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Abstract

Subseafloor sedimentary environments harbor a remarkable number of microorganisms that constitute anaerobic and aerobic
microbial ecosystems beneath the ocean margins and open-ocean gyres, respectively. Microbial biomass and diversity
richness generally decrease with increasing sediment depth and burial time. However, there has been a long-standing debate
over the contribution and distribution of Archaea in the subseafloor sedimentary biosphere. Here we show the global
quantification of archaeal and bacterial 16S rRNA genes in 221 sediment core samples obtained from diverse oceanographic
settings through scientific ocean drilling using microfluidic digital PCR. We estimated that archaeal cells constitute 37.3%
of the total microbial cells (40.0% and 12.8% in the ocean margin and open-ocean sites, respectively), corresponding to
1.1 x 10% cells on Earth. In addition, the relative abundance of archaeal 16S rRNA genes generally decreased with the depth
of water in the overlying sedimentary habitat, suggesting that Archaea may be more sensitive to nutrient quality and quantity

supplied from the overlying ocean.

Marine sediment covers approximately 70% of the Earth’s
surface, representing one of the largest microbial habitats on
Earth. Previous studies, through scientific ocean drilling,
revealed that microorganisms are globally distributed in
strictly aerobic sediment columns of the oligotrophic open-
ocean gyre [1-4] and in strictly anaerobic organic-rich
sediments along the continental margins [5-10], even down
to 2-2.5 km below the ocean floor [11-13]. Consequently,
the current estimate of the global subseafloor cell number in
sediments is 2.9 x 10* cells, corresponding to 4 Pg of bio-
mass carbon (i.e., 0.18-3.6% of the total living biomass on
Earth [2]), which is two orders of magnitude lower than the
previous estimates [5, 9, 14].
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Despite these extensive explorations of microbial bio-
mass in various subseafloor sedimentary habitats over the
decades, abundance and distribution of Archaea remain
debatable [15]. Considering differences in physiology
between Bacteria and Archaea, they could respond differ-
ently to environmental settings and thus result in popula-
tion shift. For example, the more rigid and less permeable
cell membrane of Archaea is believed to be favorable for
surviving energetically challenging conditions in the deep
subseafloor biosphere [16]. Using quantitative real-time
PCR with domain-specific primer (and probe) sets, it was
reported that the copy numbers of archaeal 16S rRNA
genes were several orders of magnitude lower than
the total number or even below the quantification limit
[7, 8, 17]. However, lack of advanced technology at the
time of these investigations could have compromised the
accuracy and thus the reliable quantification of archaeal
16S rRNA genes: (1) condensed humic substances were
always co-extracted from organic-rich sediment samples,
which might inhibit PCR reactions and spectrophotometric
quantification [18]; (2) sequence mismatches of the
domain-specific primers may not amplify some major
archaeal linages [9, 19-21]; (3) DNA extractability
between archaeal and bacterial cells may be significantly
different [9, 22]; and (4) experimental contaminations
easily occur under the standard laboratory condition for
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(a)

Fig. 1 Site locations and 16S rRNA gene abundance. a Site locations
are plotted on the map showing regions where dissolved oxygen and
aerobic activity may occur throughout the sediment [3]. Circles and
squares indicate marginal and open-ocean sites, respectively. Sediment
samples were collected at different depths from the surface to 392 m
below seafloor during 13 scientific drilling cruises from 38 drilling
sites. In total, we analyzed 221 sediment samples. Leg 201, Ocean
Drilling Program (ODP) Leg 201 Peru Deep Biosphere; Exp. 301,
Integrated Ocean Drilling Program (IODP) Expedition 301 Juan de
Fuca Hydrogeology; Exp. 307, IODP Expedition 307 Modern Car-
bonate Mounds: Porcupine Drilling; Exp. 308, IODP Expedition 308
Gulf of Mexico Hydrogeology; Exp. 315 and 316, IODP Expedition
315 and 316 NanTroSEIZE; Exp. 353, IODP Expedition 346 Asian

molecular microbial ecology [23]. Consequently, compi-
lation of the existing molecular quantification data
obtained using multiple methods and different quality
controls resulted in highly scattered values [24]. Com-
paring with the conventional quantitative PCR, digital
PCR (dPCR) can relieve the problems (1) listed above
because quantity obtained by dPCR is independent from
amplification efficiency, and thus that allows direct com-
parison between different samples from various sedimen-
tary settings.

As an alternative way to assess archaeal abundance in
subseafloor sediments, Lipp et al. [9] studied archaeal and
bacterial intact polar lipids (IPLs) as live biomarker proxies,
showing that at least 87% of IPLs were attributable to
archaeal cell membranes, whereas analysis of the relative
abundances of archaeal 16S rRNA genes, assessed by slot-
blot hybridization and quantitative real-time PCR combined
with a physical cell destruction method for DNA extraction,
yielded a value of approximately 35-40%. This study
pointed out that Archaea contribute to subseafloor sedi-
mentary biomass more than previously expected. However,
follow-up radiotracer incubation experiments demonstrated
that the degradation rates of archaeal IPLs in sediments are
one to two orders of magnitude lower than those of bacterial
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Monsoon; Exp. 347, IODP Expedition 347 Baltic Sea Paleoenviron-
ment; Exp. 353, IODP Expedition 353 Indian Monsoon Rainfall; Exp.
354, IODP Expedition 354 Bengal Fan; CK06-06, the Chikyu shake-
down cruise offshore Shimokita; KN223, R/V Knorr cruise 223 in
North Atlantic. b Depth distribution of prokaryotic 16S rRNA abun-
dance quantified by microfluidic digital PCR (Supplementary Table
S1). The red line indicates the regression line generated using least
squares analysis with the abundance of 16S rRNA gene [log (16S
rRNA gene abundance) =7.03 —0.97 log (depth), »=0.38]. The
dashed black line shows the regression line [log (cell count) = 8.05 —
0.68 log (depth), 7 =0.70] of total direct cell count [10]. That
regression line is based on cells per mL of sediment instead of copies
per gram for dPCR

IPLs, and 50-96% of archaeal IPLs are considered to
represent fossil signals [25].

These previous reports suggest that the true nature of
archaeal abundance and distribution in the subseafloor
sedimentary biosphere remain unclear and should be
reconsidered. In the present study, we analyzed 221 sedi-
ment cores collected from 0.2-392.2 m below seafloor at 38
drilling sites during 13 scientific expeditions since the first
microbiology-dedicated Ocean Drilling Program (ODP) Leg
201 in 2002 (Fig. 1a, Supplementary Table S1). To maintain
high levels of quality control and quality assessment for the
molecular quantification analysis, we performed sediment
sub-sampling, DNA extraction and purification, and quan-
tification of 16S rRNA genes at the same place, at the same
time, under consistent experimental conditions (see Supple-
mentary Text).

The abundance of archaeal and bacterial 16S rRNA
genes was measured by microfluidic dPCR [18], showing a
logarithmically decreasing trend with increasing sediment
depth (Fig. 1b). The equation for the regression line relating
gene abundance to depth is:

Log(16S rRNA gene abundance)
=7.03 — 0.97 x log(depth), * = 0.38
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Fig. 2 Boxplot of archaeal proportion in microbial 16S rRNA gene
(%) at each drilling site determined by microfluidic digital PCR. a The
edges of the box are the first and third quartile, red diamonds are
average proportions, and gray dots are outliers (see also Supplemen-
tary Fig. S1, Supplementary Table S1). The color of the box indicates
water depth; light blue, marginal ocean sites, and light brown, open-
ocean sites. b The summary of estimated archaeal cell proportion in
marginal ocean sites (n=156) and open-ocean sites (n=65). The
relative abundance of archaeal cells to the total microbial cells in

which is relatively in good agreement with that of the
previous data of acridine orange direct cell count [5, 10]:

Log(cell count) = 8.05 — 0.68 x log(depth), * = 0.70

Those regression lines indicate that the quantity of 16S
rRNA gene obtained by dPCR is generally lower than cell
counts due to that fact that not full recovery of DNA from
sedimentary cells cannot be achieved. By comparing the
published data of direct counts of cells and dPCR data in
this study, we obtain the following formula between those
two data:

Log(cellcount) = 1.43 — 0.92 x log(dPCR), * = 0.41

The mean relative abundance of archaeal 16S rRNA
genes at each drilling site notably varied (Fig. 2a, Supple-
mentary Fig. S1). The sediment samples used in this study
were obtained from 24 marginal ocean sites and 14 open-
ocean sites, representing the anaerobic and aerobic micro-
bial ecosystems in the subseafloor sedimentary biosphere,
respectively. Our microfluidic dPCR analysis shows that the
relative abundance of archaeal 16S rRNA genes to the total
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marginal ocean sedimentary habitats was significantly greater
(Mann—Whitney U test, p <0.05) than that in open-ocean sedimentary
habitats. ¢ The summary of archaeal 16S rRNA gene proportions in the
three different water depth classes, 0-1000, 10004000, and >4000 m
(see also Supplementary Fig. S2). The relative abundance of archaeal
16S rRNA gene in these classes are significantly different
(Mann—Whitney U test, p<0.05). A high relative abundance of
archaeal 16S rRNA genes is observed for the shallow class

16S rRNA genes (i.e., archaeal and bacterial 16S rRNA
genes) is 22.6% and 5.9% in average for the marginal ocean
and open-ocean sites, respectively (Fig. 2b). This difference
indicates that archaeal contribution to the anaerobic
microbial ecosystem is more prominent than to the aerobic
ecosystem. The highest archaeal abundance of up to 50.4%
was observed at the Integrated Ocean Drilling Program Site
1322 in the Mars-Ursa salt-withdrawal basin on the north-
eastern Gulf of Mexico continental slope (Fig. 2a, Supple-
mentary Table S1), where nutrients and energy substrates
were additionally supplied from the continent via the
Mississippi River to the slope deposit [20, 26].

To evaluate the population size of archaeal cells based on
our dPCR dataset, we applied the average copy number of
the 16S rRNA gene on genomes of Archaea and Bacteria,
1.7 and 4.7 copies/genome, respectively (rrnDB version
5.2) [27]. As a result, we estimated that 40.0% and 12.8%
of the total microbial cells are Archaea in marginal anae-
robic and open-ocean aerobic communities, respectively
(Fig. 2b). If we can assume that open-ocean sediments
generally contain 10% of all microbial cells in the global
subseafloor sediments as suggested by the biogeographic
biomass distribution model [2], archaeal cells account for
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37.3% of all microbial cells in the global subseafloor sedi-
mentary biosphere. Importantly, despite the variance in
archaeal population depending on the oceanographic set-
ting, the relative abundance of Archaea in the subseafloor
sedimentary biosphere is relatively similar to the estimate in
the global oceans at 41.9% [28]. This suggests that Archaea
comprise a biomass comparable to Bacteria throughout the
surface and subsurface microbial ecosystem in the ocean.

Upon comparing dPCR data between near-seafloor
sediment samples and sediment samples from deeper
parts, we identified several sites where the relative abun-
dances of archaeal 16S rRNA genes were higher in deeper
horizons than in near-seafloor sediment samples (for
example, sites 1226, 1301, 1320, 1322, 1324, M0060, and
U1428). This trend was previously observed in IPL-based
analyses [9] and other studies of shallow sediments; how-
ever, we observed decreasing trends for other sites (Sup-
plementary Fig. S2). Several factors are conceivable for
these trends in archaeal fractions: (1) archaeal cells may be
more eco-physiologically resistant and/or adaptable to low-
energy flux habitats than most bacterial cells [16, 29, 30];
(2) biological and geophysical migration of surface sedi-
mentary conditions may stimulate bacterial growth than
archaeal growth [31]; (3) some of Archaea may specifically
utilize deeply buried recalcitrant substrates, such as miner-
alized detrital proteins and/or humic derivatives [32, 33],
and therefore, some archaeal fractions may be retained as
essential ecosystem functions (for example, methanogenesis
and acetogenesis) against the selective environmental
pressure of geophysical and energetic constrains during
burial [4, 30, 34]; and/or (4) geophysical, sedimentological,
and hydrogeological characteristics and formation stability
may constrain the supply of water, nutrients, and energy
substrates, and subsequently, have an impact on the fraction
of archaeal community in subseafloor sedimentary micro-
bial ecosystems [7, 8, 12, 35].

Interestingly, our data also reveal that the relative abundance
of archaeal 16S rRNA genes generally decreases with water
depth at the drilling site (Fig. 2c, Supplementary Fig. S2). Here
we categorized the water depths of study sites into three
groups: epi-mesopelagic (0—1000 m); bathy-pelagic (1000
—4000 m); and abyss-pelagic depths (>4000 m). Consequently,
the relative abundance of archaeal 16S rRNA gene in epi-
mesopelagic water depths was found to be the highest at 24.7%
among the three depth categories. The relative abundance of
archaeal 16S rRNA genes was significantly low (p <0.05,
t-test) in the deeper bathy- (17.8%) and abyss-pelagic (8.2%)
water depths (Fig. 2c, Supplementary Fig. S2). These results
suggest that water depth is one of the key environmental factors
constraining the relative abundance of Archaea in the total
microbial community. One of the possible explanations for
why the water depth constrains archaeal population in the
subseafloor biosphere may be the quality and quantity of
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consumable organic matter deposited from the photosynthetic
zone in the water column down to the seafloor [36]. Alter-
natively, the differences in organic matter may cause different
consumption rate of oxygen, and therefore different oxygen
concentrations. In addition, any other factor correlated with
water depth could also affect archaeal population in the sedi-
mentary habitat. To answer this question, further integrated
investigations for evaluating the interaction between organic
matter and archaeal metabolic characteristics in the subseafloor
sedimentary biosphere are needed [15].

In conclusion, this study provides the best estimates to date
of the global distribution and abundance of Archaea in the
marginal ocean (anaerobic) and open-ocean (aerobic) sedi-
mentary habitats. Our findings in this global dPCR survey
confirm that archaeal biomass significantly contributes to the
subseafloor sedimentary biosphere (37.3% of the total
microbial cells). Nevertheless, metabolic, physiological,
and evolutionary functions of subseafloor sedimentary
microbes remain largely unknown. These are the foci of our
ongoing research using the global subseafloor sediment core
samples.
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