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SUMMARY

By vacuolar patch-clamp and Ca2+ imaging experiments, we show that the yeast vacuolar transient re-

ceptor potential (TRPY) channel 1 is activated by cytosolic Ca2+ and inhibited by Ca2+ from the vacu-

olar lumen. The channel is cooperatively affected by vacuolar Ca2+ (Hill coefficient, 1.5), suggesting

that it may accommodate a Ca2+ receptor that can bind two calcium ions. Alanine scanning of six nega-

tively charged amino acid residues in the transmembrane S5 and S6 linker, facing the vacuolar lumen,

revealed that two aspartate residues, 401 and 405, are essential for current inhibition and direct bind-

ing of 45Ca2+. Expressed in HEK-293 cells, a significant fraction of TRPY1, present in the plasma mem-

brane, retained its Ca2+ sensitivity. Based on these data and on homology with TRPV channels, we

conclude that D401 and D405 are key residues within the vacuolar vestibule of the TRPY1 pore that

decrease cation access or permeation after Ca2+ binding.
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INTRODUCTION

The transient receptor potential (TRP) ion channel family is encoded by more than 100 genes (Venkatacha-

lam and Montell, 2007). With the exception of the Ca2+-selective TRPV5 and TRPV6 the TRP channels are

non-selective cation channels sharing the membrane topology of six transmembrane helices (S1–S6) and

N- and C-terminal domains residing within the cytosol. By mediating cation influx, TRP channels shape

the membrane potential and increase the cytosolic Ca2+ concentration ([Ca2+]cyt), translating environ-

mental and endogenous stimuli into cellular signals. Most TRP channels fulfill their physiological function

in the plasma membrane as cation influx channels, whereas some functional TRP channels are localized in

the membrane of cytoplasmic organelles (Berbey et al., 2009; Chen et al., 2014; Dong et al., 2008; Lange

et al., 2009; Oancea et al., 2009; Turner et al., 2003).

Calcium ions permeate TRP channels - with the exception of the Ca2+-impermeable TRPM4 and TRPM5 -

and also potentiate, activate, or inhibit currents most probably by interfering with TRP channel domains

facing the cytosol (Blair et al., 2009; Bodding et al., 2003; Doerner et al., 2007; Du et al., 2009; Gross

et al., 2009; Launay et al., 2002; McHugh et al., 2003; Olah et al., 2009; Prawitt et al., 2003; Starkus et al.,

2007; Voets et al., 2002; Watanabe et al., 2003; Xiao et al., 2008; Zurborg et al., 2007). Likewise the TRP chan-

nel TRPY1, encoded by the vacuolar conductance 1 (YVC1) gene in Saccharomyces cerevisiae and localized

in the vacuolar membrane, is activated by Ca2+ interfering with cytosolic channel domains (Bertl and Slay-

man, 1990; Palmer et al., 2001; Wada et al., 1987). TRPY1mediates vacuolar Ca2+ release, and the amount of

cytosolic [Ca2+] required for TRPY1 activation can be substantially lowered in the presence of reducing

agents such as dithiothreitol (DTT), glutathione, or b-mercaptoethanol (Bertl et al., 1992b; Bertl and Slay-

man, 1990). In addition to Ca2+, TRPY1 is also permeable to monovalent cations (permeability ratio PCa/PK
�5; Bertl and Slayman, 1992), revealing a single-channel conductance of more than 300 pS in 180 mM KCl

(Chang et al., 2010; Palmer et al., 2001; Wada et al., 1987; Zhou et al., 2003). TRPY1 is suggested to be

involved in the response to hyperosmotic and oxidative stress as well as glucose-induced Ca2+ signaling

(Bertl and Slayman, 1990; Bouillet et al., 2012; Denis and Cyert, 2002; Palmer et al., 2001). However, the

exact function of the TRPY1-mediated Ca2+ release is still elusive.

Binding of Ca2+ by some mammalian TRP channels including the Ca2+-activated TRPM4 has been

described to be mediated by four coordinating residues within S2 and S3 close to the cytosolic S2-S3 linker

(Autzen et al., 2018). These residues are not conserved in the TRPY1 sequence. All mammalian TRPs and the
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Figure 1. Cytosolic Ca2+ Activates Cation Conductance in Yeast Vacuoles via TRPY1

(A) Procedure to release the yeast vacuole for patch-clamp experiments.

(B–E) Inward currents at�80mV and outward currents at 80 mV, extracted from 200-ms ramps (0.5 Hz) spanning from 150 to�150mV, Vh = 0mV, plotted versus

time (top), and corresponding current-voltage relations (IVs) at break-in (blue), after 120 s (red) and at maximum current (Imax) in 1 mM cytosolic Ca2+ (black;

bottom) measured in isolated vacuoles fromwild-type (WT; B, D, and E) and YVC1-deficient (YVC1 KO; C) yeast. Themembrane potentials refer to the cytosolic

side, i.e., inward currents represent movement of positive charges from the vacuole toward the cytosol (Bertl et al., 1992a). 1 mMCa2+ was applied to the bath

(representing the cytosol) as indicated by the bars. In (D) K+ and in (E) Cl�were substituted by TEA+ (tetraethylammonium) and gluconate in the patch pipette,

respectively. Currents and IVs are shown as means G SEM and just means, respectively, with the number of measured cells indicated in brackets.
fly’s TRPL are binding Ca2+/calmodulin in vitro, and Bertl et al. (Bertl et al., 1992b, 1998a, 1998b) suggested

that Ca2+/calmodulin contributes to TRPY1 activation in yeast, but a negative charge cluster, D573DDD576,

within the TRPY1’s cytosolic C-terminus was shown to be crucial for the Ca2+-mediated activation of TRPY1

(Su et al., 2009).

In the present study, we characterized the dependence of TRPY1 current inhibition and activation on vacu-

olar and cytosolic [Ca2+] by patch-clamp recordings from yeast vacuoles and Ca2+ imaging in yeast. By

alanine scanning and direct 45Ca2+ binding, we identified two aspartate residues within the S5-S6 linker fac-

ing the vacuolar lumen to be essential for Ca2+ binding and Ca2+-dependent inhibition of the TRPY1

current.

RESULTS

Cytosolic Ca2+ Activates the Vacuolar TRPY1 Channel

To get electrophysiological access to the yeast vacuole, the cell wall and membrane have to be removed

(Figure 1A). At break-in and application of voltage ramps (150 to�150mV), a small voltage-dependent out-

ward rectifying current was recorded at membrane potentials above 80 mV (Figure 1B, bottom, blue cur-

rent-voltage relation [IV]). Membrane potentials refer to the cytosolic side, and inward currents are defined

as cation flow across the vacuolar membrane into the cytosol (Bertl et al., 1992a). Upon perfusion of the

150 mM KCl pipette solution, i.e., washout of vacuolar content, the outward current increases to maximum

amplitude within 120 s (Figure 1B, red IV). Application of 1 mM cytosolic Ca2+ ([Ca2+]cyt) activates additional
2 iScience 11, 1–12, January 25, 2019
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Figure 2. Concentration-Dependent Activation of Yeast Vacuolar TRPY1 by Cytosolic Ca2+ and Inhibition by

Vacuolar Ca2+

(A–D) Inward and outward currents at �80 and 80 mV, respectively, extracted from 200-ms ramps (0.5 Hz) spanning from

150 to�150 mV, Vh = 0 mV, plotted versus time (A and C, left), and corresponding IVs at maximum currents (Imax, A and C,

right) activated by diverse cytosolic Ca2+ concentrations ([Ca2+]cyt, A and B) and 1 mM [Ca2+]cyt at the indicated vacuolar

Ca2+ concentrations ([Ca2+]vac, vac Ca, corresponding to the [Ca2+] in the patch pipette, C and D) in isolated vacuoles

from wild-type yeast. Application of Ca2+ is indicated by the bar. In (B), maximal inward currents (at �80 mV) and outward

currents (at 80 mV) are plotted versus the [Ca2+]cyt concentration. The sigmoidal fits reveal EC50 values of 498 and 391 mM

[Ca2+]cyt for half-maximal activation of the inward and outward currents (B), respectively. In (D), currents at�80 and 80 mV

activated by 1 mM [Ca2+]cyt are plotted versus the [Ca2+]vac. The sigmoidal fits reveal half-maximal inhibition by [Ca2+]vac
of 79 and 109 mM for the inward and outward currents (D), respectively. Currents are normalized to the size of the vacuole

(pA/pF) and shown as means G SEM (A–D) and means (IVs in A and C), with the number of measured cells indicated in

brackets.

See also Figures S1 and S2.
inward and outward currents (Figure 1B, Imax in Ca), which are absent in vacuoles isolated from YVC1

knockout cells (YVC1 KO; Figure 1C). These currents are carried by cations, as their inward portion disap-

pears in the absence of vacuolar (pipette) K+ substituted by TEA+ (tetraethylammonium) (Figure 1D). In

contrast, the voltage-dependent outward rectifying current appearing after break-in is carried by Cl�, as
substitution of vacuolar Cl� by gluconate significantly reduces its amplitude (Figure 1E, red IV). TRPY1 in-

ward and outward cation currents were already detectable at [Ca2+]cyt of 10 mM (Figures 2A and 2B), and

Ca2+ non-cooperatively (Hill coefficient < 1) increased currents in a concentration-dependent manner

with apparent EC50 values of 498 mM for the inward current and 391 mM for the outward current (Figure 2B).
Vacuolar Ca2+ Inhibits TRPY1 Activity

To characterize the dependence of TRPY1 currents on vacuolar [Ca2+], we perfused the vacuole with 1 mM

Ca2+ by the patch pipette. The currents activated by 1 mM [Ca2+]cyt were significantly reduced (Figures 2C

and 2D). Figure 2C shows the vacuolar [Ca2+]-dependent inhibition of TRPY1 currents activated by 1 mM

[Ca2+]cyt with apparent IC50 values of 79 mM for the inward current and 109 mM for the outward current (Fig-

ure 2D). We consistently found Hill coefficients > 1 (1.4–1.5, Figure 2D) suggesting that the channel is

inhibited by the cooperative binding of two molecules of Ca2+. Inhibition of TRPY1 currents by vacuolar

Ca2+ is still prominent at a pH value of 5.5 (Figure S1), considering the slightly acidic pH in the yeast vacuole

(Preston et al., 1989).

Sr2+, Ba2+, and Mn2+ substitute for Ca2+ in TRPY1 activation (when present at the cytosolic site) and inhibi-

tion (when present at the vacuolar site) (Figure S2). In the absence of vacuolar Ca2+ ([Ca2+]vac), cytosolic con-

centrations of 1 mM divalent cations increased activation in the order Sr2+ (12%) < Mn2+ (15%) < Ba2+ (63%)

with 100% current activation at 1 mM [Ca2+]cyt (Figures S2A and S2B). At 100% current activation (1 mM

[Ca2+]cyt, and 0 [Ca2+]vac), vacuolar concentrations of 1 mM divalent cations inhibited in the order Mn2+

(33%) < Ba2+ (63%) < Sr2+ (68%) < Ca2+ (96%) (Figures S2C and S2D).
iScience 11, 1–12, January 25, 2019 3
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Figure 3. Ca2+-Dependent Regulation of TRPY1 Currents in Transfected HEK-293 Cells

(A) Western blot of protein lysates from YVC1 cDNA-transfected (HEK TRPY1) and non-transfected (HEK) HEK-293 cells. Biotinylation of surface proteins

shows that a considerable fraction of TRPY1 present in transfected HEK-293 cells (input) resides in the plasma membrane (biotinylated). The filter was

stripped and incubated in the presence of an antibody directed against the intracellular protein calnexin as control.

(B) Orientation of TRPY1 (red) in the plasma membrane with N- and C-termini residing within the cytosol.

(C–K) Inward and outward currents at �80 and 80 mV, extracted from 400-ms ramps (0.5 Hz) spanning from �100 to 100 mV, Vh = 0 mV, plotted versus time

(C, E–G, and I–K) and corresponding IVs (D and H) of maximum currents (Imax) from (C) or at 240 s from (G), activated by 0.5 or 0.75 M sorbitol (hyperosmotic

shock; C–F) or indicated [Ca2+]cyt (int Ca; buffered with BAPTA; G-K) at 0 or 1 mM external (ext) Ca2+ in HEK TRPY1 cells (HEK TRPY1; C, D, F–H, J, and K) or

non-transfected HEK-293 cells (HEK; E and I). The bars indicate application of 0.5 or 0.75 M sorbitol in C, E, and F, or 0 and 1 mM Ca2+-containing bath

solution in K and J, respectively. The black traces in C and F are the same. Currents and IVs are normalized to the cell size (pA/pF) and are shown as meansG

SEM (C, E–G, and I–K) and means (D and H) with the number of measured cells in brackets.
In HEK-293 Cells TRPY1 Retains Its Ca2+-Dependent Properties

In yeast, TRPY1 was shown to be also activated by hyperosmotic shock, i.e., in the presence of high extra-

cellular concentrations of sorbitol or NaCl (Zhou et al., 2003). Hyper- or hypoosmotic shock induces

shrinkage or swelling of the vacuole, respectively, which easily disrupts the whole-vacuolar patch-clamp

configuration. To prove whether hyperosmotic shock-induced TRPY1 activity is also inhibited by Ca2+,

we expressed the YVC1 cDNA in HEK-293 cells. As shown by western blot the TRPY1 protein is present

in transfected cells and a significant fraction is detectable in the plasma membrane by surface biotinylation

(Figure 3A). In the plasma membrane the channel regions facing the vacuole in yeast are now facing the

extracellular bath, whereas, like in yeast, the N-terminus, C-terminus, S2-S3, and S4-S5 linkers are facing

the cytoplasm (Figure 3B). As shown in Figures 3C and 3D, TRPY1 currents are activated in the absence

of extracellular Ca2+ by increasing the osmolarity in the bath by application of 0.5 and 0.75 M sorbitol,

whereas no currents were detectable in non-transfected HEK-293 cells (Figure 3E). Applying 1 mM Ca2+

to the bath significantly reduced the TRPY1 current induced by 0.75 M sorbitol (Figure 3F, red trace) indi-

cating that TRPY1 integrates activating and inhibitory stimuli also in HEK-293 cells.
4 iScience 11, 1–12, January 25, 2019



In the absence of extracellular Ca2+, TRPY1 inward and outward currents in HEK-293 cells are activated by

[Ca2+]cyt (at 3 and 10 mM; Figures 3G and 3H), confirming the assumed orientation of TRPY1 in the plasma

membrane. Non-transfected HEK-293 cells do not reveal any significant currents under these conditions

(Figure 3I). TRPY1 currents activated by 10 mM [Ca2+]cyt in the absence of extracellular Ca2+ are readily in-

hibited when 1 mM Ca2+ was added (Figure 3J). Figure 3K shows that in the presence of 1 mM external

Ca2+, almost no TRPY1 current appeared at [Ca2+]cyt of 10 mM, whereas after removal of external Ca2+ a

significant current developed (Figure 3K).
Aspartate Residues 401 and 405 Mediate the Ca2+-Dependent Inhibition of TRPY1

The mechanism of the inhibition of TRPY1 currents by vacuolar Ca2+ in yeast or extracellular Ca2+ in HEK-

293 cells was not known. We noticed six negatively charged acidic residues in the S5-S6 linker contributing

to the TRPY1 pore, D398, D401, D405, D425, E428, and E429 (Figure 4A), which we replaced by alanine res-

idues. The cDNAs of all mutants and of wild-type TRPY1 (plasmids see Table 1) were expressed in YVC1 KO

yeast (Chang et al., 2010). Wild-type and mutant proteins are detectable in western blot (Figure 4B). Only

the transformation of yeast with plasmid pRS316-TRPY1D405A did not yield any colonies. Figures 4D–4H

show currents of wild-type TRPY1 (Figure 4D) and of the TRPY1 mutants, expressed in YVC1 KO yeast (Fig-

ures 4E–4H), activated by 1mM [Ca2+]cyt in the absence (Ca 0) or presence of 1 mM vacuolar Ca2+. As shown

for vacuoles of wild-type yeast cells (Figure 2) 1 mM [Ca2+]cyt activates TRPY1 in the absence (Figure 4D,

black trace), but not in the presence of vacuolar Ca2+ (Figure 4D, red trace), whereas TRPY1D398A failed

to yield currents even in the absence of vacuolar Ca2+ (Figure 4E). The Ca2+-mediated outward current

detectable in the absence of vacuolar Ca2+ most probably reflects changes of the vacuolar chloride

conductance (see Figure 1). Expression of TRPY1D401A yielded a small constitutive current (Figure S3A,

green trace), which could be significantly enhanced by 1 mM [Ca2+]cyt, leading to current amplitudes

more than five times higher than mediated by wild-type TRPY1 (Figure 4F, black trace), but currents

were no longer inhibited by vacuolar Ca2+ (Figure 4F, red trace). Beside smaller current amplitudes,

TRPY1D425A and TRPY1E428A,E429A revealed the same Ca2+ dependence as TRPY1 wild-type (Figures 4G

and 4H). Ca2+ imaging experiments obtained after expressing the cytosolic luminescent Ca2+ reporter ae-

quorin in intact yeast confirmed the patch-clamp data (Figure 4I). TRPY1D401A induced the highest cytosolic

Ca2+ increase upon hyperosmotic shock, whereas TRPY1D398A did not respond at all. Current-voltage

relationships and statistics of whole-vacuole current amplitudes and yeast cytosolic Ca2+ signals are

summarized in Figure S3. The reversal potential of vacuolar currents did not vary between TRPY1 mutants

and wild-type, arguing against changes of ion permeability.

Wild-type and mutant YVC1-transformed YVC1 KO yeast showed different amplitudes of vacuolar currents

and cytosolic Ca2+ signals: D401A revealed larger currents and higher [Ca2+]cyt than wild-type TRPY1,

whereas for TRPY1D425A and TRPY1E428A,E429A, currents and changes of [Ca2+]cyt were smaller (Figures

4D–4I). Western blots revealed similar amounts of TRPY1 protein in yeast transformed with wild-type,

D398A, D401A, and D425A YVC1, relative to the endogenous SRP1, used as a control (Figure 4C). The

higher amount of TRPY1E428A,E429A protein (Figure 4C) not mirrored by larger currents (Figure 4H) and

higher [Ca2+]cyt (Figure 4I) might indicate that only part of the protein detectable in western blot is targeted

to the vacuolar membrane.

Transformation of yeast with pRS316-YVC1D405A did not yield any colonies. To yield lower

expression levels to prevent delirious effects of overexpression, we cloned the YVC1 gene (wild-

type, YVC1D401A, and YVC1D405A) in single-copy pRS316 CEN plasmids without its own promoter. Under

these conditions, cytosolic Ca2+-induced vacuolar currents were recorded from YVC1 wild-type and

YVC1D401A- and YVC1D405A-transformed YVC1 KO yeast (Figures S4A–S4C). In contrast to wild-type

TRPY1 (Figure S4A), the currents induced by cytosolic Ca2+ remained in the presence of 1 mM vacuolar

Ca2+ in TRPY1D401A (Figure S4B; note the spontaneous current after break-in) and TRPY1D405A

(Figure S4C).

Beside a smaller current amplitude of TRPY1D405A at 40 mV in the absence of vacuolar 1 mM Ca2+ (see Fig-

ure S4E), neither the mutations D401A and D405A nor the presence of vacuolar 1 mM Ca2+ significantly

affected single-channel current amplitudes of TRPY1 analyzed at �40 and 40 mV (Figures 4J and S4E,

respectively; example traces are shown in Figure S4D). Single-channel current amplitudes of TRPY1D405A

were analyzed from yeast cells transfected with single-copy pRS316 CEN plasmids without its own pro-

moter (see above). The unchanged single-channel current amplitude (Figures 4J and S4E) but significantly
iScience 11, 1–12, January 25, 2019 5
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Figure 4. Vacuolar TRPY1 Currents in YVC1 KO Yeast Expressing Wild-Type or Mutant YVC1 cDNAs

(A) Predicted transmembrane topology of the yeast vacuolar TRPY1 (675 amino acid residues) with negative charge cluster at the cytosolic C-terminus

assumed to be responsible for TRPY1 activation (blue) (Su et al., 2009) and negatively charged residues within the S5-S6 linker facing the vacuolar lumen (red).

The TRPY1G402S mutant (green) is constitutively active (Zhou et al., 2007), and the TRPY1C624S mutant (black) can no longer be activated by

2-mercaptoethanol (Hamamoto et al., 2018).

(B) Western blot of protein lysates from non-transformed yeast (YVC1 KO) or YVC1 KO yeast transformed with wild-type (WT) and mutant YVC1 cDNAs (as

indicated). Filter was stripped and incubated with antibodies for aequorin (middle) and SRP1 (serine-rich protein; bottom) as controls.

(C) Antibody stain intensities of TRPY1 proteins in (B) were quantified relative to the antibody stain of the endogenous serine-rich protein 1 (SRP1) and

normalized to theWT TRPY1/SRP1 ratio (summary of five independent western blots). One-way analysis of variance (ANOVA): not significant (ns), *** p<0.001

compared to WT.

(D–H) Whole-vacuole currents at�80 and 80 mV extracted from 200-ms ramps (0.5 Hz) spanning from 150 to�150mV, Vh = 0mV, plotted versus time, activated

by cytosolic Ca2+ (1 mM) at 0 (black) or 1 mM (red) vacuolar (vac, patch pipette) Ca2+ in YVC1 KO cells expressing WT ( D) or mutant (E–H) YVC1 cDNAs.

(I) Changes of cytosolic Ca2+ challenged by 1.5 M NaCl (hyperosmotic shock) monitored in transformed YVC1 KO yeast cells (as in D–H) as relative

luminescence units (RLU). Bars indicate application of 1 mM Ca2+ (D–H) or 1.5 M NaCl (I).

(J) Single-channel current amplitudes of TRPY1WT, TRPYD401A, and TRPY1D405A in the absence and presence of vacuolar 1 mMCa2+, analyzed at�40 mV from

current traces of voltage ramps and voltage steps in whole vacuoles and excised (outside-out) vacuolar patches. Single channels of TRPY1D405A were

analyzed from yeast cells transfected with single-copy pRS316 CEN plasmids without its own promoter (see Figure S4C). Currents are normalized to the size

of the vacuole (pA/pF) and shown as means G SEM with number of measured vacuoles (D–H) or the number of experiments (x) from y independent

transformation (x/y; (I) indicated in brackets. Single-channel current amplitudes in (J) are shown as means G SEM with number of independent experiments

indicated. One-way analysis of variance (ANOVA) revelead no differences.

See also Figures S3 and S4.
reduced whole-vacuolar current amplitude (Figure 4D) in wild-type TRPY1 suggests a prominent decrease

of the open probability in the presence of vacuolar 1 mM Ca2+.

After expression of wild-type and mutant YVC1 cDNAs (plasmids see Table 1) in HEK-293 cells, all proteins

including TRPY1D405A were detectable (Figure 5A), and we recorded hyperosmotic shock (Figures 5B–5G)

as well as cytosolic Ca2+-induced currents (Figures 5H–5J). Current-voltage relationships and statistics of
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Figure 5. Wild-Type and Mutant TRPY1 Currents Recorded from HEK-293 Cells

(A) Western blot of protein lysates from non-transfected HEK-293 cells (HEK WT) and HEK-293 cells transfected with the YVC1 wild-type (+ TRPY1 WT) and

the mutant YVC1 cDNAs as indicated. The filter was stripped and incubated with an antibody for calnexin as loading control (bottom panel).

(B–J) Inward and outward currents at �80 and 80 mV extracted from 400-ms ramps (0.5 Hz) spanning from �100 to 100 mV, Vh = 0 mV, plotted versus time,

activated by 0.75 M sorbitol (bar, hyperosmotic shock; B–G) or 3 mM cytosolic Ca2+ (H–J) at 0 (black), 1 (B–G), or 2 mM (H–J) external Ca2+ (red) in HEK-293

cells transiently transfected with WT (B and H) or mutant (C–G, I, and J) YVC1 cDNAs. Currents are normalized to the cell size (pA/pF). Data are shown as

means G SEM with the number of measured cells in brackets.

See also Figure S5.
whole-cell current amplitudes are summarized in Figure S5. Compared with wild-type TRPY1 (Figure 5B)

hyperosmotic shock did not initiate TRPY1D398A currents (Figure 5C), but the TRPY1D425A (Figure 5F) and

TRPY1E428A,E429A mutants (Figure 5G) behaved like wild-type TRPY1, very similar as observed in the yeast

vacuole (Figure 4). Like in yeast vacuoles TRPY1D401A yielded spontaneous currents (Figures 5D and S5A,

green trace), and, compared with wild-type TRPY1 (Figures 5B and 5H), extracellular Ca2+ (1 and 2 mM,

respectively) did not inhibit hyperosmotic shock and cytosolic Ca2+-induced activity of the mutant channels

TRPY1D401A and TRPY1D405A (Figures 5D, 5I, 5E, and 5J). The latter mutant induced even larger current am-

plitudes upon hyperosmotic shock in the presence of extracellular Ca2+. Current-voltage relationships and

statistics of current amplitudes are summarized in Figure S5.

To prove whether residues D401 and D405 are required for Ca2+ binding 25-amino-acid (25-mer) peptides

derived from wild-type (amino acid residues F390 to L414) and D401A and D405A mutant S5-S6 linkers of

TRPY1 were synthesized and spotted onto hardened cellulose membranes and incubated with 45Ca2+
iScience 11, 1–12, January 25, 2019 7
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Figure 6. Ca2+ Binding of TRPY1

Autoradiographs of 45Ca2+ binding by the 25-mer peptides derived from wild-type (amino acid residues F390 to L414) and

D401A and D405A mutant S5-S6 linkers of TRPY1 (upper panel) and by the 25-mer peptides representing wild-type and

mutant calmodulin EF hand 1 (CaM EF1, lower panel) as control (two out of four performed blots are shown). Peptides

were synthesized and spotted onto hardened cellulose membranes (about 16 nmoles per spot) and incubated with 1.5 mM

(1 mCi/L) 45Ca2+. Amounts of peptides spotted were additionally estimated by UV absorption at 312 nm. Aspartate (D)

residues are marked in red and alanine (A) residues replacing aspartates are marked in blue. See also Figure S6.
(Figure 6). The wild-type peptide significantly binds 45Ca2+, whereas the TRPY1D401A and TRPY1D405A pep-

tides showed less and the double mutant (TRPY1D401A,D405A) no detectable 45Ca2+ binding. As control, we

spotted a 25-mer peptide representing the first EF hand (EF1) of mammalian calmodulin (CaM; Figure 6).

The 45Ca2+ binding by EF1 was completely abolished when its glutamate residues were replaced by alanine

residues (Figure 6). The amounts of 45Ca2+ bound by EF1 and TRPY1F390-L414 are very similar, as estimated

by the signals’ intensities. Considering equal amounts of spotted 25-mer peptides (about 16 nmoles per

spot), additionally estimated by UV absorption at 312 nm (Figure 6), close apparent binding affinities of

the peptides for Ca2+ might be assumed. At physiological salt concentration, the non-cooperative Ca2+

binding affinity of the isolated CaM EF1 was estimated to be about 125 mM (Ye et al., 2005), which is

very close to the value of 79–109 mM measured here for vacuolar Ca2+-dependent inhibition of TRPY1

(Figure 2D).
DISCUSSION

We performed whole-vacuole patch-clamp recordings and Ca2+ imaging experiments in yeast to study the

Ca2+ dependence of TRPY1 using as controls a YVC1-deficient yeast strain (Chang et al., 2010) and HEK-293

cells heterologously expressing the YVC1 cDNA as functional TRPY1 channels in the plasma membrane.

We show that inhibition of vacuolar TRPY1 is cooperatively mediated by the vacuolar [Ca2+] (IC50 79–

109 mM), that it requires two aspartate residues (D401 and D405) in the S5-S6 linker facing the vacuolar

lumen, and that these aspartate residues are directly involved in Ca2+ binding. The yeast vacuolar TRP

cation channel TRPY1 may be assumed as a progenitor of TRP channels present in mammals, flies, and

worms and underlies cation movements across the yeast vacuolar membrane. Additional TRP-related pro-

teins in Saccharomyces cerevisiae like FLC2, encoded by the YAL053W gene, seem to be involved in endo-

plasmic reticulum Ca2+ release (Rigamonti et al., 2015). TRPY1 is activated by osmotic stress (Batiza et al.,

1996; Denis and Cyert, 2002; Zhou et al., 2003), reducing agents (Bertl and Slayman, 1990; Wada et al.,

1987), aromatic compounds like indole (John Haynes et al., 2008), and cytosolic Ca2+ (Bertl and Slayman,

1990; Wada et al., 1987). In the presence of DTT the EC50 values of TRPY1 activation by cytosolic Ca2+

are 498 mM (inward current) and 391 mM (outward current) with Hill coefficients < 1. Reducing agents

such as DTT or b-mercaptoethanol lower the [Ca2+]cyt required for channel activation (Bertl and Slayman,

1990, 1992), and the cysteine residue 624 within TRPY1’s C terminus facing the cytosol (Figure 4A) has been

suggested to be involved in this process (Hamamoto et al., 2018). Reducing agents may mimic the redox

environment in the yeast cytosol (Carpaneto et al., 1999; Lopez-Mirabal and Winther, 2008; Palmer et al.,

2001), which might contribute to TRPY1 activation under certain conditions. Vacuolar TRPY1 currents are

already activated at [Ca2+]cyt of 10 mM of cytosolic Ca2+ (Figure 2 and Bertl et al., 1992b; Bertl and Slayman,

1990, 1992), but the yeast [Ca2+]cyt has been estimated to be in the range of 260 nM (Halachmi and Eilam,

1989). Probably, hyperosmotic shock represents the initial physiological stimulus in intact yeast, which in-

creases cytosolic Ca2+, which in turn facilitates TRPY1 activity. Palmer et al. (Palmer et al., 2001) suggested

that the cytosolic activation of TRPY1 is Ca2+ specific, but we also detected activation by the alkaline earths

Ba2+ > Sr2+ and by the transition metal ion Mn2+ (Figure S2).
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Plasmid TRPY1 Construct

Backbone: Yeast single-copy centromeric pRS316 vector

pGS2062 TRPY1 wild-type

pSB276 TRPY1D398A

pSB277 TRPY1D401A

pSB278 TRPY1D405A

pSB279 TRPY1D425A

pSB280 TRPY1E428A,E429A

Backbone: Bicistronic eukaryotic expression (HEK-293 cells)

pCAGGS-YVC1-IRES-GFP TRPY1 wild-type

pCAGGS-YVC1D398A-IRES-GFP TRPY1D398A

pCAGGS-YVC1D401A-IRES-GFP TRPY1D401A

pCAGGS-YVC1D405A-IRES-GFP TRPY1D405A

pCAGGS-YVC1D425A-IRES-GFP TRPY1D425A

pCAGGS-YVC1E428A,E429A-IRES-GFP TRPY1E428A,E429A

Table 1. TRPY1 Plasmids Generated in the Laboratories of the Authors and Used in This Study

The YVC1 gene encoding wild-type TRPY1 (NCBI accession number NM_001183506.1) was subcloned into the single-copy

centromeric pRS316 vector (Sikorski and Hieter, 1989) under control of its own promoter and termination sequence. For

some transformations (Figures S4A–S4C) the latter sequences were omitted. The eukaryotic expression vector pCAGGS

has been described (Wissenbach et al., 2001).
High [Ca2+] within the vacuolar lumen presumably inhibits TRPY1 currents (Zhou et al., 2003), and 1 mM

Ca2+ added to the bath eliminates TRPY1 single-channel currents in inside-out excised vacuolar patch-

clamp recordings (Hamamoto et al., 2018). The present study shows that vacuolar Ca2+, as well as Sr2+

and Ba2+, strongly inhibit TRPY1 activity and that the amino acid residues D401 and D405 located in the

vacuolar loop between S5 and S6 (Figure 4A) are crucial for Ca2+-dependent inhibition and direct Ca2+

binding. Mutation of the nearby G402 (Figure 4A) renders TRPY1 constitutively active (Zhou et al., 2007),

indicating the significance of this area for proper gating. Hamamoto et al. described that luminal Zn2+

increased TRPY1 currents in vacuolar excised patches (Hamamoto et al., 2018). Zn2+ might be attracted

to a single negatively charged residue and thereby prevent efficient coordination of Ca2+. In mouse

TRPV3 and TRPV4, corresponding residues D641 and D682, respectively, were shown to be key residues

for extracellular Ca2+-mediated channel inhibition (Voets et al., 2002; Watanabe et al., 2003; Xiao et al.,

2008), and human TRPV1 D646 was suggested to be a high-affinity binding site for cations (Garcia-Martinez

et al., 2000). However, D646 and D682 are part of the selectivity filter in TRPV1 and TRPV4, respectively

(Deng et al., 2018; Liao et al., 2013), and, by sequence comparison, rather align to TRPY1D425 (Figure S6),

whereas TRPY1D401 and TRPY1D405 are located in the vacuolar vestibule of TRPY1’s ion-conducting pore.

The residues E600, D601, E610, and E648 are involved in pH-dependent modulation of human TRPV1 (Jordt

et al., 2000), with TRPV1D601 aligning to TRPY1D401 (Figure S6A). Although nothing is known about external

Ca2+-mediated inhibition of TRPV1 and TRPV6, their S5-S6 linkers appear closer related to TRPY1 than

TRPV3, TRPV4, TRPV2, and TRPA1 by sequence alignment (Figure S6A). TRPV6 residues D517 and E518,

located in the upper vestibule and aligning with TRPY1D401, are shown to bind and guide Ca2+ into the

channel pore of TRPV6 (Singh et al., 2017).

The structure of TRPY1 is not yet available. Therefore, we aligned the structure of TRPY1 according to the

published structure of Xenopus tropicalis TRPV4 (Deng et al., 2018), which is inhibited by Ca2+ from the

extracellular side (see above; Figures S6B and S6C). Our data show that TRPY1 D401 and D405 are

decisive for the Ca2+-dependent inhibition of the channel. Both residues, D401 and D405, also highly

conserved in TRPY homologs of other fungi (Ihara et al., 2014), are part of the outer pore domain of

the channel and orientated to the lumen of the vacuole and are directly involved in Ca2+ binding. The

alignment suggests that binding of Ca2+ to residues D401 and D405 might result in a reorientation of
iScience 11, 1–12, January 25, 2019 9



residues I455 and Y458, possibly involved in forming the lower gate of TRPY1, and thereby narrowing or

occluding the lower gate (Figure S6B). According to the model, replacing D401 and D405 by

alanine residues disables Ca2+ binding and thus prevents such structural changes in the presence of vacu-

olar Ca2+ (Figure S6C). As single-channel current amplitudes of TRPY1 are not affected (Figure 4J), we

assume that Ca2+ binding to D401 and D405 affects the open probability by rearranging the main S6

segment, stabilizing a closed inactivated conformation of the channel by narrowing and occluding the

lower gate.

The physiological pH value in yeast vacuoles is slightly acidic (Pearce et al., 1999; Preston et al., 1989). Vacu-

olar pH 6.0 does not alter the mechanosensitivity of TRPY1 (Zhou et al., 2003), whereas the current activated

by cytosolic Ca2+ was reduced at a vacuolar pH 5.5, but the vacuolar Ca2+-dependent inhibition remained

(Figure S1). The mammalian TRP channels TRPML1, 2, and 3 are located in endolysosomes, and thus exert

their functions also in a cytoplasmic organelle environment as TRPY1. TRPML channels are involved in the

release of Ca2+ and Fe2+ into the cytosol (Cheng et al., 2010), and TRPML1 has been shown to be regulated

by lysosomal Ca2+ and pH (Cantiello et al., 2005; Li et al., 2017). Like for wild-type TRPY1 a significant frac-

tion of the constitutively active TRPML1 mutant, TRPML1V432P, can be expressed in the plasma membrane

of HEK-293 cells. Extracellular Ca2+ inhibits TRPML1V432P channel activity with an apparent IC50 of 270 mM

(Li et al., 2017), which is in the range of the vacuolar [Ca2+], which inhibits TRPY1 (Figure 2). External (lyso-

somal) acidification reduced the Ca2+-dependent inhibition of TRPML1V432P, and an electronegative

luminal pore domain was indicated as a unique hallmark of TRPML1’s interaction site for lysosomal Ca2+

and H+ (Li et al., 2017).

The yeast vacuolar Ca2+ concentration was estimated to be 1.3 mM (Halachmi and Eilam, 1989; Iida

et al., 1990) and the vacuole was assumed to function as a Ca2+ store with TRPY1 as Ca2+ release chan-

nel (Denis and Cyert, 2002). According to our results TRPY1 currents would be inhibited at 1.3 mM

Ca2+, but a considerable amount of Ca2+ is bound by vacuolar polyphosphate (Dunn et al., 1994)

and therefore most probably not available for channel inhibition. The remaining vacuolar free [Ca2+]

of �30 mM (Dunn et al., 1994) would allow significant TRPY1 currents (Figure 2). Considering that mono-

valent cations K+ and Na+ are the major charge carriers used to record TRPY1 currents in the yeast vac-

uole and in HEK-293 cells, Ca2+ storage and release may not represent major functions of vacuoles and

TRPY1 channels. Instead, upon hypertonic shock, which activates TRPY1, cation efflux from the vacuole

might provide osmolytes to the cytosol and thereby counteracts water deprivation. The vacuolar Ca2+-

dependent inhibition of TRPY1 might protect the yeast cell from cytosolic Ca2+ overload after hyper-

osmotic-shock-induced channel activation and increase of the vacuolar [Ca2+] subsequent to loss of

vacuolar water.

Limitations of the Study

We studied the Ca2+-dependent modulation of the yeast vacuolar TRP channel and identified two

aspartate residues in the outer vestibule as essential for Ca2+ binding and Ca2+-dependent inhibition.

The structure of TRPY1 is not yet known, and we aligned the S5, pore linker, and S6 structure of TRPY1 ac-

cording to the published structure of Xenopus TRPV4. Thus the mechanism we discuss for the Ca2+-depen-

dent inhibition of TRPY1 reflects our experimental data along with a TRPY1 model, obtained due to an

alignment to the available structure of another TRP protein. The suggested scenario awaits further support

by structural data of TRPY1.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Transparent Methods and six figures and can be found with this article

online at https://doi.org/10.1016/j.isci.2018.11.037.
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Figure S1 Vacuolar Ca2+-dependent inhibition of TRPY1 at vacuolar pH 5.5, related 
to Figure 2 

 
(A) Whole-vacuole currents at -80 and 80 mV extracted from 200 ms ramps (0.5 Hz) 
spanning from 150 to -150 mV, Vh=0 mV, plotted versus time, activated by cytosolic 
Ca2+ (1 mM, indicated by the bar) in the absence (black) and presence (red) of 1 mM 
Ca2+ (vacuolar, applied by the patch pipette) at a vacuolar pH of 5.5. (B) Current-
voltage relationships (IVs) of maximum Ca2+-induced (Imax) whole-vacuole currents in 
A. Currents are shown as means ± S.E.M. and IVs as means with the number of 
measured vacuoles in brackets. 
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Figure S2 Effects of divalent cations in the cytosol and in the vacuole on TRPY1 
currents, related to Figure 2 

 
Whole-vacuole currents at -80 and 80 mV extracted from 200 ms ramps (0.5 Hz) 
spanning from 150 to -150 mV, Vh=0 mV, plotted versus time, activated by 1 mM 
cytosolic divalent cations (Ca2+, Ba2+, Mn2+, Sr2+, application indicated by the bar) in 
the absence of vacuolar Ca2+ (A, left) or activated by 1 mM cytosolic Ca2+ 
(application indicated by the bar) in the absence (black) and presence of 1 mM 
vacuolar Ca2+, Ba2+, Mn2+ or Sr2+ (C, left) in yeast YVC1 KO cells expressing the 
wild-type YVC1 cDNA. (Black traces in A and C are the same). The corresponding 
current-voltage relationships (IVs) are shown next to the currents in A and C. (B, D) 
Statistics of the current amplitudes at -80 mV corresponding to the currents shown in 
A and C. All currents are normalized to the size of the vacuole (pA/pF) and are 
shown as means ± S.E.M. (A, B, C, D), IVs depict means (A, C). The number in 
brackets denote the number of measured vacuoles. One-way analysis of variance 
(ANOVA): not significant (ns), * p<0.05, ** p<0.01, *** p<0.001. 
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Figure S3 TRPY1 wild-type and mutants in yeast vacuoles, related to Figure 4  

 
Current-voltage relationships (IVs; A-E) and current amplitudes (F, G) correspond to 
the data shown in Figures 4D-H): Current-voltage relationships (IVs) of the basic 
currents after break-in (Ibasic; A, B) and maximum activated whole-vacuole currents 
(Imax; C-E) at 1 mM [Ca2+]cyt in the absence (A, C, E) or presence (B, D, E) of 
vacuolar Ca2+ in yeast YVC1 KO cells expressing YVC1 wild-type or mutant cDNAs 
(Figure 4D-H). IVs are extracted from 200 ms voltage ramps spanning 150 to -150 
mV, Vh=0 mV. F and G depict the statistics of the basic (F) and maximal Ca2+-
activated (G) currents at -80 mV from the experiments in Figure 4D-H in the absence 
(left, black) and presence (right, red) of 1 mM vacuolar Ca2+. IVs are normalized to 
the cell size (pA/pF) and are shown as means; bars depict means ± S.E.M. with 
number of measured cells in brackets. (H) Statistics of the Ca2+ signals measured by 
relative luminescence units (RLU) in Figure 4I shown as means ± S.E.M. with the 
number of experiments (x) from y transformations (x/y). One-way analysis of variance 
(ANOVA): not significant (ns), * p<0.05, ** p<0.01, *** p<0.001 compared to WT. 
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Figure S4 Vacuolar currents in YVC1 KO yeast expressing wild-type or mutant YVC1 
cDNAs (low expression levels) and single channel currents, related to Figure 4 

 
(A-C) Whole-vacuole currents at -80 and 80 mV extracted from 200 ms ramps (0.5 
Hz) spanning from 150 to -150 mV, Vh=0 mV, plotted vs. time, activated by cytosolic 
1 mM Ca2+ at 0 (black) or 1 mM (red) vacuolar (patch pipette) Ca2+ in yeast YVC1 KO 
cells expressing TRPY1 wild type (WT; A), D401A (B) or D405A (C) cDNAs. 
(Plasmids lacking YVC1 promotor and termination sequence => low expression level 
of YVC1 WT and mutants => low current amplitudes compared to Figure 4). Bars 
indicate application of 1 mM Ca2+. Currents are normalized to the cell size (pA/pF) 
and are shown as means ± S.E.M.. The number in brackets denote the number of 
measured cells (x). (D) Representative current traces from voltage steps to 40 mV 
and -40 mV applied to excised (outside-out) vacuolar patches of yeast expressing 
TRPY1WT, TRPY1D401A and TRPY1D405A in the absence (left) and presence (right) of 
1 mM vacuolar Ca2+ (dashed lines = no channels open). (E) Single channel current 
amplitudes of TRPY1WT, TRPYD401A and TRPY1D405A in the absence and presence of 
vacuolar 1 mM Ca2+, analyzed at 40 mV from current traces of voltage steps in 
whole-vacuoles and excised (outside-out) vacuolar patches. Single channels of 
TRPY1D405A were analyzed from yeast cells transfected with single copy pRS316 
CEN plasmids without its own promoter (see C). Current amplitudes in E are shown 
as means ± S.E.M. with number of independent experiments indicated. One-way 
analysis of variance (ANOVA): p<0.05, ** compared to WT in the absence of 
vacuolar Ca2+.  
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Figure S5 TRPY1 wild-type and mutants in HEK-293 cells, related to Figure 5 

 
Current-voltage relationships (IVs; A-D and G-I) and current amplitudes (E-F and J) 
correspond to the data shown in Figures 5B-G and H-J, respectively: Current-voltage 
relationships (IVs) of the basic current after break-in (Ibasic; A, B) and maximum 0.75 
M sorbitol-induced (Imax; C, D) whole-cell currents in the absence (A, C) or presence 
(B, D) of extracellular 1 mM Ca2+ in HEK cells mock-transfected (empty vector; con, 
control), and transfected with wild-type or mutant YVC1 cDNAs (as in Figures 5B-G). 
(G-I) Current-voltage relationships of 3 µM cytosolic Ca2+-induced whole-cell currents 
in the absence (black) or presence (red) of extracellular Ca2+ in HEK cells transfected 
with wild-type or mutant YVC1 cDNAs (as in Figures 5H-J). IVs are extracted from 
400 ms voltage ramps spanning from -100 to 100 mV, Vh=0 mV, normalized to the 
cell size (pA/pF) and shown as means. E and F depict the statistics of the basic (E) 
and maximal 0.75 M sorbitol-induced (F) currents at 80 mV from the experiments in 
Figures 5B-G and J the statistics of the 3 µM cytosolic Ca2+-induced current (180 s 
after break-in) in Figures 5H-J in the absence (left, black) and presence (right, red) of 
1 mM (E, F) or 2 mM (J) extracellular Ca2+. Bars show means ± S.E.M.. The number 
in brackets denote the number of measured cells. One-way analysis of variance 
(ANOVA): not significant (ns), * p<0.05, *** p<0.001 compared to WT (E, F) or 
compared to 0 ext. Ca2+ (J). 
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Figure S6 S5-S6 linker sequence alignment and structural modelling of TRPY1, 
related to Figure 6 

 
(A) The S4-S5 linker sequence of Saccharomyces cerevisiae TRPY1 (scTRPY1) and 
the S4-S5 linker sequences defined by the structures of rat TRPV6 (rTRPV6) (Singh 
et al., 2017), xenopus TRPV4 (xTRPV4) (Deng et al., 2018), rat and human TRPV1 
(rTRPV1, hTRPV1) (Liao et al., 2013), rat TRPV3 (rTRPV3), rabbit TRPV2 
(rbTRPV2) (Zubcevic et al., 2016) and human TRPA1 (hTRPA1) (Paulsen et al., 
2015) were aligned by MUSCLE 3.8. Green boxes mark the selectivity filters. (B, C) 
Models for TRPY1 based on xenopus TRPV4 ((Deng et al., 2018), PDB: 6BBJ). For 
the structural alignment, residues 601-700 in TRPV4 were replaced by residues 367-
466 from TRPY1. The aspartate residues 398, 401, 405, 425 and glutamate residues 
428 and 429 facing the yeast vacuole lumen are indicated by red sticks, Ca2+ by red 
balls. (B) Side view of the S5, pore loop and S6 domains of two opposite TRPY1 
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wild-type subunits in the absence (left) and presence (right) of Ca2+. (C) Top view of 
the S5, pore loop and S6 domains of four TRPY1 wild-type subunits in the absence 
and presence of Ca2+ (left), and four non-Ca2+ binding TRPY1D401A and TRPY1D405A 
subunits (right). Note, that the putative lower gate, represented by the residues I455 
and Y458 (see B), narrows significantly upon Ca2+ binding at residues D401 and 
D405 in TRPY1 wild-type (B, C). 
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Transparent Methods 

Yeast cell cultures and expression plasmids 

For patch clamp and Ca2+ Imaging, Saccharomyces cerevisiae cells (wild-type 

strain: W303; YVC1-deficient strain: YVC1::TRP1 in W303, GSY1180) were cultured 

overnight in liquid YPD or SD media (both Sigma Aldrich, St. Louis, US) at 30°C with 

rotary shaking. The cells were harvested at an OD600 between 1.2 and 1.8. The YVC1 

gene encoding wild-type TRPY1 (NCBI accession number NM_001183506.1) was 

subcloned into the pRS316 vector (Sikorski and Hieter, 1989) with its own promoter 

and terminator sequence. All expression plasmids used in this study for 

transformation in YVC1-deficient yeast cells are summarized in Table 1. For Ca2+ 

imaging, these cells were co-transformed with plasmid pEVP11-AEQ89 (Batiza et al., 

1996) encoding the Ca2+ indicator aequorin. 

 

Antibodies, Western blots and cell surface biotinylation 

The rat monoclonal anti-TRPY1 antibody (Chang et al., 2010) was generated in-

house using amino acid residues 577 to 675 (C-terminus) of the TRPY1 protein, 

affinity-purified and used at a dilution of 1:500 for Western blotting. Cell lysates were 

prepared (Wright et al., 1989), proteins separated by sodium dodecyl sulfate 

polyacrylamide gel electrophoresis and blotted onto polyvinylidene difluoride (PVDF) 

membranes (Thermo Fisher Scientific, Schwerte, Germany). Proteins were detected 

with horseradish peroxidase-coupled secondary antibodies and the Western 

Lightning Chemiluminescence Reagent Plus (Perkin Elmer) for HEK-293 cells and 

the SuperSignal West Femto Maximum Sensitivity Substrate (Thermo Fisher 

Scientific) for yeast. Original scans were saved as TIFF files from LAS 3000 

(Fujifilm), which were further processed in Adobe Photoshop. Images were cropped, 
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resized proportionally, and brought to the resolution required for publication. For 

yeast TRPY1 wild-type and mutant protein densitometric quantification, backgrounds 

of the Western blots were subtracted and TRPY1 signal intensities were normalized 

to the signal intensity of the loading control SRP1. The following additional antibodies 

were used (dilution, company): Anti-rat peroxidase-conjugated goat antibody 

(1:2,000, Sigma-Aldrich, Taufkirchen, Germany). anti-aequorin rabbit polyclonal 

antibody (1:1,000, Abcam, Cambridge, UK), anti-rabbit goat peroxidase-conjugated 

IgG (1:10,000, Santa Cruz Biotechnology, Dallas, TX, USA), anti-Srp1 rabbit 

antibody (1:1,000, (Gorlich et al., 1996)). Cell-surface protein biotinylation was 

essentially performed as described in (Fecher-Trost et al., 2013). 

 

Ca2+ imaging in yeast cells 

The aequorin photoprotein was used to measure cytosolic free [Ca2+] in yeast cells 

(Denis and Cyert, 2002). Cells were resuspended in fresh medium to a density of 

OD600=10. Coelenterazine (Synchem, Felsberg, Germany) was added to a cell 

suspension of 700 to 1,000 µL at a final concentration of 60 µM. After incubation for 

20 min at 30°C, cells were pelleted and resuspended in 700-1,000 µL of fresh 

medium and incubated again for 45-90 min at 30°C on a roller. 100 µL of the cell 

suspension were placed into microplate wells and the basal level of luminescence 

was detected for 30 s at 30°C using a microplate reader (Infinite M200, Tecan, 

Männedorf, Switzerland). Thereafter 100 µL media containing 3 M NaCl were added 

yielding a final NaCl concentration of 1.5 M (“hyperosmotic shock”). The 

luminescence intensity was monitored at 470 nm and plotted as relative 

luminescence units (RLU) over time using the i-control 1.7 microplate reader 

software (Tecan). The relative luminescence units obtained for TRPY1 mutants were 
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normalized to the luminescence units obtained by cells expressing the wild-type 

YVC1 cDNA at the same day. 

 

Preparation of giant vacuoles, and whole-vacuole and excised vacuolar patch clamp 

Spheroplasts were prepared as described (Bertl and Slayman, 1990). Briefly, 

yeast cells were incubated in 3 mL of incubation buffer (50 mM KH2PO4, 0.2% b-

mercaptoethanol, pH 7.2) for 15 min. In order to remove the cell wall 4 mL of 

protoplasting buffer (50 mM KH2PO4, 0.2% b-mercaptoethanol, 2.4 M sorbitol, pH 

7.2) including 150 mg bovine serum albumin (fraction V protease-free; Carl Roth, 

Karlsruhe, Germany) and zymolyase 20T (ICN Biochemicals, Costa Mesa, USA) to a 

final concentration of 1 mg/mL were added. After 45 min incubation at 30°C on a 

roller, spheroplasts were harvested and resuspended in stabilizing buffer (220 mM 

KCl, 10 mM CaCl2, 5 mM MgCl2, 5 mM 2(N-Morpholino)ethanesulfonic acid (MES), 

1% (w/v) glucose, pH 7.2). Spheroplasts were incubated for 1 to 2 days to expand 

and form large vacuoles. The plasma membranes were released by releasing buffer 

(100 mM potassium citrate, 5 mM MgCl2, 10 mM glucose, 10 mM MES, pH 6.8). After 

washing with bath solution (see below), the vacuoles were used for whole-vacuole 

patch clamp experiments. 

Break-in was performed by short voltage pulses (850-1,100 mV, 1-5 ms) and 

currents were recorded using an EPC-9 patch clamp amplifier (HEKA, Lambrecht, 

Germany). Experiments were performed at an axiovert 135 microscope (Zeiss, 

Oberkochen, Germany) equipped with a 40x LD Achroplan objective (Zeiss), a 470 

nm LED (Rapp OptoElectronics, Hamburg, Germany) and a GFP filter set (Zeiss). 

Patch pipettes were pulled from glass capillaries GB150T-8P (Science Products, 

Hofheim, Germany) with a PC-10 micropipette puller (Narishige, Tokyo, Japan) and 
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after filling with internal solution had resistances between 2 and 4 MΩ. Both internal 

(patch pipette = vacuolar) and external (bath = cytosolic) saline contained 150 mM 

KCl, 5 mM MgCl2, 2 mM dithiothreitol (DDT), 10 mM HEPES, pH 7.2. In some 

experiments, various concentrations of CaCl2, BaCl2, SrCl2, or MnCl2 were added 

either in the patch pipette, or in an application pipette for direct application onto the 

measured vacuole. For K+-free and low Cl- conditions, KCl was substituted by 

tetraethylammonium (TEA) chloride or potassium gluconate, respectively. 

Voltage ramps of 200 ms spanning from 150 to -150 mV were applied every 2 s 

from a holding potential (Vh) of 0 mV. From the individual ramp recordings, inward 

and outward currents were extracted at -80 mV and 80 mV, respectively, and plotted 

versus time. Representative current-voltage relationships (IVs) were extracted at the 

stable phase of the current. Currents were normalized to the vacuolar capacitance, 

which was extracted as a representative measure for the size of the vacuole to 

calculate current densities (pA/pF). Single channel current amplitudes were 

measured at -40 mV from current traces of voltage ramps (150 to -150 mV, 200 ms, 

Vh 0 mV) and voltage steps (-40 mV, 2 s, Vh 0 mV), and at 40 mV from current traces 

of voltage steps (40 mV, 2 s, Vh 0 mV) in whole-vacuoles and in excised (outside-out) 

vacuolar patches. Please note that the membrane potentials refer to the cytosolic 

side, i.e. inward currents at -80 mV represent the movement of positive charges from 

the vacuole towards the cytosol (Bertl et al., 1992). 

 

Site-directed mutagenesis, modelling and transfection of HEK-293 cells  

The YVC1 cDNA, encoding wild-type TRPY1 (NM_001183506.1) was used as 

template for site-directed mutagenesis using the Q5 site-directed mutagenesis kit 

(New England BioLabs, Ipswich, USA). All DNAs were sequenced on both strands. 
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Table 1 summarizes all expression plasmids used in this study. Figure S6B and C 

were prepared using PyMOL Molecular Graphics System (Version 1.5.0.4, 

Schrödinger, LLC, New York, NY, USA) by Coot (Emsley et al., 2010), based on the 

coordinates of xenopus TRPV4 (PDB: 6BBJ; (Deng et al., 2018)). The full-length of 

xenopus TRPV4 tetrameric structure was used as template. Amino acids 601 to 700 

of TRPV4 were replaced by amino acids 367 to 466 (S5, pore linker, S6) from yeast 

TRPY1 (wild-type, D401A and D405A) in Coot. The structural model of wild-type 

TRPY1 was calculated in the absence and presence of Ca2+ in close proximity to 

D401 and D405. 

HEK-293 cells (ATCC, CRL 1573) were cultured in DMEM (Dulbecco’s modified 

eagle medium, Thermo Fisher, Waltham, USA), 10% fetal bovine serum (FBS), 1% 

penicillin/streptomycin). For patch clamp experiments the HEK-293 cells were 

transfected with 2 µg of the bicistronic pCAGGS-IRES-GFP vector (mock) or 

plasmids coding for TRPY1 wild-type or the mutants (see Table 1). Fugene HD 

(Promega, Madison, USA) Lipofectamine 2,000 or 3,000 (Invitrogen, Carlsbad, USA) 

and 293 Cell Avalanche (EZ Biosystems, College Park, USA) were used as 

transfection reagents. For whole-cell patch clamp HEK-293 cells were plated on 

glass cover slips and used for experiments 24-72 h after transfection. The positively 

transfected HEK-293 cells were identified by their expression of GFP.  

 

Whole-cell patch clamp experiments in HEK-293 cells 

Whole-cell currents were recorded using the same system and software as 

described for yeast vacuolar patch clamp. Voltage ramps of 400 ms spanning from -

100 to 100 mV were applied every 2 s from a holding potential of 0 mV. Currents 

were filtered at 2.9 kHz and digitized at 400 ms intervals. From the individual ramp 

recordings, inward and outward currents were extracted at -80 mV and 80 mV, 



 13 

respectively, and plotted versus time. Representative current-voltage relationships 

(IVs) were extracted at the indicated time points. Currents were normalized to the cell 

capacitance to calculate current densities (pA/pF). Patch pipettes were filled with 

internal saline comprising 120 mM Cs-glutamate, 8 mM NaCl, 1 mM MgCl2, 10 mM 

Cs-BAPTA, 10 mM HEPES (pH 7.2). Ca2+ concentrations in the pipette solution were 

adjusted by the combination of 10 mM Cs-BAPTA with 3.1, 8.2, 9.3, and 9.8 mM 

CaCl2 to reach final free Ca2+ concentrations of 100 nM, 1 µM, 3 µM, and 10 µM, 

respectively, calculated by WEBMAXC STANDARD (www.stanford.edu). The 

external solution comprised 140 mM NaCl, 2.8 mM KCl, 2 mM MgCl2, 10 mM 

HEPES, 10 mM glucose (pH 7.2) with or without 1 or 2 mM CaCl2. Hyperosmotic 

shock was applied directly onto the measured cells using an application pipette 

containing 0.5 or 0.75 M sorbitol solved in external solution. 

 

45Ca2+ binding 

25-mer peptides as indicated were synthesized (Intavis ResPepSL peptide spot 

synthesizer) and spotted at approximately 16 nmoles per spot) onto hardened 

cellulose membranes. The membranes were activated by methanol (5 min), washed 

with distilled water and soaked 120 min in buffer containing 60 mM KCl, 5 mM MgCl2 

and 10 mM imidazole-HCl, (pH 6.8), changed every 30 min. Then, membranes were 

incubated for 30 min in the latter buffer containing additional 1.5 µM (1mCi/L) 45Ca2+, 

subsequently rinsed with 50% ethanol for 5 min and dried at room temperature for 3 

h. After exposure of the dried membrane to a phosphorimager screen (BAS-IP MS 

2040, Fujifilm, Japan) for 12-24 h the screen was scanned by a Typhoon imager 

(Typhoon FLA 9500, GE Healthcare Life Sciences, USA) 

 

Analysis and Statistics 



 14 

Patch clamp data were first analyzed in Patchmaster or Fitmaster (HEKA), then 

transferred to IgorPro (WaveMetrics, Portland, USA) for further analysis and 

graphical presentation. Yeast luminometric Ca2+ imaging data were transferred as 

Excel files to IgorPro to prepare graphs. IgorPro or GraphPad PRISM (GraphPad, La 

Jolla, USA) were used to prepare the bar graphs and to test for statistically significant 

differences between the means of the independent groups with one-way analysis of 

variance (ANOVA). ns, *, **, *** represents p values of p > 0.05, p ≤ 0.05, p ≤ 0.01, p 

≤ 0.001, respectively. The error bars represent the standard error of the mean 

(S.E.M.). Final figures were prepared in CorelDRAW (Corel Corporation, Ottawa, 

Canada).  
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