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Abstract

High-frequency oscillations (HFOs) are spontaneous magnetoencephalography (MEG) patterns 

that have been acknowledged as a putative biomarker to identify epileptic foci. Correct detection 

of HFOs in the MEG signals is crucial for accurate and timely clinical evaluation. Since the visual 

examination of HFOs is time-consuming, error-prone and with poor inter-reviewer reliability, an 

automatic HFOs detector is highly desirable in clinical practice. However, existing approaches for 

HFOs detection may not be applicable for MEG signals with noisy background activity. Therefore, 

we employ the stacked sparse autoencoder (SSAE)and propose an SSAE-based MEG HFOs 

(SMO) detector to facilitate the clinical detection of HFOs. To the best of our knowledge, this is 

the first attempt to conduct HFOs detection in MEG using deep learning methods. After 

configuration optimization, our proposed SMO detector outperformed other classic peer models by 
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achieving 89.9% in accuracy, 88.2% in sensitivity, and 91.6% in specificity. Furthermore, we have 

tested the performance consistency of our model using various validation schemes. The 

distribution of performance metrics demonstrate that our model can achieve steady performance.
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I. INTRODUCTION

The success of epilepsy surgery depends on the accurate pre-operative localization of 

epileptogenic zones [1]. But, to date, there are no established marker that are able to 

accurately determine the location and extent of epileptogenic zones [2]. The current clinical 

practice to estimate the epileptogenic zones replies on a variety of diagnostic indicators. 

With existing methods using epileptic spikes (typically < 70 Hz), surgery is ultimately 

unsuccessful in controlling seizures in approximately 50% of the cases [3][4][5][6][7][8]. 

However, recent reports [8][9][10][11][12] show that about 80% of patients with epilepsy 

could be seizure free if high frequency oscillations (HFOs, typically > 70 Hz) are used to 

localize ictogenic zones. It has been found that [13] the interictal HFOs are useful in 

defining the spatial extent of the seizure onset zones. There are increasing evidences to show 

that HFOs is a new biomarker pinpointing to the epileptogenic zones.

The majority of previous reports on HFOs [14][9][15][16] are based on intracranial 

recordings, such as intracranial electroencephalography (iEEG). The detection of HFOs with 

intracranial recordings is limited to surgical candidates. In addition, it can be very hard to 

place or insert electrode into some brain areas to record HFOs safely. Furthermore,true 

epileptogenic areas are typically unknown before intracranial recordings or surgery [3][8][9]

[10][11]. Therefore, noninvasive recordings of HFOs may be helpful in most cases.

Magnetoencephalography (MEG) is a relatively new technology for noninvasive detectction 

of epileptic activities. Compared with conventional scalp electroencephalography (EEG), 

MEG has higher spatial resolution to localize epileptic activities for epilepsy surgery [17]. 

Previous studies [18][19][20][21] have shown that MEG can detect epileptic spikes and 

HFOs. Neuromagnetic HFOs are associated with epileptogenic zones [22][23]. This enables 

the neuromagnetic HFOs to be putative biomarkers to identify epileptic regions of the brain. 

Therefore, it is critical to correctly detect HFOs in MEG signals for accurate and timely 

clinical evaluation of epileptic patients. Current clinical practice mainly replies on the visual 

review of HFOs in MEG signals by human experts. However, this subjective review process 

is time-consuming and error prone due to the large amount of data, and inter-reviewer 

reliability is often inconsistent and poor [24][25].

Automatic and objective detection of HFOs in MEG with advanced machine learning 

method may serve as a promising computer-aided diagnosis (CAD) tool to assist human 

experts for the visual review of MEG signals. In fact, a number of automatic approaches [26]

[27][28][29] have been proposed to facilitate the HFOs detection for iEEG. Given a signal 

segment, the HFOs detectors for iEEG extracted handcrafted features that were manually 

Guo et al. Page 2

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



designed based on observation or statistical analysis. For example, Burnos, et al. [27] 

developed handcrafted features, including high frequency peak and low frequency peak, to 

automatically detect HFOs in EEG signal. They optimized a threshold to recognize HFOs. 

Of late, another recent work [30] that focused on HFOs detection in MEG adapted the 

aforementioned automatic algorithm, but the threshold must be adjusted due to the high-

frequency artifacts [2]. Thus, it is very challenging to directly apply existing feature 

extraction methods for iEEG to MEG signals due to the noisy background activity [20][21]. 

This circumstance hinders the identification of HFOs in MEG signals. Furthermore, these 

handcrafted features commonly have no theoretical evidence to guarantee an optimal 

performance of HFOs detection. Under such circumstances, deep learning techniques [31]

[32][33][34] could be helpful to recognize HFOs from complex MEG signals.

Deep learning [35] is a promising avenue towards automatic feature extraction from big 

data. These state-of-the-art deep learning algorithms, such as deep neural networks (NN) 

[32][36] and deep convolutional neural networks (CNN) [33][37], have been successfully 

applied to speech analysis [38], object recognition [39][40] and image classification [41]. In 

recent studies [42], desirable accuracy was achieved by a stacked sparse autoencoder 

(SSAE) on noisy audio recognition. Similarly, the SSAE has been applied on cell detection 

in histopathological image analysis, such as identification of prostate and breast cancer [43]

[44][45]. These deep learning algorithms formulate the feature extraction procedure into an 

optimization process of model learning, indicating that the optimized high level abstract 

features could be directly extracted from the raw data. In this paper, we introduce deep 

learning into automatic HFOs detection using MEG signals.

The objective of this study is to develop an SSAE-based MEG HFOs (SMO) detector which 

is able to automatically extract the abstract representations (features) from MEG data in the 

time domain with minimal human interference. As summarized in [2], non-invasive 

detection and localization of HFOs in MEG are critical for the presurgical evaluation of 

patients. We would like to emphasize that our current SMO detector focused on detection of 

HFOs in MEG signals. Our central hypothesis is that a SSAE model in our SMO detector 

can perform feature extraction, along with dimension reduction to detect HFOs. Our 

proposed method does not depend on handcrafted features, and enables us to objectively and 

automatically detect and localize HFOs for epilepsy surgery and many other clinical 

applications.

II. MATERIALS AND METHODS

A. MEG Data

MEG data were obtained from 20 clinical patients (age: 6–60 years, mean age 32; 10 female 

and 10 male) affected by localization related epilepsy, which is characterized by partial 

seizures arising from one part of the brain, and were retrospectively studied. The data were 

acquired under approval from an Institutional Review Board and consent was obtained from 

the subjects whose data were used.All patients were surgical candidates. As one part of pre-

surgical evaluation, sleep deprivation and reduction of anti-epileptic drugs were used to 

increase the chance for capture HFOs during MEG recordings. The following additional 

patient inclusion criteria are used: (1) head movement during MEG recording less than 5 
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mm; and (2) the deflections of all MEG data within 6 pT (the MEG data were considered 

“clean”). These 20 patients had at least one visible lesion on structural images,underwent 

clinical intracranial recordings, and had epilepsy surgery.

MEG recordings were performed in a magnetically shielded room (MSR) using a 306-

channel, whole-head MEG system (VectorView, Elekta Neuromag, Helsinki, Finland). The 

sampling rate of MEG data was set to 2,400 Hz,and approximately 60 minutes of MEG data 

were recorded for each patient. The noise floor in our MEG systems were calculated with 

MEG data acquired without subject (empty room). The noise level was about 3–5 fT/Hz. 

The noise floor was used to identify MEG system noise. The empty room measurements was 

also used to compute noise covariance matrix for localizing epileptic activities (e.g. spikes, 

HFOs). Before data acquisition commenced, a small coil was attached to the nasion, left and 

right pre-auricular points of each subject. These three coils were subsequently activated at 

different frequencies for measuring the subjects’ head positions relative to MEG sensors. 

Each subject lay comfortably in the supine position,with his or her arms resting on either 

side, during the entire procedure. These subjects were asked to keep still with eyes slightly 

closed. A head localization procedure was performed before and after each acquisition in 

order to locate the patient’s head relative to the coordinate system fixed to the system dewar. 

A three dimensional coordinate frame relative to the subject’s head was derived from these 

positions. The system allowed head localization to an accuracy of 1 millimeters (mm). The 

changes in head location before and after acquisition were required to be less than 5 mm for 

the study to be accepted. To identify the system and environmental noise, we routinely 

recorded one background MEG dataset without patients just before the experiment.

MEG data were preliminarily analyzed at a sensor level with MEG Processor [46] [47]. The 

conventional spike-and-wave discharges were visually identified in waveform with a band-

pass filter of 1–70 Hz. HFOs were analyzed with a band-pass filter of 80–250 Hz 

(ripples)and a band-pass filter of 250–500Hz (fast ripples), respectively [46] [47]. These 

HFOs conincided with slower spikes in more than 80% of patients [23]. The HFOs was 

comfirmed using the HFO source analysis [12] based on intracranial recordings for these 

patients. We compared MEG ripples and intracranial recording ripples at source levels by 

comparing the MEG sources and the brain areas generating HFOs [48].

B. The SSAE-based MEG HFOs (SMO) detector

As shown in Fig 1, the proposed SMO detector is composed of three procedures: (1) signal 

subsampling; (2) L2 regularized SSAE and its pre-training; (3) softmax regression and the 

fine tuning of SMO detector; and(4) signal labeling.

1 ) Signal segmentation: Using a moving-window technique [49], the MEG signal 

from multiple channels would be segmented into signal segments. Different window size 

and overlap could be adjusted. In the current work, we applied a 2 seconds window size 

without overlap to the processed MEG signal. In this way, in spite of various length of MEG 

recording for different subjects, the output from the signal segmentation component of SMO 

detector are all unified to a signal segments with 2-second length.
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For the model evaluation purpose, the clinical epileptologists selected a number of HFOs 

and normal control (NC) signal segments based on the invasive recordings and surgical 

outcomes. A total of 102 signal segments (51 HFOs samples and 51 NC samples) were 

composed as a gold-standard dataset for model evaluation. The duration (i.e., window size) 

of each signal segment is 2 seconds. Namely, both HFOs and NC signal segments were 

represented in time domain by time series vectors with 4,800 data points.

2) Signal subsampling: Since the sample size of our gold-standard set (a total of 102 

for HFOs and NC signals) is far less than the dimension of feature (4,800), this may cause 

an overfitting of the machine learning model. Thus, we sought to reduce the dimension of 

the signal segments by a subsampling method. Fig 2 shows examples of (A) HFOs and (B) 

NC signals before and after subsampling. The first row is the raw data and the second row is 

the dimension-reduced signal. From the examples, we were able to observe that dimension-

reduced segments with down sample factor 10 basically conserve the same signal patterns as 

the raw segments. This is essential for human experts to confirm the detected HFOs signals, 

since we expect that the SMO detector can work as a CAD tool to provide visualizable 

results.In this project, we fixed down the sample factor to be 10. It is worth noting that the 

down sample factor could be configured and optimized based on the sample size and the 

dimension of segments of the training dataset.

3) L2 regularized SSAE: An auto-encoder (AE), the basic element of SSAE, consists of 

one input layer, one hidden layer and one output layer (Left part of Fig 3). Nodes between 

different layers of an AE are fully-connected. Multiple AEs can be stacked together to form 

a multi-layer neural networks. Fig 3 illustrates that two AEs (encoder parts in the boxes) are 

stacked into a two-layer SSAE. In terms of pre-training of the SSAE, we applied the greedy 

layer-wise pre-training approach [32] with the MEG signal segments. The label (HFOs or 

NC) information were not used, since the pre-training of SSAE is an unsupervised 

learning.Assume x = [x1, x2,..., xn] denote an input vector of the AE,y = [y1,y2,...,yn] denote 

the reconstructed representation vector of x,and z = [z1, z2,..., zn] denote the activation 

vector of K hidden nodes. The AE is able to reconstruct the input features on the output 

layer through the intermediate hidden layer. The input x is encoded to z in layer k by 

encoding weights w1 and bias b1 by z = f(w1x + b1).Activation vector y in the hidden layer 

is then decoded the output z using the decoding weights w2 and bias b2. Then, the latent 

representation y in the hidden layer is mapped to the output z by y = f(w2y + b2).We 

implemented a L2 regularized sparse AE, whose cost function can be modeled by:

E(W , b) = 1
p ∑

j = 1

p
∑
i = 1

n
yi j − xi j

2 + λΩweights + βΩsparsity (1)

where the first part is the mean squared error and p is the sample size of the training data. 

The second part of cost function is the L2 regularization term on encoding weights,where <

Ωweights = 1
2 ∑ j = 1

p ∑i = 1
n w ji

2
 and λ is the L2 regularization penalty coefficient. The third 

part of the cost function is the sparsity regularization term, where β is the coefficient for the 
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sparsity regularization term and Ωsparsity is the Kullback-Leibler (KL) divergence 

[50],defined as:

Ωsparsity = ∑
i = 1

k
ρlog

ρ j′
ρ + (1 − ρ)log

1 − ρ j′
1 − ρ (2)

where ρi′ = 1
p ∑ j = 1

p zi x j  is the average activation of the hidden node j over the training 

dataset.Sparsity parameter ρ is a pre-defined small fraction constant. Using scaled conjugate 

gradient descent algorithm [51], weights w and bias b can be optimized for a L2 regularized 

sparse AE. Then, the encoder of a sparse AE would be obtained. The output of hidden layer 

z of layer L-1 AE would be treated as the input x of layer L AE. At the end, as shown in Fig 

3, multiple sparse AEs (encoder parts) would be stacked to form a L2 regularized SSAE.

4 ) Softmax Regression: We utilized a softmax regression model as a classifier in the 

SMO detector for distinguishing HFOs from NC signals. Softmax regression is a supervised 

learning multi-label classification algorithm. Assume a set with m samples is represented 

as(x1,y1),(x2,y2)...(xm,ym). In this case, the softmax regression input xi is the output high-

level features of the SSAE model. Given an input xi, the softmax regression model is 

capable of estimating the probabilities p(y = j|x),j ∈ [1,...k] for a k class problem.The output 

of the hypothesis is a k-dimensional vector that contains k probabilities, measuring the 

probability of the input samples for each class label. The coefficient vector θ of the softmax 

regression model can be optimized by minimizing the cost function:

J(θ) = − 1
m ∑

i = 1

m
∑
j = 1

k
1 yi = j log e

θ j
Txi

∑l = 1
k e

θl
Txi

+ λ
2 ∑

i = 1

k
∑
j = 0

n
θi j

2 (3)

In this expression, λ
2 ∑i = 1

k ∑ j = 0
n θi j

2 is a weight decay term, and λ is the weight decay term 

control parameter.

Then, we performed fine tuning of SMO detector. After training the L2 regularized SSAE 

and softmax regression, we further optimized the SMO detector using a supervised learning 

strategy called fine tuning [32]. In this step, the pretrained SSAE and the softmax regression 

are stacked together to form a single model during the supervised learning process. During 

this process, weights from all layers of the SSAE and all parameters of the softmax 

regression were updated simultaneously in each iteration using scaled conjugate gradient 

descent algorithm [51].

5 ) Signal labeling: Once a given signal segment was assigned to a group (either HFOs 

or NC), the SMO detector was designed to label the given signal segment. Using the channel 

and time tag, it is trivial to retrieve the source of the signal segment. Then, SMO detector 

would highlight those HFOs signal segments only on the MEG data. In the future 

Guo et al. Page 6

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



application, the highlighted MEG data could be formatted as a CAD report for clinician to 

evaluate the subjects (Fig. 1).

C. Performance Evaluation

As mentioned in II.B. Signal segmentation, we composed a gold-standard dataset to evaluate 

the performance of SMO detector. The task in this work is to assign a label (HFOs or NC) 

for a given signal segment. We applied a repeated k-fold random subsampling validation 

scheme. The whole dataset would be divided into k portions. In each repeated iteration, we 

randomly subsampled one portion of the samples as holdout set for the test of the model, and 

applied the rest (k-1) portions of the samples for model training. This process would be 

repeated N times and the classifier can be evaluated based on the average performance.

In each repeat of the experiment, we evaluated true positive (TP), false positive (FP), true 

negative (TN), and false negative (FN) for the classification by comparing the predicted 

labels and true labels. TP is the number of HFOs samples that are classified correctly as 

HFOs signal, while FP is represented by the number of HFOs samples that are assigned as 

NC samples. Similarly, TN is the number of NC signal segments that are identified as NC 

signal correctly, and FN is the number of NC signal segments that are assigned as HFOs 

signal. The accuracy, sensitivity and specificity as the evaluation metrics were calculated by:

 Accuracy = TP + TN
TP + TN + FP + FN

 Sensitivity  = TP
TP + FN

 Speci f icity  = TN
TN + FP

(4)

Then, mean and standard derivation of the performance metrics would be computed over 

multiple repeats of the experiments.

III. EXPERIMENTAL RESULTS

A. Convergence test for the pre-training of L2 regularized SSAE

We first sought to test how many epochs the greedy layer-wise pre-training of SSAE in the 

SMO detector requires to guarantee the convergence of the training process. Fig 4 

exemplifies the learning curves for the weights between the input layer and the first hidden 

layer using all gold-standard datasets. We calculated the mean square error (MSE) between 

input (i.e., time-series signal segments after subsampling) and reconstructed input from the 

AE decoder. Different empirical numbers of hidden nodes were examined in our 

experiments. As shown in the observations, the learning processes converged after 300 

epochs across various hidden node settings. To guarantee the convergence of the training of 

the SSAE, we decided to apply 500 epochs as the maximal training epoch in the following 

HFOs detection experiments.
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B. Optimization of the architecture of SMO detector

Next, we began to optimize the architecture of the SMO detector. Specifically, the number of 

hidden layer as well as the number of hidden nodes on each layer of the SSAE within the 

SMO detector had to be optimized based on a grid search. So far, there is no theoretical 

guide about how to select an optimal architecture of SSAE for a specific application. Thus, 

we selected a number of empirical values for the number of hidden nodes and layers to 

perform the experiments. The dimension of high level representation of data output from 

SSAE depended on the number of hidden nodes. Based on the sample size of the training 

data, we further reduced the dimension of segments. As such, we selected [90,70,50,30,10] 

as candidate empirical values for the number of hidden nodes. Empirical values [1,2,3,4] 

were tested as the number of hidden layers. The sparsity coefficients for the sparsity 

regularization term is set to 1 and L2 regularized term coefficient is 0.001. For the sparsity 

parameter ρ, we applied a fixed value of 0.05. A 5-fold random subsampling validation 

strategy (i.e., gold-standard data were divided into 80% training data and 20% testing data) 

was applied. The performance metrics (section II-C Performance Evaluation) were 

calculated for all combinations of different number of hidden nodes and layers.

Fig 5 shows a heat map of the performance results. The best accuracy result (88.4%) came 

from the architecture of 3-hidden layer with 30 nodes on each layer. The SMO detector with 

the same architecture also returned a top specificity (90.9%). With respect to sensitivity, an 

architecture of 4-hidden layer and 30 hidden nodes provided the best result (91.4%). The 

architecture that offered best accuracy and specificity results achieved a decent sensitivity 

(85.7%). According to different criteria of the application, different architecture may be 

selected. Here, based on accuracy criteria, we chose the architecture (3-hidden layer/30 

hidden nodes) for SSAE for the following analysis.

C. Comparison of classification performance

Our SMO detector was designed based on the SSAE-based classification model. Although 

the deep learning models have been demonstrated to outperform the classic peer models in 

several applications [33, 38, 42], whether the SSAE provides a superior performance 

compared to peer classic models for our HFOs detection application is yet to know. Using 

the same 5-fold random subsampling validation strategy, the SMO detector was compared 

with multiple advanced machine learning models, including logistic regression (LR), least 

absolute shrinkage and selection operator (Lasso), Elastic Net, support vector machine 

(SVM) as well as L1 norm SVM. For SVM model, we deployed a 5-fold cross validation to 

optimize the penalty parameter with C = [2−10,2−9,...,29,210]. Fifty classification 

experiments were repeated. Fig 6 demonstrates mean and standard derivation of accuracy, 

sensitivity and specificity over 50 repeated experiments for three methods. In our 

experiments, our SMO detector achieved 89.9% in accuracy, 88.2% in sensitivity, and 91.6% 

in specificity. Our SMO detector slightly outperformed SVM method by 2% on accuracy, 

3% on sensitivity, and 1.5% on specificity. In the test, LR model performed the worst 

compared to other models.
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D. Impact of k-fold subsampling validation on SMO detector

The performance consistency of our SMO detector was further tested using various k-fold 

random subsampling validation, since a model that is not robust may appear to perform very 

differently with different k. We chose the boxplot to display the distribution of the 

performance metrics over 50 repeated experiments. Fig 7 displays boxplots of the accuracy, 

sensitivity and specificity of the SMO detector over various k-fold random subsampling 

strategies (k=[2,3,4,5,10]). It is inspiring to see that the medium (red line) as well as the 

boxes mainly fall between 80% and 90%. Additionally, the boxes of all metrics were quite 

compact to the medium value. This indicates that the SMO detector performed consistently 

among various k-fold subsampling validation. However, several performance outliers were 

observed, especially when k was small. This is likely because the pattern or distribution of 

testing data were not reflected in the training data. It is common when the training data are 

limited. We expected that a larger gold-standard dataset may further improve the 

performance consistency of our SMO detector.

IV. DISCUSSION

To the best of our knowledge, our work is the first attempt to employ a deep learning 

algorithm on the automatic detection of HFOs for MEG signals. Taking advantage of 

superior data mining capability of deep learning on complex big data, the SMO detector 

demonstrated a strong ability of SSAE model on the automatic detection of HFOs in MEG 

signals. Our SMO detector could work as a fully automatic CAD software with minimal 

human interference. There is no need to select any handcrafted features for analysis or 

training. This is a critical characteristic of CAD for the modern clinical environments with 

rapid pace. Furthermore, all data analysis were performed in the time domain, which makes 

the identified signals compatible with human vision. Last, but not least, the deep learning 

model might be able to improve the performance of HFOs detection, as more HFOs 

segments were accumulated. Experiments have shown that deep learning models further 

improved the classification of complex big data when peer classic models achieved their 

upper limits of performance [52]. This unique benefit implicates that deep learning model 

might be an optimal choice for MEG data analysis.

The SSAE model employed in our SMO detector is essentially a neural network, and the 

convergence of the training procedure was very important. Too less training epochs of SSAE 

could lead to a pre-mature network easily, and desirable performance may not be achieved. 

As such, a convergence test is necessary to find a proper number of epochs. In our test, 500 

epochs were chosen for SSAE training. This setting guaranteed the convergence of the 

training and avoid the unnecessary waste of time. Another important issue for neural 

networks is the architecture. As mentioned earlier, no universal rules are available to design 

the architecture of a neural network. Indeed, an optimal architecture of a neural network 

replies on the complexity of the data. In our case, no prior reports are available to select an 

optimal architecture for MEG data, and our optimization experiments could serve as the 

early evidence for architecture design of a SSAE for MEG data.

The results of the HFOs detection experiments were inspiring. The performance comparison 

experiments (Fig 5) demonstrated not only the effectiveness of our SMO detector, but also 
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the improved ability of SSAE compared to classic peer models. We compared our SMO 

detector with LR and SVM under the same experiment configuration. It is noted that SVM is 

a popular machine learning model that often offered optimal performance in many 

classification applications. It is very likely that because of the high complexity of MEG 

signals, the SSAE outperformed SVM in our test.

While our results suggest directions to advance the performance of HFOs detection in MEG, 

we acknowledge that there are limitations for our SMO detector. Although the results on 

various k-fold validation experiments shown the performance consistency of the HFOs 

detector, the lower bound outliers (Fig 6) indicates that the SMO detector had undesirable 

classification performance in several runs of experiments. We note that our gold-standard 

dataset is not large enough at this stage and we expected that the consistency of the detector 

could be largely improved when the training data is more adequate. Moreover, we designed 

the down sample factor as 10 in this work for the signal down sampling component based on 

the sample size and dimension of segments. Without proper adjustment between sample size 

and dimension of segments, a SSAE mode might have an overfitting problem so as to 

compromise the performance. In fact, the impact of the subsampling component could be 

eliminated after a large gold standard dataset is accumulated.

V. CONCLUSION

In sum, we have developed a SMO detector for HFOs detection in MEG signals in this 

paper. A deep learning model, SSAE, was introduced for HFOs detection for the first time. 

After configuring key parameters such as epochs, number of hidden layers as well as number 

of hidden nodes, our detector achieved optimized performance compared to peer machine 

learning classifiers. Based on this work, there are several future directions we set to pursue. 

One is to extend our detector into a multi-label classifier with a function to recognize 

additional patterns or sub-patterns in MEG such as spike, ripple and fast-ripple. Another 

direction is that our HFOs detector could also be applied on EEG signal. Further comparison 

are required between our method and other existing approaches in EEG.
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Fig. 1: 
Overview of SMO detector working as a CAD tool for HFOs detection in clinical practice
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Fig. 2: 
Examples of gold standard signals: (A) HFOs and (B) Normal signals. Original (first row) 

and down sample factor 10 (second row) signals for the training of our SMO detector are 

shown
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Fig. 3: 
Stacking of a SSAE with two AEs
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Fig. 4: 
Learning curves for the weights between input layer and first hidden layer. Different number 

of hidden nodes were tested separately using all gold-standard data
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Fig. 5: 
Performance (Accuracy, Sensitivity and Specificity) of SMO detector with various 

architectures. The rows are number of hidden nodes in each layer, and the columns are 

number of hidden layers. Best performance are marked with black boxes
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Fig. 6: 
Comparison of classification performance among three methods: logistic regression (LR), 

support vector machine (SVM) and SMO (SSAE). Mean and standard derivation of 

accuracy, sensitivity and specificity over 50 repeated classification experiments are shown
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Fig. 7: 
Boxplots of the performance metrics of the SMO detector with different repeated k-fold 

random subsampling validation. The box marks the first and third quartiles of data. The 

median value of the metrics is represented as a red band inside the box. The ends of the 

whiskers represent the data points within (2.7Standard derivation). The outliers are 

represented by ‘+’ markers
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