
1Scientific REPOrTS |         (2018) 8:17940  | DOI:10.1038/s41598-018-36354-8

www.nature.com/scientificreports

Self-Similarity and the Dynamics of 
Coarsening in Materials
Yue Sun1, W. Beck Andrews   3, Katsuyo Thornton 3 & Peter W. Voorhees1,2

Two-phase mixtures, from metallic alloys to islands on surfaces, undergo coarsening wherein the total 
interfacial area of the system decreases with time. Theory predicts that during coarsening the average 
size-scale of a two-phase mixture increases with time as t1/3 when the two-phase mixture is self-similar, 
or time independent when scaled by a time-dependent length. Here, we explain why this temporal 
power law is so robustly observed even when the microstructure is not self-similar. We show that there 
exists an upper limit to the length scales in the system that are kinetically active during coarsening, 
which we term the self-similar length scale. Length scales smaller than the self-similar length scale 
evolve, leading to the classical temporal power law for the coarsening dynamics of the system. Longer 
length scales are largely inactive, leading to a non-self-similar structure. This result holds for any two-
phase mixture with a large distribution of morphological length scales.

Coarsening, also referred to as Ostwald ripening, occurs naturally in a wide array of materials, including metallic 
alloys1,2, polymers3, and semiconductors4. The classical theory of coarsening predicts that the microstructure of 
a two-phase system will evolve to be self-similar, or time independent when scaled by a time-dependent length. 
It also predicts that this length increases with time as t1/3 5,6. The connection between the presence of both a 
self-similar structure and a temporal power law for the average length scale of the system is central in under-
standing the dynamics of coarsening processes, as emphasised by Mullins and Lifshitz, Slyozov and Wagner 
(LSW)5–7 and Onuki8. This connection has also been verified in simulations of systems of spherical particles9–11 
and of bicontinuous microstructures where analytical solutions to the diffusion equation are not possible12–15. 
Experimentally, there are a few cases where self-similarity and temporal power laws have been observed1,16. 
However, in most cases a classical t1/3 power law for the average size scale of a two-phase mixture is observed 
without a self-similar two-phase morphology17–23. The most striking example is given by Marsh and Glicksman21 
who show that even though a structure evolves in a non-self-similar fashion from a dendritic morphology to a 
polydisperse array of approximately spherical particles, the characteristic length scale of the two-phase system 
still increases as t1/3. Here, we use both time-resolved three-dimensional X-ray tomography and numerical sim-
ulations to demonstrate why coarsening microstructures can have a temporal power law for the average length 
scale while evolving in a non-self-similar manner.

Results
Experimental investigation.  We start by analysing a time-resolved X-ray Computed Tomography (XCT) 
three-dimensional dataset collected during an in situ experiment of isothermal dendritic microstructure coarsen-
ing in Al-Cu alloy24,25. See Methods for details. This system coarsens by interfacial energy driven diffusion of 
solute in the liquid phase. First, we test the growth of the specific interfacial area Sv against the temporal scaling 
law for the length scale of the system. We perform a linear regression on the specific interfacial area to the nega-
tive third power −Sv

3 against experimental time t, using a linear model given by
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where the cube of the initial length scale −S t( )v
3

0  and the coarsening rate constant k are the fitting parameters. The 
result of the regression shows a high linear correlation between −Sv

3 and t, with an R2 of 0.9990. In Fig. 1a, we plot 
the result in the form of −Sv

1 versus (t − t0)1/3, where the intercept −S t( )v
3

0  in the original fitting is converted to a 
shift in t with magnitude = − −t S t k( )/v0

3
0 . It is clear that, except for a small deviation at the early stage of the 

experiment (t < 8.4 min), most of the data is well described by a straight line. This indicates that ∝ −−S t t( )v
1

0
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or ∝−S tv
1 1/3 asymptotically. In other words, −Sv

1 in the dendritic system grows with the same temporal exponent 
as given in LSW theory.

However, despite this agreement, the morphology of the dendritic microstructure does not evolve in a 
self-similar manner during coarsening. Figure 2 shows the two-dimensional cross-sections of the microstructure 
at four different times. These times are chosen such that the change in −Sv

1 between adjacent times are the same (as 
shown in Fig. 1a). The cross-sections shown in Fig. 2 are made across the centres of the primary (horizontal direc-
tion) and secondary (vertical direction) dendrite arms. These plots show significant coarsening of the tertiary 
dendrite. On the other hand, the secondary dendrite arms, which are much larger than the tertiary arms, appear 
to maintain their overall shapes and positions during the experiment.

Figure 1.  Quantitative characterisation of the evolution of the Al-Cu dendritic microstructure during 
coarsening. (a) Inverse of the specific interfacial area −Sv

1 versus shifted time to the one-third power (t − t0)1/3 
from the experimental data (circles). The red line denotes the fitting of the data points using Equation 1. The 
fitting was carried out by performing a linear regression on experimental data of −Sv

3 against experimental time 
t. The four black dots show four times (ta = 8.40 min, tb = 25.12 min, tc = 47.62 min, and td = 78.15 min) evenly 
spaced in −Sv

1. (b–e) Interfacial shape distributions (ISDs) at the four times marked in (a), respectively. The 
green lines are isovalue lines at 0.01, 0.05, 0.1, 0.2, and 0.3, outside-in. The shaded regions labelled as A on the 
ISDs show values in κ1 and κ2 that represent the 10% interfaces with the highest negative H.

Figure 2.  Cross-sections of the dendritic microstructure at four different times: (a) 8.40 min, (b) 25.12 min, (c) 
47.62 min, and (d) 78.15 min.
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Quantitatively, the evolution of the Interfacial Shape Distribution (ISD)26 is not self-similar either. Figure 1b–e 
shows the ISDs of the solid-liquid interface at the same four times. An ISD gives the probability of finding a 
patch of interface with a given pair of principal curvatures (κ1, κ2), analogously to the particle size distribution 
for a system of spherical particles. The principal curvatures of each ISD are scaled by the Sv corresponding to the 
microstructure at that time. While the region with nonzero probability of the non-scaled ISDs becomes smaller 
with coarsening time, it remains approximately the same size for the scaled ISDs, which indicates the increase 
of length scales of the microstructure during coarsening. However, the ISDs do not scale in shape and intensity. 
More specifically, the distribution becomes more concentrated towards the κ1 = 0 line (vertical axis). This lack of 
self-similarity agrees with previous investigations22.

In order to elucidate the dynamics of this coarsening process, which is described by a t1/3 power law for the 
length scale yet is not self-similar, we calculate the two-point spatial correlation of the interfacial curvatures and 
analyse its temporal evolution. As is shown in a preceding study25, the two-point spatial correlation is capable of 
accurately and efficiently quantifying the spatial distribution of microstructural quantities in a statistical manner. 
By choosing an appropriate quantity of interest, the characteristic length scales of the dendritic microstructure 
can be robustly extracted.

As suggested by the Gibbs-Thomson equation, the evolution of the interface during coarsening is primar-
ily controlled by the local interfacial mean curvature H = (κ1 + κ2)/2. Therefore, we use the interfacial mean 
curvature as the interfacial quantity of interest in the calculation of two-point spatial correlations. In ref.25, it is 
shown that interfaces with high negative mean curvatures are most spatially correlated among all interfaces in 
the dendritic microstructure. From the auto-correlation of these interfaces, characteristic length scales of the 
microstructure, including the secondary dendrite arm spacing λ2 and the secondary arm radius, can be extracted. 
Figure 3e–h shows the two-point auto-correlations of the 10% of interfacial patches with the most negative values 
of H at four different times. The correlations are presented in the form of Pearson correlation coefficients, which 
have values ranging from −1 to 1, indicating perfect anti-correlation (−1), no correlation (0), perfect correlation 
(1), or an intermediate state.

For visualisation, two-dimensional cross-sections of the two-point spatial correlations are shown, such that 
the horizontal and vertical axes align with the primary and tertiary dendrite arm directions, respectively, and 
the secondary dendrite arm direction is perpendicular to the paper plane. In all of the four plots, a four-fold 
lattice-like pattern is easily identified (outlined by the centre red dashed box in Fig. 3e–h). This four-fold pattern 
comes from the strong correlation of the troughs on the secondary dendrite arms in between the roots of the 
tertiary dendrite arms. These troughs are cylindrical interfaces with high negative curvature, which reside on 
the stems of the secondary dendrite arms. An example of this structure is marked by the yellow dashed boxes in 
Fig. 2. Enlarged 3-D views of the interface around this area are shown in Fig. 3a–d, in which the interfaces with 
the 10% most negative H are highlighted in red. From the region within the red dashed box at the centre of the 
correlation maps, it is clear that the “lattice” correlation pattern is expanding with coarsening time. This means 
that the secondary dendrite arms are coarsening in a way that the troughs on the secondary arms are moving 
away from each other.

To the left and right sides of the centre pattern, there are replicates of the centre “lattice” pattern (right side 
outlined by green dashed boxes in Fig. 3e–f), which come from correlations between adjacent secondary dendrite 
arms. The presence of these second-order correlation peaks is evidence for the periodicity of the structure along 
the primary dendrite growth direction. In other words, the secondary dendrite arms are well-aligned and equally 
spaced. The evolution of these second-order lattice-like patterns exactly mirrors the expansion of the primary 
pattern at the centre. However, the distance between the second- and first-order patterns remains constant across 
time, as shown by the blue dashed lines in Fig. 3e–h. This indicates that the secondary dendrite arm spacing λ2 is 
not changing with time.

In Fig. 3i–l, the correlation maps in Fig. 3e–h are scaled by −Sv
1 at each time. In the scaled plots, the correlation 

pattern within the red dashed box remains constant (except for the decreased signal intensity in the earliest time 
plot due to a high level of noise). Since we have already shown in Fig. 1a that −Sv

1 scales with (t − t0)1/3, this indi-
cates that the microstructures associated with the correlation pattern within the red dashed box (i.e., the second-
ary dendrite arm trunks) are coarsening following the t1/3 temporal scaling law in the LSW theory. In the green 
dashed box to the right of the centre red box, the size of the second-order correlation pattern also remains con-
stant in the scaled correlation plots. However, the second-order patterns on both sides are moving towards the 
centre of the correlation map in these scaled plots.

Marsh and Glicksman conjectured that length scales larger than a certain limit will be “kinetically inactive” 
during coarsening21. Using the measurements of the spatial correlations shown in Fig. 3, we have shown that such 
kinetically inactive length scales in fact exist. We find that length scales smaller than the self-similar length scale 
grow self-similarly and in proportion to t1/3, which agrees with LSW theory. On the other hand, length scales 
larger than the self-similar length scale remain largely inactive, until the self-similar length scale, which follows 
the same t1/3 temporal scaling law, outgrows those length scales, thus making them kinetically active. It is only 
through the two-point correlation functions that it is possible to statistically quantify the relevant length scales in 
microstructures with complicated morphologies. By tracking the evolution of these length scales through time, 
we have determined the self-similar length scale that differentiates kinetically active and inactive length scales in 
the dendritic microstructure during coarsening.

Computational validation.  To examine the existence of inactive length scales in coarsening and to illustrate 
that the conclusions are not limited to dendritic structures, we simulate coarsening of a simpler, two-dimensional 
microstructure containing second-phase particles with a bimodal particle size distribution. The two modes of 
this distribution correspond to populations of large and small particles, where the difference in radii is sufficiently 
large such that the large particles may be inactive. Comparing the overall evolution of this system to the evolution 
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of each population of particles should test the hypothesis of inactive length scales. Details regarding the genera-
tion of the initial structure are provided in Methods.

Coarsening of the structure was simulated using the Cahn-Hilliard equation27,28 with periodic boundary con-
ditions. The initial and final microstructures are shown in Fig. 4a,b. The large particles have grown at the expense 
of their smaller neighbours, and the small particles have coarsened, either growing or shrinking and disappearing. 
The characteristic length of the system in terms of −Sv

1 has increased from 47.2 to 101.5. The temporal evolution 
of the morphology is described quantitatively in Fig. 4c,d. While some deviation is apparent at early times, we find 
excellent agreement overall between the evolution of characteristic length and the expected coarsening power law 
given by Equation 1. This fit is shown in Fig. 4c with = − −t S t k( )/v0

3
0 , and its coefficient of determination is 

R2 = 0.9995.
Figure 4d depicts distributions of interfacial radius of curvature (i.e., the reciprocal of scalar curvature), scaled 

by the characteristic length −Sv
1. These distributions are weighted by interfacial length and normalised. Therefore, 

they represent the probability that a point on the interface has a particular radius of curvature. These distributions 
would be equivalent to one-dimensional ISDs, except that they are functions of radius of curvature rather than 
curvature itself. For visualisation, the distributions are plotted in semilog scale, where log is taken for the horizon-
tal axis. These choices (independent variable, weighting, and axis scale) were made to clearly represent the two 
populations with highly disparate length scales.

Figure 3.  Illustration of the two-point Pearson auto-correlation of interfaces with 10% most negative mean 
curvature H at four representative times. (a–d) A subset of the sample interface showing the stem of a secondary 
dendrite arm in the region around the yellow dashed boxes in Fig. 2. (e–h) Slices of the Pearson auto-correlation 
map along a plane perpendicular to the secondary dendrite arms and across the origin. The horizontal and 
vertical axes are parallel to the primary dendrite growth (a1) and tertiary dendrite arm (a3) directions. (i–l) The 
same correlation maps as in (e–h), but scaled by −Sv

1.
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Two peaks are present in Fig. 4d, corresponding to large and small particles. Over time, the small-particle peak 
remains stationary about = . −R S0 34 v

1, indicating that the small particles coarsen with the same rate as the over-
all structure. The height and area of the large-particle peak increase at the expense of the small-particle peak, 
which means that it contains a growing proportion of the total interfacial length in the system. In addition, the 
large-particle peak shifts leftward, indicating that the large particles are coarsening more slowly than the charac-
teristic length scale of the system. These trends are confirmed when we examine the unscaled behavior: the loca-
tion of the large-particle peak shifts from R = 94 to R = 106, or by 12%, over the course of the simulation, while 
the small-particle peak shifts from R = 17 to R = 34, or by 100%. Thus the change in the small-particle peak is 
much larger relative to its initial state, which explains why it dominates the evolution of the overall system. These 
simulation results support the hypothesis that there exists a critical length scale that separates populations of 
interfaces that evolve self-similarly from those that do not, even though the simulated microstructure is vastly 
different from its experimental counterpart. We also identify that the domination of the actively evolving popu-
lation is responsible for the t1/3 growth power law observed so universally.

Discussion
Using two-point correlation functions, time resolved X-ray tomography, and simulation, we show that it is possi-
ble to statistically quantify the wide range of length scales present in microstructures with complicated morphol-
ogies. We find that in a system with a multimodal distribution of morphological feature sizes, active coarsening 
only occurs with microstructure features smaller than the self-similar length scale, which delimits the small-
est length scale that remains largely inactive. Length scales below the self-similar length scale will coarsen in 
a self-similar manner, following the classical t1/3 temporal power law. Features with larger length scales do not 
actively participate in the coarsening process. Therefore, the interfacial morphology of the entire structure is not 
self-similar, while still exhibiting classical temporal power laws for the coarsening process. These larger features 
are never completely inactive, as we have shown; they simply evolve at much slower rates and thus are essentially 
stationary over the time scale of coarsening of the smaller features. When the self-similar length scale approaches 
these formerly larger length scales, they become kinetically active. However, this does not suggest that the coars-
ening of these features suddenly becomes faster; they will instead coarsen at a rate consistent with their length 
scale. Thus, the change from inactive to active will be gradual, as shown in the many experimental results of 

Figure 4.  Illustrations of the 2-D phase field simulation. (a) Initial concentration field (t = 0, = .−S 47 2v
1 ) 

containing 5% volume fraction of large particles and 16% of small particles. (b) Final concentration field 
(t = 7.2 × 105, = .−S 101 5v

1 ). (c) Evolution of characteristic length −Sv
1 vs. time t plotted alongside a fit to the 

expected coarsening power law. (d) Interfacial radius-of-curvature distribution weighted by interfacial length at 
the times indicated in (c). Two peaks are present corresponding to the small and large particle distributions 
introduced in the initial condition.
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coarsening in systems with a large range of length scales. This mechanism is applicable to any two-phase mixture 
exhibiting a large range of length scales that undergoes coarsening.

Methods
Experimental.  The sample used in the experiment was made from a directionally solidified Al-Cu alloy with 
19 wt% of Cu. The raw material was cut into a cylinder that is 5 mm length by 1 mm diameter, with the axial direc-
tion approximately parallel to the direction of solidification. During the experiment, the sample was heated to 
558 °C (5 °C above the eutectic temperature), forming a liquid-solid mixture with a constant amount of the two 
phases with volume fraction of liquid equal to 47.04%. The sample was then held at that temperature to coarsen 
for 79 minutes while being scanned by X-ray computed tomography (XCT). The XCT data was then recon-
structed into 3-D views at a temporal rate of 44 s per view and with a voxel size of (1.79 μm)3. The full experimen-
tal dataset consists of 94 time frames, with the inverse of the specific interfacial area −Sv

1 ranging from 37.931 μm 
(first time frame) to 61.263 μm (last time frame).

A voxelised representation of the interface was used to calculate the two-point spatial correlations of the inter-
facial mean curvature H, which results in an interface with thickness of one voxel length. Each interfacial voxel is 
associated with an interfacial mean curvature value H, which was calculated using the signed distance function 
with respect to the interface. The population of interfacial voxels was split into deciles based on their values of H. 
Two-point Pearson auto-correlations of the interfacial voxels within each decile were calculated, using only the 
interfacial voxels (as opposed to all voxels in the sample bulk) as the normalisation. See ref.25 for details.

Computational.  Particle coarsening was simulated using the Cahn-Hilliard equation27,28:

ε∂
∂

= ∇ ⋅ ∇




∂
∂

− ∇




c
t

M f c
c

c( ) ,
(2)

2 2

where the bulk free energy f(c) is given by the double well potential = −f c c c( ) (1 )W
4

2 2, with well height param-
eter W = 0.4, and the mobility M and gradient energy coefficient ε are scalar constants, M = 1 and ε = .0 2. The 
size of the simulation domain was 64002 and periodic boundary conditions were enforced. The domain was dis-
cretised by a uniform grid with Δx = 1, which results in 3–5 grid points through the interface as defined by 

∈ . .c [0 1, 0 9]. Explicit (forward Euler) time integration was used with a time step of Δt = 0.05. These simulation 
parameters are dimensionless, and the simulation results are therefore nondimensional, in contrast to the exper-
imental results.

The structure used as an initial condition for the simulation was generated in stages. Starting from a uniformly 
zero concentration field, large particles were generated sequentially until = .c 0 051. Then small particles were 
generated until = .c 0 210, and finally a uniform concentration field was added to approximate the mean field 
concentration during coarsening, resulting in = .c 0 218. Details of these stages are given below.

To generate a particle, three random floating-point numbers were sampled from a uniform distribution over 
[0, 1]. The first two were multiplied by the domain length to find the coordinates of the particle centre, x0 and y0. 
The remaining number was interpolated onto a discrete cumulative particle size distribution to determine parti-
cle radius R. To prevent the creation of overlapping particles, the numbers were discarded if c(x, y) > 0.5 within 
a fixed radius of (x0, y0). This radius, rcontact, corresponds to the minimum allowed distance between the centre 
of the new particle and the perimeter of any existing particles. For large particles, rcontact = 384 was used, and for 
small particles, rcontact = 32. If this check was passed, then a new particle was added to the existing concentration 
field c0(x, y):

= +

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
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If the point (x0, y0) was close enough to one or more domain boundaries, images of the particle would also be 
added at the opposing boundaries to ensure periodicity.

To minimise morphological evolution within each mode, the particle size distributions (PSDs) used for sam-
pling were based on the steady-state PSD for ≈ .c 0 22. This PSD was obtained from a smaller 16002 phase field 
simulation with = .c 0 221 initialised with a single-modal PSD with average radius =R 8. The PSD of the 
single-modal simulation appeared to converge after t = 5 × 104, and so the steady state PSD was taken to be the 
time average over 6 × 104 ≤ t ≤ 105. The generating PSDs are shown in Fig. 5. They reflect input R  values of 16 for 
small particles and 96 for large particles. Due to truncation of the steady state PSD at =R R/ 2 and = .R R/ 1 5 for 
small and large particles, respectively, these result in actual average radii of 14.6 and 80.9.

Finally, the mean field concentration due to the Gibbs-Thomson effect was added uniformly to the concentra-
tion field. This was approximated as a rule of mixtures using the input average radii for the distributions,

λ λ
Δ ≈ + = .c V V

96 16
0 0083, (4)L S

where the volume fractions VL and VS of large and small particles are 0.24 and 0.76, respectively, and the capillary 
length λ is given in terms of the phase field parameters as
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λ
ε

= = .
W

1
6 (5)

W1
6 2

1
2

The final average composition after this addition was = .c 0 218.
Scalar curvature (and by extension radius of curvature) and characteristic length −Sv

1 were calculated by stack-
ing together two copies of the 64002 structure in the out-of-plane direction, extending the structure into 3-D. This 
allowed use of the procedure from Park et al.29, with scalar curvature equal to twice the calculated mean 
curvature.

Data Availability
The experimental datasets generated during and/or analysed during the current study are available from the cor-
responding author on reasonable request. Simulation datasets will be published at Materials Commons (https://
materialscommons.org/).
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