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Low plasma testosterone (T) levels correlated with metabolic syndrome, cardiovascular diseases, and
increased mortality risk. T exerts a significant effect on the regulation of adipose tissue accumulation,
and in the glucose and lipids metabolism. Adipocytes are the primary source of the most important
adipokines responsible for inflammation and chronic diseases. This review aims to analyze the possible
effect of T on the regulation of the proinflammatory cytokines secretion.

A systematic literature search on MEDLINE, Google Scholar, and Cochrane using the combination of
the following keywords: “testosterone” with “inflammation,” “cytokines,” “adiponectin, CRP, IL-1B, IL-
6, TNFq, leptin” was conducted. Sixteen articles related to the effect of low T level and 18 to the effect of
T therapy on proinflammatory cytokine were found.

T exerts a significant inhibitory effect on adipose tissue formation and the expression of various
adipocytokines, such as leptin, TNF-a, IL-6, IL-1, and is positively correlated with adiponectin level,
whereas a low T level is correlated with increased expression of markers of inflammation. Further
studies are necessary to investigate the role of T, integrated with weight loss and physical activity, on its
action on the mechanisms of production and regulation of proinflammatory cytokines.
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The development and progression of chronic diseases are correlated with low T level and
inflammatory biomarkers, but their mechanisms remain poorly understood. T deficiency
(also known as hypogonadism) in older men has been associated with metabolic syndrome [1],
neurodegeneration [2], and increased risk of cardiovascular diseases (CVDs) and all-cause
mortality [3] independently of other numerous risk factors [4, 5]. Similar observations were
reported in young men [6]. Before any concurrent manifestations of CVD or other systemic
diseases, low T level is correlated with elevated C-reactive protein (CRP) level [7], macro-
phage inflammatory protein 1-a, macrophage inflammatory protein 1-8, and TNF-a in young
and older men [8]. CRP is a sensitive marker of inflammation produced by liver [9] and is
correlated with coronary heart disease and deaths from other causes [7].

An inflammatory status due to proinflammatory cytokines is particularly evident in the
elderly [10], and in patients with low T levels and obesity [11]. Furthermore, adipokines
mediate insulin resistance [12] and the principal adipokines involved are adiponectin, leptin,
resistin, visfatin, chemerin, TNF-«, IL-1, IL-6, IL-8, IL-10, plasminogen activator inhibitor-1,
monocyte chemoattractant protein-1 (MCP-1), and retinol binding protein-4 (RBP-4) [13].
Higher levels of proinflammatory cytokine play a crucial role in the development of CVD [14],
and T therapy provides beneficial effects on the pathophysiological markers and clinical
symptoms of coronary heart disease [15].

Furthermore, adipokines are involved in the development and progression of cancer
[16]. The etiology of elevated inflammatory markers remains incompletely defined [17],

Abbreviations: BMI, body mass index; CRP, C-reactive protein; CVD, cardiovascular disease; ER, estrogen receptor; HMW, high
molecular weight; MCP-1, monocyte chemoattractant protein; OPG, osteoprotegerin, PCOS, polycystic ovary syndrome; T,
testosterone.
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but nutrition and physical inactivity also exert a primary role. Little is known about if and
how sex steroid hormone and inflammation pathways may interact to influence the
aging process or the development and progression of chronic diseases, including CVD
and prostate cancer, in men. This study aims to evaluate the effect of T on proinflammatory
cytokines.

1. Methods

A systematic literature search was performed using PubMed, Google Scholar, and Cochrane
using the combination of the following keywords: “testosterone” and “inflammation,” “cy-
tokines,” “adiponectin,” “CRP,” “IL-1B, IL-6, TNFq, leptin.” All cross-sectional and longi-
tudinal trials evaluating the incidence of low T in men with moderate to severe inflammation
were included. Furthermore, clinical studies that investigated the effect of T administration

on inflammatory markers were also considered.

2. Results

Out of 824 retrieved articles, 35 were included in the analysis and had been divided into two
groups: one group includes 17 studies evaluating the incidence of inflammatory diseases in
men with low T level enrolling 14,658 patients with a mean age of 59.9 *+ 12.8 years (Table 1).
The other group includes 18 studies that evaluated the effect of T therapy on plasma level of
inflammatory markers enrolling 1654 patients with a mean age of 56.4 * 15.6 years (Table 2).
Among the first group, only one study did not find any correlation between T level and CRP,
but this study was conducted on healthy middle-aged men, whereas all the other studies
found a significant negative correlation between T level and inflammatory markers. Among
the studies evaluating the effect of T therapy on proinflammatory markers, six studies found
no effect.

3. Discussion

Low T levels in men were significantly associated with high level of inflammatory markers in
different clinical conditions such as obesity [18], metabolic syndrome [19, 22, 32], heart failure
[33], healthy elderly population [20, 22, 27, 28, 30], carotid atherosclerosis [23], hypo-
gonadism [8], urologic symptoms [26], type 2 diabetes [29], primary care center [34] and are
summarized in Table 1. In all studies, a negative correlation was found between low T levels
and CRP, whereas only a few studies explored IL-6 [18, 30, 33] and TNF-« [8, 33]. Haring et al.
[24] found a negative correlation between sex steroids plasma level in men with markers of
inflammation. Bhatia et al. [29] showed that low T was inversely correlated with CRP and
may contribute to mild anemia. Maggio et al. [30] found that T level was inversely correlated
with IL-6r [35]. An extensive epidemiological study revealed that men with low T level had a
higher incidence of obesity, metabolic syndrome, cancer, and acute inflammation [34]. Only a
few studies had adjusted the data for other sex hormones [21, 35]. In elderly men, the reduced
levels of T were correlated with the incidence of metabolic syndrome, insulin resistance, and
inflammation evidencing that high CRP levels can be considered independent predictors of
metabolic syndrome [19, 22]. Some studies that evaluated the correlation of CPR with low T
level did not adjust for other confounders such as smoking and obesity [22, 23, 25, 27, 34]. A
few epidemiologic studies did not find any consistent correlation between sex steroid hor-
mones and inflammatory biomarkers in men [30-32]. Others found a negative correlation
between the level of androgens with inflammatory markers [21, 25-28].

The majority of the studies found an evident protecting effect of T against inflammation
independently of the clinical condition. However, it is difficult to draw a global evaluation
because only a few studies have detected more than one cytokine in addition to CRP [8, 18,
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Table 1. Correlation Between T Level and Inflammatory Markers in Hypogonadal Men

Authors Subjects Age Clinical Picture Marker of Inflammation
Tremellen et al. 2017 [18] 50 M 35.1 Adiposity Negative correlation between T with CRP, IL-6, and
endotoxemia.
Wickramatilake et al. 153 M 30-70 Metabolic syndrome Low T correlated with high CRP level.
2015 [19]
Tsilidis et al. 2013 [20] 1520 M 44.3 NHANES population High androgen and low estrogen level inversely

correlate with inflammation markers (CRP
and white blood cells).

Zhang et al. 2013 [21] 1989 M 57  Population-based cohort High androgens level correlate with reduced CRP.

Chrysohoou et al. 2013 [22] 467 M 75  Metabolic syndrome T inversely correlated with CRP and insulin level.

Soisson et al. 2012 [23] 350 M 65  Carotid intima-media Low T level correlated with carotid intima-media

thickness thickness and high CRP.

Haring et al. 2012 [24] 1344 M  20-79 Normal population TT, SHBG, free T, and DHEAS are inversely correlated
with CRP, fibrinogen, and oxidative stress.

Brand et al. 2012 [25] 2418 M 40-78 European Prospective Total T and SHBG are inversely correlated with WBC.

Investigation into Cancer

Bobjer et al. 2013 [8] 40 M 37.4 Hypogonadism Significantly elevated levels of the proinflammatory
cytokine TNF-a, MIP-1a, and MIP-1B

Kupelian et al. 2010 [26] 2301 M 3079 Urologic symptoms Inverse dose-response correlation between T and
SHBG levels with CRP levels.

Kaplan et al. 2010 [27] 467 M 52 Aging men Inverse relationship between T and CRP.

Tang et al. 2007 [28] 381 M 78.8 Nursing home resident T level correlated negatively with CRP.

Bhatia et al. 2006 [29] 70 M T2D 56.8 T2D Low TT and FT level in T2D patients were correlated
with CRP and anemia.

Maggio et al. 2006 [30] 467 M 65  Normal older men IL-6 inversely correlated with total and bioavailable T.

Van Pottelbergh 715 M 42.7 Healthy middle-aged men No correlation between total and free T with CRP

et al. 2003 [31] was found.

Laaksonen et al. 2003 [32] 1896 M 52 Metabolic syndrome Total and free T correlated inversely with CRP.

Hall et al. 2002 [33] 30 M HF 67  Heart failure Inverse correlation of T and bio-T with IL-18, TNF-a,
and IL-6.

Abbreviations: bio-T, bioactive testosterone; CRP, C reactive protein; FT, free testosterone; HF, heart failure; M, men;
MIP-1a and -2, macrophage inflammatory protein-1la and 18; NHANES, National Health and Nutrition Evaluation
Survey; SHBG, sex hormone globulin; STEMI, ST-Elevation Myocardial Infarction; T2D, type 2 diabetes; TT, total
testosterone.

33]. The correlation of T with inflammation should be evaluated on a larger number of
biomarkers and adjusted with many confounder factors.

The effect of T therapy on the secretion of inflammatory cytokines levels in men have been
investigated by many studies [35—51], which are summarized in Table 2.

Two randomized trials showed that T therapy in hypogonadal men produced a decrease in
the concentration of adipokines [42, 47], but other trials did not reach the same results [49].
Singh et al. [51] did not observe any correlation between different doses of T enanthate
administered with insulin activity and CPR level in young eugonadal patients (of 18 to
35 years old). Nasser et al. [62] found that T therapy was effective in Crohn disease,
determining a reduction in CRP and Crohn Disease Activity Index. Other studies did not find
any variation of CRP level after T' administration in elderly men with low plasma T (160 mg
per day of T undecanoate orally) [35] and on proinflammatory cytokines (Sustanon 200 mg
every 2 weeks over 3 months) [44]. Robust clinical evidence reported that T therapy in
hypogonadal men had an attenuating effect on inflammatory markers [36, 42, 43, 46-50].
However, others [35, 38, 40, 44, 45] did not find any significant effect [see Table 2]. In the
studies reported in this table, some discrepancies are evident, such as the methodology
adopted for the trials, the different dose of T administrated, the time of observation, and
different clinical conditions. The transdermal administration of T in older men did not show
any inhibitory effect on CRP, TNF-«, and IL-6 [38, 45], whereas T undecanoate 1000 mg every
6 weeks seems capable of reducing the inflammatory markers [42, 43]. Differences observed
in these studies can be related to different doses of T administration where transdermal way
is lighter compared to the injection.

Furthermore, a higher incidence of inflammation and cancer in patients with low T level
was reported [53]. Considering the data from these studies, it appears evident that the
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Table 2. Effect of T Administration on Inflammatory Markers

Authors Subjects Age Type of Study T Level T Therapy Duration Marker of Inflammation
Dhindsa et al. Randomized T =252 + 82 ng/d., T 250 mg/2 wk 6 mo Insulin sensitivity
2016 [36] placebo increased. Significant
controlled trial reduction of CRP, IL-18,
44 HH, T2D 54.6 FT =4.4 + 1.2 ng/dL TNF-a, leptin
Nasseretal. 2015 92 M Crohn 60 Cumulative, T = 12.1 nmol/LL T undecanoate Ty Significant reduction in CRP
[52] disease prospective, 1000/3 mo level and Crohn Disease
registry study Activity Index
Sonmez et al. 60 M, CHH 21.8  Observational T=0.26 =0.16 ng/mL T 250 (Sustanon) 6 mo No changes in CRP level.
2015 [37] every 3 wk
T transdermal
50 mg/d
Maggio et al. 109 M 71.9  Cohort study T < 475 ng/dL T patch 6 mg/24 h 36 mo No significant changes in
2014 [38] TNF-a, IL-6, PCR.
Traish et al. 255 M 58.6 T=9.9 *+ 1.38 nmol/L. T undecanoate 60 mo Significant reduction in CRP
2013 [39] 1000/3 mo level.
Basaria et al. 179 M 73 Double-blind T =248 = 60 T transdermal 6 mo Significant reduction in PAI-
2013 [40] randomized FT=49+*12 gel 100 mg/d 1 and increase in IL-6.
placebo-
controlled trial
Saad et al. 110 M 59.6  Observational T=9.3 + 1.7nmol/LL T undecanoate 3-24 mo  Strong decline in BMI and
2011 [41] 1000/3 mo WC; less reduction in
CRP.
Kalinchenko 184 HM MetS 35-70 Double-blind, T < 12.0 nmol/L, T undecanoate 18 wk BM]I, leptin, insulin, IL-18,
et al. 2010 [42] randomized 1000 every TNF-a, CPR decreased.
placebo- 6 wk IL-6 and IL-10
controlled trial unchanged.
Giltay et al. 100 HM 34-69 Observational T =5.9-12.1 nmol/L. T undecanoate 15 mo Significant decline in CPR.
2008 [43] nonrandomized 1000 mg per
study 12 wk
Kapoor et al. 20 HM T2D 63 Double-blind T = 7.4 nmol/Li Sustanon 200 3 mo No significant effect on
2007 [44] placebo FT = 2.4 nmol/L, mg/2 wk resistin, TNF-q, IL-6, and
CPR. Leptin and
adiponectin reduced.
Nakhai-Pour 237 HM 60-80 Double-blind T < 13.7 nmol/LL T undecanoate 26 wk No changes in PCR.
et al. 2007 [35] randomized 160 mg/d
placebo-
controlled trial
Herbst et al. 52 W HIV 18-50 Placebo-controlled, T < 33 ng/dLk T patches 300 pm 24 wk No changes in inflammatory
2006 [45] randomized daily markers.
clinical trial
Page et al. 25 M 65-85 Observational Normal range T enanthate 600 3 wk Adiponectin and leptin level
2005 [46] mg/wk decreased.
Malkinet al. 2004 27 M 62 Single-blind T < 4.4 nmol/L Sustanon 100 4 wk Reduction in TNF-a, IL-18.
[47] randomized mg/wk Increase in IL-10.
placebo-
controlled trial
Lanfranco et al. 31 HM 36.5  Retrospective study T =4.4 = 0.4 nmol/Lk 6 mo Significant decrease in
2004 [48] adiponectin.
Singh et al. 61 M 18-35 Double-blind, Normal range T enanthate/wk 20 wk No significant effect on
2002 [51] eugonadal randomized trial 25 mg blood lipids, insulin
50 mg activity, and CRP.
125 mg
300 mg
600 mg
Ngetal 2002[49] 33 M (DHT) <60 Double-blind T < 15 nmol/LL DHT 70 mg 3 mo Significant changes in CRP,
placebo- transdermal/d sVCAM-1, or sSICAM-1.
20 M (hCG) controlled trial hCG 500 pgr/iwk
healthy
Sigh et al. 1997 15 HM 68 Observational FT < 60 ng/dL T cypionate 200 12 mo Significant decrease in

[50]

mg/biweekly

leptin level.

Abbreviations: Bio-T, bioactive testosterone; E2, 178-estradiol; FT, free testosterone; HCG, human chorionic go-
nadotropin; HM, hypogonadal men; M, men; T2D, type 2 diabetes; W, women.

administration of T is more effective in reducing inflammation in hypogonadal than eugo-
nadal men. In eugonadal men, the effect of T seems to be dose-dependent and that low doses
are ineffective as observed with oral and transdermal administration [35, 38, 45] also in
young men although hypogonadal [37]. Furthermore, the interaction of T with estradiol in the
regulation of systemic inflammation [54], adipose and muscular tissue mass, and other
hormones should be considered. More studies are necessary to evaluate the potential effect of
T in inhibiting the proinflammatory cytokines expressions.
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4. Mechanism of Action of T on Inflammation

A. Effects on Adipose Tissue

T and obesity are interactive, and an inverse correlation between T level and body fat mass
has been confirmed [55]. T therapy is effective in determining a sustained loss of body fat
mass in hypogonadal men [56]. Androgens are very active in the regulation of adipose tissue
metabolism and distribution due to the presence of androgen receptor (AR) on adipocytes [57,
58]. AR is present on preadipocytes with greater expression in visceral than in subcutaneous
fat depot, and can partially explain the different adipose tissue distribution [57]. Notably, in
adipocytes are also expressed estrogen receptor (ER) a and B [59, 60]. The activation of ER«
on dipocytes in males and females has a protective effect against body fat accumulation,
inflammation, and fibrosis [61] and the deletion of ERa gene reflects obesity in both sexes
[62]. In men, visceral fat deposition is significantly greater than in women due to the low
activation of ERa [63]. Visceral fat is correlated with metabolic syndrome [64] and CVDs
independently from other measures of adiposity [65].

The most consistent effect of androgen on body fat is the activation of lipolysis [66] and
inhibition of adipose tissue lipoprotein lipase activity [67]. Androgens markedly inhibit
adipogenesis blocking the differentiation into adipocytes in subcutaneous and visceral pre-
adipocyte in both sexes [68]. Singh et al. [69] showed that T and DHT regulate the pluripotent
mesenchymal cells determining their preferential development into the myogenic rather than
the adipogenic line. The study demonstrated that pluripotent cells are androgen-dependent and
have reciprocal effects on muscle and fat cells. The effect of sex steroids on influencing the
preadipocytes differentiation can explain the sexual dimorphism of body fat distribution [70].
Nonaromatizable androgen, such as DHT, has been shown to have a strong inhibitory effect on
the differentiation of human mesenchymal stem cells and human preadipocytes, in subcutaneous
and visceral (omental and mesenteric) fat deposits in men [71], whereas in women this effect
remains unclear. Estrogens favorite the development of fat cells in the subcutaneous fat tissue
and inhibiting it in the visceral body fat [72]. A high androgen level inhibits the adipose tissue
depots and improves insulin resistance and glucose tolerance in women and men [73]. Then, T
administration exerts the primary anti-inflammatory effect in reducing fat mass, which is the
source of many inflammatory cytokines.

B. Effects on the Expression of Inflammatory Adipokines

The effects of androgen on body fat reflect on many adipocytokines releasing, and the
mechanisms are summarized in Fig. 1.

B-1. Leptin

T level interacts profoundly with many proinflammatory cytokines. Leptin, the most specific
hormone secreted by adipocytes [74], is associated with adipose tissue expansion and with
body mass index (BMI) [75]. Leptin concentration is significantly higher in obese than in lean
individuals and for any given BMI more in women than in men [76]. Leptin level reduces T
secretion from rodent testes in vitro [77], inhibiting leptin receptor isoform present in Leydig
cells. From the other side, T level in men inhibits leptin secretion, independently by BMI,
suggesting that T exerts an inhibitory effect on adipocyte [78]. In men with metabolic
syndrome, the leptin level is higher, whereas T level is lower than in normal subjects [79].
Conversely, in women, androgen levels are positively correlated with high free and total
leptin level [80] also in polycystic ovary syndrome (PCOS) [81], evidencing a sexual di-
morphism of T on leptin secretion. There is a bidirectional effect between leptin and T se-
cretion. The lack of leptin or leptin receptors in humans and mice develop profound obesity
and infertility [82]. Leptin has a modulatory effect on Leydig cells function [83], inhibiting
basal T production [84]. Behre et al. demonstrated a significant inverse correlation between
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Figure 1. T exerts its anti-inflammatory activity through different mechanisms. Firstly,
T inhibits body fat expansion and reduces adipocytes size and metabolism. After its

aromatization in estradiol, T can activate AR and ERa and ERB, which contribute to
adipocytes regulation decreasing the release of adipokines (leptin, IL-6, TNF-«, OPG, MCP-
la) and improving adiponectin and visfatin production, which possess an anti-inflammatory
effect. Furthermore, T improves insulin activity and reduces the CRP from the liver.
Altogether, it results in a reduction of inflammation and development of chronic disease.

serum leptin levels with T and BMI in males, whereas serum estradiol had no influence [85].
The administration of T to young men suppressed serum leptin secretion, which returned to
the pretreatment level after cessation of T injections [86]. The short-term T administration, in
boys with pubertal delay, decreased leptin and insulin concentrations [87] and therefore
obesity [86]. Restoring the physiological level of serum T in men with metabolic syndrome can
discontinue the vicious circle of metabolic disorders resulting in a T deficiency and clinical
complications [88]. The antiobesity effect of T may be mediated by the leptin suppression.
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B-2. Adiponectin

Adiponectin, the highest expressed cytokine in adipocytes [89], is inversely correlated with
metabolic disorders and, CVD [90], with waist-to-hip ratio, and visceral fat [91, 92]. A higher
level of adiponectin is expressed in lean subjects, both in men and women, and is correlated
with better insulin sensitivity and lower TNF-« level [93]. Adiponectin level is lower in obese
compared with healthy subjects who have higher adiponectin level and a reduced risk of type
2 diabetes [94]. Type 2 diabetic patients with CVD had a lower level of adiponectin compared
to diabetic patients without CVD [95]. Furthermore, the plasma adiponectin level increases
relevantly following a reduction in body weight in the diabetic subjects as well as the
nondiabetic subjects [95].

Circulating level of adiponectin has a sexual dimorphism because adiponectin levels are
normally higher in females than in males [96, 97]. In hyperandrogenic PCOS obese women,
adiponectin level was significantly lower compared with normal women, whereas in thin
women, no difference has been observed between women with or without PCOS [98]. In PCOS
women, the level of adiponectin is reduced and more correlated with insulin resistance and
adipose tissue than androgen levels [99]. So it seems that adiponectin in women is more
influenced prevalently by the body mass. In young men, acute T treatment determines a
reduction of adiponectin high molecular weight (HMW) levels and low T level is associated
with increased adiponectin HMW levels [100]. T therapy has been shown to exert a direct
suppressive effect on adiponectin secretion in men with type 2 diabetes [44], in elderly men
[46] and in transsexual female patients [101]. Frederiksen et al. [102] found a decrease in
subcutaneous fat and adiponectin level after 6 months of T administration in aging men.
Estradiol has an opposite effect on T, determining the stimulation of adiponectin and its
receptors expression in skeletal muscle [103].

In rats, T controlled directly the sex differences in adiponectin by the activation of
androgen-mediated effects that regulates the secretion and metabolism of adiponectin [104].
The changes in circulating adiponectin level are highly correlated with the androgen levels,
but not with estradiol level. A nonestrogenic and nonaromatizable androgen such as tren-
bolone determines a reduction in adiponectin level and visceral fat similar to that caused by
T. Both T and trenbolone increased the HMW adiponectin in males and females and re-
duced the lower molecular weight adiponectin [104] showing that aromatizable and non-
aromatizable androgen have similar effects on the isoforms of adiponectin.

B-3. Osteoprotegerin

Osteoprotegerin (OPG) is a cytokine of the TNF superfamily [105], which regulates bone
resorption [106], and calcium metabolism in both bone and vascular tissues [107]. Body fat
is a potential source of OPG [108]. OPG has been proposed as a mediator of vascular cal-
cification [109]. High serum OPG levels were correlated with greater incidence of CVD
mortality [110], vascular calcification at coronary and aortic level [109, 111], and arterial
disease in type 2 diabetes [112]. OPG level is inhibited by androgens, whereas estradiol shows
an opposite effect [113]. The different action T vs estradiol on OPG secretion may explain why
T is less efficient than estradiol on inhibiting bone resorption in humans [114]. In hypo-
gonadal men, an increased RANKL activity and an increased bone turnover-related OPG has
been observed [115], whereas T administration in men significantly decreased OPG level
[116]. The decreased OPG level following T therapy reduced the incidence of cardiovascular
risk [116]. In women, OPG levels are positively correlated with T level [117]. In pre-
menopausal women, obesity favorites an increase of serum OPG levels, whereas weight loss
favorites a decrease of serum OPG levels [118]. In PCOS women, serum OPG level is lower
compared with nonhyperandrogenic control women [119], whereas Glintborg et al. [117]
showed that OPG levels were more correlated with bone mineral density in PCOS than with T
level. In conclusion, OPG production is inhibited by T in men, less evident in women, where
body fat mass seems to have a prevalent effect.
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B-4. Tumor necrosis factor-a

TNF-« is a potent cytokine prevalently secreted by macrophages after they have infiltrated
into adipose tissue in obese humans [120]. TNF-a mediates apoptosis, insulin resistance, and
lipolysis [121], inducing serine phosphorylation of insulin receptor substrates [122]. Fur-
thermore, TNF-a determines the alteration of endothelial permeability to immune cells and
small particles like low-density lipoprotein [123], promoting the first stage of atherosclerosis
increasing the transport of low-density lipoprotein across endothelial cells [124]. TNF-«
downregulates the mRNA level of adiponectin, a cytokine which contributes to maintaining
glucose and lipids homeostasis [125]. The effect of T on TNF-a secretion is poorly in-
vestigated. Recently, Chen et al. [126] showed that T significantly attenuated the release of
TNF-a in a dose-dependent manner and might reduce the inflammatory responses and
modulate the immune system. Withdrawal of T administration in hypogonadal men de-
termined significant increases in IL-6 and TNF-« [44]. Corrales et al. [127] evidenced that T
therapy in type 2 diabetic men caused a reduction or complete abrogation of natural ex vivo
production of IL-18, IL-6, and TNF-a. In young overweight and obese women with PCOS,
higher TNF-a has a positive correlation with androgen level and insulin resistance [128].

B-5. Monocyte chemoattractant protein-1

MPC-1 is a cytokine secreted by adipocytes in obese subjects with the effect to promote the
infiltration of monocytes/macrophages into adipose tissue [129]. The MCP-1 level is sig-
nificantly raised in obese subjects suggesting the concept that chronic inflammation is due to
excess adiposity [130]. Low T and high estradiol levels have a direct adverse effect on MCP-1
in vivo [131], showing that the action of T is regulated by estrogen level. Morooka et al. [132]
demonstrated in adipocytes cocultured with monocytes that the activation of AR determined
the suppression of MCP-1 release, particularly suppressed by DHT and chronic inflammation
in adipose tissue. High androgen level in women, as observed in PCOS, is correlated with a
significant increase in MCP-1 level and with abdominal obesity [133].

B-6. Interleukin-6

IL-6 is a cytokine that plays a fundamental role in inflammation, immune response, and
hematopoiesis [134]. IL-6 is secreted prevalently by white adipose tissue (for one-third), and
by skeletal muscles and liver [135]. The IL-6 expression is correlated, similarly to TNF-a,
with BMI, abdominal obesity, and free fatty acids level [136]. In adipose tissue and liver, IL-6
exerts proinflammatory activity responsible for insulin resistance [137]. IL-6 is also produced
by skeletal muscle during exercise mediating muscle hypertrophy and myogenesis [138].
There is consistent evidence that IL-6 plasma level increases in response to exercise [139] and
the production of IL-6 is stimulated by ROS from skeletal myotubes [140]. The IL-6 produced
by skeletal muscles affects white adipose tissue mass regulating glucose uptake capacity and
the lipogenic and lipolytic factors [141]. After weight loss, plasma level of IL-6 is reduced and
improves insulin sensitivity [142]. Adrenal androgens, particularly DHEA, had an inhibitory
effect on different cell types such as leukocytes and decreased IL-6 secretion [143], and the
suppressive effect was greater than that of DHT and estrogen [144]. In aged orchidectomized
male rats, at the supra-physiological level of T the inflammatory ILs, specifically IL-2, IL-6,
IL-10,IL-12, and IL-13, were elevated, whereas T supplementation decreased plasma IL level
[145]. In PCOS women, high androgen levels, in both lean and obese women, were correlated
with IL-6 and with insulin resistance [146]. However, IL-6 levels were found to be higher as
compared with controls, although IL-6 levels might be more dependent on nutritional status
[147]. These effects are inhibited by the neutralization of IL-6 with the anti-IL-6 antibody
[148]. After intense physical exercise, the IL.-6 production is inversely correlated with T level
[149]. T treatment (150 mg every two weeks) of aging type 2 diabetic men after 12 months
reduced or abrogate the production of proinflammatory cytokines (IL-1b, IL-6, TNF-«)
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entirely by monocytes and dendritic cells observed after stimulation with lipopolysaccharide
plus recombinant human interferon-vy. [150].

B-7. Resistin

Resistin is a proinflammatory cytokine that has the greatest effect on promoting athero-
sclerosis and CVD diseases [151, 152] and is a marker of heart failure [153]. Plasma resistin
level is positively correlated with coronary artery disease and mortality risk [154] and
predictors of all-cause mortality independent of other risk factors [155, 156]. Resistin showed
significant correlation with BMI, insulin resistance, obesity, and inflammation in patients
with type 2 diabetes [157, 158]. Resistin may be a link between insulin resistance and
androgens [159]. Although T therapy in hypogonadal men with type 2 diabetes decreases
leptin and adiponectin levels, no significant effect on resistin level has been observed [44].
Further research is necessary to clarify the effects of androgens on the regulation of resistin
plasma level and function.

B-8. Visfatin

Plasma visfatin concentration is increased in subjects with overweight/obesity, type 2 di-
abetes mellitus, metabolic syndrome, and CVDs [160]. In patients with metabolic syndrome,
visfatin i1s correlated with adiponectin [161], whereas in patients without metabolic syn-
drome, circulating visfatin levels were significantly correlated with glucose, insulin, and
triglyceride levels. A meta-analysis indicates that high-circulating visfatin level is an in-
trinsic characteristic of PCOS, suggesting visfatin as a potential biomarker for PCOS [162].

C. Future Directions

With advancing age, the decline of sex hormones patronizes the development of the inflammatory
processes that represent the basic mechanism for the development of chronic diseases. Adipokines
production increases in the condition of low T level. However, more specific and well-controlled
clinical trials analyzing the interaction of sex hormones on a wider number of adipokines that
interact with other risk factors. A low T level in men represents an important risk factor for health,
but its effect is modulated by estrogen level that should always be detected.

5. Conclusions

T level is determinant in the regulation of the inflammatory processes by inhibiting adi-
pocytes expansion, differentiation, function, and suppressing cytokines formation (leptin,
IL-6, TNF-a, MCP-1, resistin) while stimulating the adiponectin secretion. Low T level
has implications for metabolic health in both males and females and should be considered a
risk factor because of its correlation with metabolic syndrome and all-cause mortality [1].
The inhibitory effect of androgens on adipokines secretion can also interfere in cancero-
genesis reducing the progression and diffusion of the diseases. Low T level is correlated
with a high level of adipokines and inflammation, and T therapy is necessary to restore the
physiological, hormonal level. However, T administration in hypogonadal men on the in-
flammatory markers has shown conflicting results, probably related to the different dose
and duration time of T administration and the limited evaluation to a small number of
markers. Furthermore, not all studies were corrected for the many confounder factors, such
as fat mass distribution, nutritional intake, and muscle mass. Diet restriction and physical
exercise are important in the regulation of metabolic disorders. Finally, androgen therapy
in older men with T deficiency improves physical efficiency and reduces the risk of reho-
spitalization [163]. Chronic diseases in aging have a great impact on the lifestyle of patients
and public health cost due to the frequency of hospitalization. The reduction of the
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inflammatory state is relevant, and further investigations are required to evaluate the
mechanisms of proinflammatory cytokines regulation.
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