia, AML acute myeloid leukemia, APL acute promyelocytic leukemia, CC colorectal cancer

Reference [43] [42] [44] [48] [45] [46] [47] [50] [52] [51] [49] Total

Cancer ALL ALL ALL ALL AML and CC ALL ALL ALL ALL ALL APL

R34Q 1 1

R39Q 2 1 2 3 8

R195Q 1 1

R238G/Q/W/L 5 3 5 4 2 5 1 25

E240Q 1 1

R291W 1 1

K359Q 1 1 2

S360P 1 1

R363Q 1 1

R367Q 13 1 5 4 1 7 7 1 14 1 54

L375F 2 1 3

p396-400del 1 1

D384N 1 1

K404N/ins 1 1 1 3

D407A/V/H/Y/E 1 1 1 2 1 3 9

S408R 1 1 2

p408-415del 1 1

P414S/A 1 1 1 2 5

D415G 1 1

S445F 1 1 2

R446Q 1 1

V454M 1 1

R478S 1 1

T489M 1 1

Q523stop 1 1

P533L 1 1
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metabolism and pools are regulating such pathologies, it is
highly possible that the enzymatic activity of cN-II and its role
in the maintenance of balanced purine pools is involved in the
development of HSP-patients in particular.

In conclusion, the implication of the genomic region sur-
rounding NT5C2 on chromosome 10 is undoubtedly associat-
ed to and involved in discussed pathologies. Further studies
are warranted to conclude on the functional role of cN-II in the
corresponding pathogenesis.
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