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Abstract

Modern biomedical data mining requires feature selection methods that can (1) be applied to large 

scale feature spaces (e.g. ‘omics’ data), (2) function in noisy problems, (3) detect complex patterns 

of association (e.g. gene-gene interactions), (4) be flexibly adapted to various problem domains 

and data types (e.g. genetic variants, gene expression, and clinical data) and (5) are 

computationally tractable. To that end, this work examines a set of filter-style feature selection 

algorithms inspired by the ‘Relief’ algorithm, i.e. Relief-Based algorithms (RBAs). We implement 

and expand these RBAs in an open source framework called ReBATE (Relief-Based Algorithm 

Training Environment). We apply a comprehensive genetic simulation study comparing existing 

RBAs, a proposed RBA called MultiSURF, and other established feature selection methods, over a 

variety of problems. The results of this study (1) support the assertion that RBAs are particularly 

flexible, efficient, and powerful feature selection methods that differentiate relevant features 

having univariate, multivariate, epistatic, or heterogeneous associations, (2) confirm the efficacy of 

expansions for classification vs. regression, discrete vs. continuous features, missing data, multiple 

classes, or class imbalance, (3) identify previously unknown limitations of specific RBAs, and (4) 

suggest that while MultiSURF* performs best for explicitly identifying pure 2-way interactions, 

MultiSURF yields the most reliable feature selection performance across a wide range of problem 

types.
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1. Introduction

Feature selection is often an essential task in biomedical data mining and modeling (i.e. 

induction), where the data is often noisy, complex, and/or includes a very large feature 

space. Many feature selection strategies have been proposed over the years, generally falling 

into one of three categories: (1) filter methods, (2) wrapper methods, or (3) embedded 

methods [44, 2, 4, 48, 21, 32, 56]. Feature selection methods have further been characterized 

based on whether selection relies on scores assigned to individual features or instead to a 

candidate subset of features [64, 2].

The present study focuses on the family of Relief-based feature selection methods referred 

to here as Relief-Based Algorithms (RBAs) that can be characterized as individual 
evaluation filter methods. In work that pairs with this research paper, Urbanowicz et al. [56] 

introduced and surveyed RBA methods, detailing why they are advantageous in contrast 

with other feature selection methods. To summarize here, RBAs retain the general benefits 

of filter-methods, i.e. they are relatively fast (with an asymptotic time complexity of 

O(instances2 · features)), and the selected features are induction algorithm independent. 

More importantly, RBAs are the only filter-methods known that have the ability to capture 

feature dependencies in predicting endpoint/outcome, i.e. feature interactions, or more 

specifically gene-gene interactions [2]. This unique ability has been attributed to Relief’s use 

of ‘nearest neighbor instances’ in calculating feature weights [27, 26].

The Relief algorithm concept has also been shown to be extendable to many different data 

type concerns including classification vs. regression (e.g. quantitative trait analysis), discrete 

vs. continuous features, missing data, multiple classes, and class imbalance. Unfortunately 

many RBAs and associated implementations have yet to be extended to data types beyond 

clean binary classification problems with discrete features. This is important to their 

application to analyses involving gene expression, quantitative traits, or integrated ‘omics’ 

data.

RBAs are also advantageous because they output individual feature weights. These weights 

can be used both to flexibly to (1) set custom threshold criteria for selecting a feature subset 

(2) probabilistically guide machine learning modeling downstream as part of a feature 

weighting scheme [53], or (3) even potentially to allow for gene set enrichment analysis [35] 

Urbanowicz et al. Page 2

J Biomed Inform. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



over the feature space. One other notable aspect of RBAs is that they do not eliminate 

feature redundancies (i.e. feature correlations). This could be viewed either as an advantage 

or disadvantage based on the problem at hand. For problems that require the removal of 

redundant features, many effective methods have been developed as reviewed by 

Urbanowicz et al. [56]. Therefore, we do not consider the topic of feature redundancy further 

in this study.

1.1. Core Relief Algorithms

The present study specifically focuses on what we will refer to as ‘core’ RBAs, or algorithm 

variants designed to be run for a single iteration through the training data. In contrast, a 

handful RBA extensions have also been proposed to improve performance in very large 

feature spaces by applying a core Relief algorithm iteratively, e.g. I-RELIEFF [47], TuRF 

[33], evaporative cooling ReliefF [30], and iVLSReliefF [7], or applying it to a multitude of 

random feature subsets rather than the entire feature space to improve efficiency, i.e. 

VLSReliefF [7]. The iterative extensions are much more computationally expensive and the 

success of the VLSReliefF and iVLSReliefF methods rely on additional run parameters that 

may require problem domain knowledge to be set optimally.

Stepping back, we propose that there are two larger Relief algorithm research questions. 

First, what is the most effective core Relief algorithm? This question is asked given the 

expectation that the performance of any core method alone will deteriorate as the feature 

space becomes very large [33, 7]. Second, what is the most effective iterative Relief 

expansion for improving performance in very large feature spaces? This work focuses 

exclusively on the first question. We expect that by first identifying and adopting the most 

reliable core algorithm this will maximize the performance of any iterative expansion, since 

they each rely on core algorithm functionality. However, it will be important to revisit 

strategies for very large feature spaces in future work. For a complete review of RBA 

research with respect to core, iterative, efficiency, and data type handling methodologies we 

refer readers to Urbanowicz et al. [56].

1.2. Bioinformatics

Most of the RBAs analyzed in this paper have been developed and applied within the 

purview of genetic association problems. Such problems are commonly characterized as (1) 

noisy, (2) having varied or sometimes mixed data types (e.g. discrete and continuous 

features), and (3) including very large feature spaces [33, 13, 12, 11]. Additionaly, the 

detection of complex patterns of association between features and the endpoint is of 

particular interest in bioinformatics. In particular, this study considers two important 

complicating phenomena: epistasis, i.e. feature interactions (or gene-gene interactions in the 

context of bioinformatics) [5, 34] and heterogeneous associations with endpoint, i.e. genetic 

heterogeneity or phenocopy (in the context of bioinformatics problems) [57, 50]. Genetic 

heterogeneity occurs when the same or similar phenotypic endpoint can be the result of 

distinct independent relevant features (or set of relevant features) in different subsets of the 

sample population. Heterogeneous associations are recognized to confound most modeling 

techniques [37], with the exception of induction algorithms that can distinguish problem 

‘niches’ such as rulebased machine learning approaches [58]. While not all problem 
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domains may be as complex as those in bioinformatics, we expect the findings of this work 

to be applicable to any data mining problems calling for feature selection.

Existing RBAs examined in this study have shown promise, however there are few 

guidelines suggesting which RBAs, or feature selection methods in general, to apply to 

various bionformatics problems. Further, a large scale comparison of core RBAs has not yet 

been completed to answer the initial questions of (1) which method is able to capture the 

greatest breadth of underlying associations in the dataset (i.e. main, interaction, 

heterogeneous effects), and (2) how is the performance of these various algorithms impacted 

by dataset characteristics expected across a breadth of bioinformatics applications (e.g. 

magnitude of noise, number of features, missing data, imbalanced data, continuous-valued 

features, quantitative traits, and a mix of discrete and continuous features)?

1.3. Study Overview

In the present study, we (1) implement a variety of core RBAs as part of an accessible, open 

source Python software package called ReBATE, (2) introduce a new core RBA called 

MultiSURF, (3) extend all implemented algorithms to be able to accommodate varied data 

type issues, i.e. binary classification, multi-class classification, or regression, discrete, 

continuous or mixed feature types, missing data and class imbalance, (4) design, generate, 

and apply a comprehensive simulation study of 2280 datasets to validate the efficacy of our 

data type extensions, and to compare the efficacy of 13 feature selection methods, i.e. eight 

RBAs, three traditional ‘filter’ feature selection methods, and two ‘wrapper’ feature 

selection methods, (5) investigate the reasons for identified performance discrepancies 

among feature selection methods, (6) identify the best performing and most reliable feature 

selection algorithms evaluated, and (7) organize what we have learned from this 

investigation to guide future RBA application and development.

The remainder of this paper is organized as follows: Section 2 describes the methods, 

Section 3 presents the results, Section 4 offers discussion regarding why specific strengths 

and weaknesses were observed for respective methods. Lastly, Section 5 offers conclusions, 

usage recommendations, and directions for future work.

2. Methods

In this section, we begin by describing the ReBATE software including: (1) the previously 

defined RBAs that it implements, (2) our proposed MultiSURF algorithm, and (3) the 

adopted data type extension strategies. Next, we describe the evaluations including: (1) the 

other filter and wrapper based feature selection methods compared, (2) the design of the 

simulation study, and (3) a discussion of the evaluation metrics.

2.1. ReBATE

To facilitate the accessibility of various RBAs and promote their ongoing development and 

application, we have implemented Relief-Based Algorithm Training Environment 

(ReBATE). With ReBATE, we seek to balance data type flexibility, run time efficiency, and 

ease of development in a Python package framework. At the time of writing, ReBATE has 

been implemented with five core RBAs: i.e. ReliefF [24], SURF [13], SURF* [12], 
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MultiSURF* [11], and our proposed MultiSURF algorithm. These core RBAs were chosen 

for this study because (1) they were explicitly developed for and previously evaluated on 

noisy and epistatic problems, (2) accessible Python implementations were available for each, 

and (3) they represented a competitive diversity of core RBAs. Additionally, we included the 

iterative TuRF algorithm [33] in ReBATE. However, as an iterative approach, TuRF is not 

evaluated further in this study.

These five core RBAs and TuRF were originally implemented in the open source Multifactor 

Dimensionality Reduction (MDR) [38] software package1. These Java implementations are 

computationally efficient, but can only handle complete data (i.e. no missing values) with 

discrete features and a binary endpoint. Python 2.7 versions of these algorithms were more 

recently implemented and made available within the open source Extended Supervised 

Tracking and Classifying System (ExSTraCS)2 [51, 58]. These were less computationally 

efficient, but extended each algorithm to handle different data types including continuous 

features, multi-class endpoints, regression, and missing data. The ReBATE implementations 

of these RBAs have restructured these ExSTraCS implementations for efficiency and 

modularity, while improving their ability to handle different data types. Notably, while these 

data type expansions had been previously proposed and implemented within the ExSTraCS 

framework, they had yet to be experimentally validated. We have implemented ReBATE 

both as a stand alone software package3 as well as a scikit-learn [36] compatible format4. It 

was our goal to make data type flexible implementations of these algorithms available for 

real-world application, as well as encourage ongoing methodological development or 

expansion of the ReBATE algorithm repertoire.

ReBATE includes a data pre-processing step that automatically identifies essential data type 

characteristics. Specifically this includes (1) distinguishing discrete from numerical features, 

(2) distinguishing a discrete from numerical endpoint, (3) identifying the min-max value 

range for numerical features or endpoint, (4) for discrete classes, determining the number of 

unique classes (i.e. binary or multi-class) as well as the number of instances having each 

class label, and (5) identifying the presence of missing data, with a standard identifier, e.g. 

‘N/A’. This pre-processing automates the adaptation of each RBA to the relevant data types.

In the following subsections, we provide methodological summaries of these five core 

algorithms. They were described in contrast to the larger family of RBAs by Urbanowicz et 

al. [56]. Next, in the remaining subsections, we detail how these core RBAs have been 

universally extended to handle specific data-type challenges. Our focus is to demonstrate 

that our adopted data type handling strategies are functional, but do not seek to claim that 

they are optimal. Currently there is minimal empirical evidence in the literature to support 

the conclusion that that any particular RBA data type handling strategy performs optimally.

2.1.1. ReliefF—The original Relief algorithm [23, 22] was quickly improved upon to 

yield the most widely known RBA to date, ReliefF [24]. For clarity, we will begin with a 

1http://sourceforge.net/projects/mdr
2https://github.com/ryanurbs/ExSTraCS2.0
3https://github.com/EpistasisLab/scikit-rebate
4https://github.com/EpistasisLab/ReBATE
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complete algorithmic description of ReliefF. Other complete descriptions of Relief and 

ReliefF can be found in [25, 27, 43]. For simplicity ReliefF is described without the data 

type extensions that will introduced later. Algorithm 1 details ReliefF as it has been 

efficiently implemented in ReBATE. Specifically all RBAs in ReBATE have been structured 

into distinct stages, i.e. (Stage 1) pre-process the data, (Stage 2) pre-compute the pairwise 

instance distance array, and (Stage 3) neighbor determination and calculate feature weights.

The reasoning behind pre-computing the distance between all pairs of instances in Stage2 is 

based on an assumption that was introduced in ReliefF and has largely persisted in most 

RBA implementations. Specifically we assume that all training instances will be utilized in 

scoring. This assumption is in contrast to the original Relief algorithm where the user could 

specify a subset of m random instances that would be used to update feature weights [23]. 

However since it was found that the quality of weight estimates becomes more reliable as 

the parameter m approaches the total number of instances n, proposed the simplifying 

assumption that m = n [24]. In other words, every instance gets to be the ‘target’ for weight 

updates one time, i.e instances are selected without replacement. As such, all pairwise 

distances will be required to run each RBA in ReBATE.
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Algorithm 1

Pseudo-code for ReliefF algorithm as implemented in ReBATE

Require: for each training instance a vector of feature values and the class value

1: n ← number of training instances

2: a ← number of attributes (i.e. features)

3: Parameter: k ← number of nearest hits ‘H’ and misses ‘M’

4:

5: # STAGE 1

6: pre-process dataset {≈ a · n time complexity}

7: # STAGE 2

8: pre-compute distance array {≈ 0.5 · a · n2 time complexity}

9: # STAGE 3

10: initialize all feature weights W[A] := 0.0

11: for i:=1 to n do

12:     # IDENTIFY NEIGHBORS

13:     for j:=1 to n do

14:         identify k nearest hits and k nearest misses (using distance array)

15:     end for

16:     # FEATURE WEIGHT UPDATE

17:     for all hits and misses do

18:         for A:= to a do

19:             W[A] := W[A] − diff (A,Ri,H)/(n · k) + diff (A,Ri,M)/(n · k)

20:         end for

21:     end for

22: end for

23: return the vector W of feature scores that estimate the quality of features

All RBAs calculate a proxy statistic for each feature that can be used to estimate feature 

‘relevance’ to the target concept (i.e. predicting endpoint value). These feature statistics are 

referred to as feature weights (W[A] = weight of feature ‘A’), or more casually as feature 

‘scores’ that can range from −1 (worst) to +1 (best).

As depicted in Algorithm 1, once ReliefF has pre-processed the data and pre-computed the 

distance between all instance pairs, Stage 3 cycles through n randomly ordered training 

instances (Ri), selected without replacement. Each cycle, Ri is the target instance and the 

feature score vector W is updated based on feature value differences observed between the 

target and neighboring instances. ReliefF relies on a ‘number of neighbors’ user parameter k 
that specifies the use of k nearest hits and k nearest misses in the scoring update for each 

target instance. Next, it selects k nearest neighbors with the same class called the nearest hits 
(H) and the other with the opposite class, called the nearest misses (M). The last step of the 

cycle updates the weight of a feature A in W if the feature value differs between the target 

instance Ri and any of the nearest hits H or nearest misses M. Features that have a different 

value between Ri and an M support the inference that they are informative of outcome, so 
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the quality estimation W [A] is increased. In contrast, features with different between Ri and 

H suggest evidence to the contrary, so the quality estimation W [A] is decreased. The diff 
function in Algorithm 1 calculates the difference in value of feature A between two 

instances I1 and I2 (where I1 = Ri and I2 = either H, or M when performing weight updates) 

[42]. For discrete (e.g. categorical or nominal) features, diff is defined as:

di f f A, I1, I2 =
0 if value A, I1 = value A, I2
1 if otherwise

(1)

and for continuous (e.g. ordinal or numerical) features, diff is defined as:

di f f A, I1, I2 =
value A, I1 − value A, I2

max(A) − min(A) (2)

This function ensures that weight updates fall between 0 and 1 for both discrete and 

continuous features. ReBATE adopts this strategy introduced by Relief [23] to extend all 

ReBATE algorithms for continuous features. Additionally, in updating W [A], (see line 19 of 

Algorithm 1) dividing the output of diff by n and k guarantees that all final weights will be 

normalized within the interval [−1,1] adjusting for any level of class imbalance. This diff 
function is further applied in pre-computing the distance array, calculating Manhattan 

distances between instance pairs. For efficiency, ReBATE pre-normalizes any continuous 

variable (i.e. features or endpoint) so that it falls within a 0 to 1 value range.

Consider that while the above diff function performs well when features are either uniformly 

discrete or continuous, it has been noted that given a dataset with a mix of discrete and 

continuous features, this diff function can underestimate the quality of the continuous 

features [26]. One proposed solution to this problem is a ramp function that naively assigns a 

full diff of 0 or 1 if continuous feature values are some user defined minimum or maximum 

value apart from one another [16, 43, 26]. However this naive approach adds two additional 

user-defined parameters requiring problem-specific optimization.

Figure 1 illustrates the major algorithmic differences between the original Relief algorithm 

[23], ReliefF, and the four other core RBAs implemented in ReBATE. Specifically, this 

figure focuses on respective strategies for neighbor selection. Note that while a k of 10 has 

been widely adopted as the default setting, a k of 3 was chosen for this conceptual 

illustration.

2.1.2. SURF—The SURF algorithm [13] inherits the majority of the ReliefF algorithm. 

In contrast with ReliefF, SURF eliminates the user parameter k, instead adopting a distance 

threshold T to determine which instances will be considered neighbors (see Figure 1). The 

radius defining the T hyper-circle in a-dimensional space around a given target instance is 

defined by the average distance between all instance pairs in the training data. This radius is 

therefore of a uniform size for each target instance.
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2.1.3. SURF*—The SURF* algorithm [12] inherits the majority of the SURF algorithm. 

In contrast with SURF, SURF* introduced the concept of instances that were near vs. far 

from the target instance (see Figure 1). Applying the same T from SURF, any instance 

within the threshold was considered near, and those outside were far. SURF* proceeds to 

weight ‘far’ instance differences in an opposite manner than ‘near’ instances. Specifically, 

feature value differences in hits differently receive a (+1) while feature value differences in 

misses differently receive a (−1). Notably, SURF* is the only RBA we implement that uses 

all instances in the training dataset to update feature weights each cycle. Note that the ‘*’ in 

naming signifies the use of ‘far’ scoring in both SURF* and MultiSURF*.

2.1.4. MultiSURF*—The MultiSURF* algorithm [11] inherits the majority of the SURF* 

algorithm. In contrast with SURF*, MultiSURF* defines a threshold Ti as the mean pairwise 

distance between the target instance and all others, as opposed to the mean of all instance 

pairs in the data. This adapts the definition of near/far to a given part of the feature space. 

MultiSURF* also introduces a dead-band zone extending on either side of Ti, i.e. Tneari or 

Tfari (see Figure 1) to exclude instances near Ti from contributing to scoring, i.e. those that 

are ambiguously near or far. Accordingly, the width of the dead-band zone is the standard 

deviation σ of pairwise distances between the target instance and all others. Thus, for each 

target instance, the boundary circles, as illustrated for MultiSURF* in Figure 1, may have 

different radii. Lastly, the ‘far’ scoring logic was inverted in to reduce computations. 

Specifically in SURF*, differences in feature values in hits yielded a reduction in feature 

score, and an increase in misses. Since differences are expected to be more frequent in far 

individuals, MultiSURF* updates far instance feature weights with the same feature values, 

i.e. hits receive a (+1), and misses receive a (−1).

2.1.5. MultiSURF—The new RBA variant proposed in this study is called MultiSURF. 

As the minor name change suggests, MultiSURF is closely related to MultiSURF* [11]. 

MultiSURF preserves all aspects of MultiSURF* but eliminates the ‘far’ scoring introduced 

in SURF* (see Figure 1). The dead-band boundary Tneari in MultiSURF is equal to Ti − 

σi/2. Pseudo-code for MultiSURF is given by Algorithm 2, again excluding the data type 

expansions for simplicity. As before, the diff function of MultiSURF is given by Equations 1 

and 2. Also note that because neighbors are defined by a threshold in MultiSURF, there can 

be a variable, or imbalanced number of hits and misses for each target instance. Lines 15 to 

25 of Algorithm 2 identify nearest hits and misses and track counts of each (h and m, 

respectively). Line 29 normalizes weight updates based on n, h, and m. This accounts for 

imbalanced hit and miss counts for a given target instance. By using either an equal number 

of hits or misses (e.g. as in ReliefF), or using this type of h and m normalization, RBAs 

inherently adjusts for class imbalance in binary or multi-class problems [39]. As it is with all 

other core RBAs, the asymptotic time complexity of MultiSURF is 𝒪 n2 ⋅ a . The complete 

time complexity of MultiSURF is c0a + c10.5n2a + c2nlogn + c30.31n2a + cyn2 which is 

slightly faster than for MultiSURF*. Time complexity comparisons with of other RBAs are 

detailed in [56].

2.1.6. Multi-class Endpoint—In the remaining subsections, we describe how RBAs in 

ReBATE were extended to handle respective data-type issues. To address multi-class 
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endpoint problems, ReBATE methods adopt a strategy similar to one proposed by Robnik-

Sikonja and Kononenko [43] for ReliefF that finds k nearest misses from every ‘other’ class 

(i.e. miss classes), and averages the weight update based on the prior probability of each 

class. This implementation would require the calculation of prior class probabilities P(C) 

from the training data and, for a given target instance, identifying misses of every other 
class. Equation 3 defines this multi-class update equation.

While this approach works fine for ReliefF, where an equal ‘k’ number of neighbors are 

selected for each miss class (i.e. each ‘other’ class in a multi-class scenario), in all of our 

other RBAs, the radius strategy leaves open the possibility that one or more miss classes will 

not fall within the radius, that thus not be included in the scoring update. As this could lead 

to a scoring bias we have implemented a simpler strategy that is appropriate for all ReBATE 

methods. Instead of normalizing miss class contributions by a factor of P(C), they are 

normalized by the proportion of each miss class within the set of selected neighbors. This 

proportion is simply calculated as the number neighbors from the respective ‘miss’ class 

(mC) divided by the total number of neighbors that were ‘misses’ (m). Equation 4 defines 

our new multi-class weight update equation for ReliefF and Equation 5 does the same for 

SURF, MultiSURF and for ‘near’ neighbors in SURF* and MultiSURF*. For ‘far’ instances 

in SURF* and MultiSURF*, the update would look like Equation 5, however the hit term
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Algorithm 2

Pseudo-code for the proposed MultiSURF algorithm in ReBATE

Require: for each training instance a vector of feature values and the class value

1: n ← number of training instances

2:a← number of attributes (i.e. features)

3:

4: # STAGE 1

5: pre-process dataset {≈ a · n2 time complexity}

6: # STAGE 2

7: pre-compute distance array {≈ 0.5 · a · n2 time complexity}

8: for i:=1 to n do

9:     set Ti to mean distances between instance i and all others

10:     set σi to standard deviation of those distances

11: end for

12: # STAGE 3

13: initialize all feature weights W[A] := 0.0

14: for i:=1 to n do

15:     # IDENTIFY NEIGHBORS

16:     initialize hit and miss counters h := 0.0 and m := 0.0

17:     for j:=1 to n do

18:         if distance between i and j is < Ti - σi/2 (using distance array) then

19:             if j is a hit then

20:                 h+ = 1 {and identify instance as hit}

21:             else if j is a miss then

22:                 m+ = 1 {and identify instance as miss}

23:             end if

24:         end if

25:     end for

26:     # FEATURE WEIGHT UPDATE

27:     for all hits and misses do

28:         for A:= to a do

29:             W[A] := W[A] − diff (A,Ri,H)/(n · h) + diff (A,Ri,M)/(n · m)

30:         end for

31:     end for

32: end for

33: return the vector W of feature scores that estimate the quality of features would be added and the summed miss 
term would be subtracted.

W[A]: = W[A] − di f f A, Ri, H /(n * k) +

∑
C ≠ class(target)

P(C)
1 − P( class (target ))di f f A, Ri, M(C) /(n * k)

(3)
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W[A]: = W[A] − di f f A, Ri, H /(n * k) +

∑
C ≠ class ( target )

mC
m di f f A, Ri, M(C) /(n * k)

(4)

W[A]: = W[A] − di f f A, Ri, H /(n * h) +

∑
C ≠ class (target)

mC
m di f f A, Ri, M(C) /(n * m)

(5)

2.1.7. Regression—To address regression, we propose an alternative, simpler approach 

than the current standard introduced in the Regressional ReliefF (RReliefF) algorithm [25, 

41]. The fundamental challenge of adapting Relief algorithms to continuous endpoints, is 

that we lose a clear definition for hit or miss, i.e. having the same or different class. 

RReliefF proposed a kind of “probability” that two instances belong to two “different” 

classes. This “probability” is modeled with the distance between feature and endpoint values 

of two learning instances as detailed by Robnik-Sikonja and Kononenko [41]. This includes 

an exponential weighting ofˇ instance contributions to W[A] based on distance between 

instances. Since current ReBATE methods do not apply distance based instance weights, and 

RReliefF requires an additional step computing prior and conditional probabilities, we 

propose a simpler regression scheme for our ReBATE methods.

Specifically, ReBATE calculates the standard deviation of the continuous endpoint (σE) and 

applies this as a simple threshold for determining whether two instances will be considered a 

“hit” or a “miss”. This serves to contextually discretize the continuous endpoint into ‘same 

class’ or ‘different class’ from the perspective of the target instance. This proposed 

adaptation of RBAs to regression problems only requires pre-computing σE during Stage 1 

of the algorithm, and changing the definition of a hit from Ci = Cj to |Ci − Cj| < σE, and the 

definition of a miss from Ci ≠ Cj to |Ci − Cj| ≥ σE.

2.1.8. Missing Data—Missing feature values must be dealt with by RBAs at two points 

in the algorithm: (1) Calculation of distances between instance pairs and (2) updating the 

feature weights. Previously, a missing data strategy proposed in ReliefF (or more precisely 

in ReliefD) had been identified as ‘best’ with minimal empirical investigation [24]. It was 

also designed explicitly for problems with discrete endpoints. Specifically, depending on 

whether one or both instances have a missing value for the given feature, the diff function 

returns the probability that the feature states are different given the class of each instance. 

This approach is implicitly a form of interpolation, making an ‘educated’ guess at what the 

missing value might be. Under the right circumstances, this can indeed improve 

performance, but if the guess is wrong, it could just as easily harm performance. Further, this 
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approach is more computationally and conceptually challenging to extend to continuous 

endpoint data.

In ReBATE we propose what we call an ‘agnostic’ approach to missing data that is most 

similar to one considered in ReliefC [24]. The idea behind an agnostic approach is that 

unknown, missing values should be ignored (i.e. treated neutrally) using normalization to 

bypass their inclusion rather than attempt to make a guess about their respective values. In 

contrast, the ReliefC method is only partially agnostic, in that uses the ReliefB method [24] 

to naively contribute a diff of 1 − 1
# Unique−Feature−Values  when a missing value is 

encountered in calculating the distance between an instance pair [24]. For example, this 

contribution would be 0.5 if the feature had two possible states, or 0.25 if it had four. 

However, when ReliefC updates feature weights, features with missing values contribute 

nothing and the distance score is normalized to reflect that it was calculated using (a
−#Missing_Features), where #Missing_Features is the number of features where a missing 

value was observed for at least one of the two instances. Alternatively, ReBATE methods 

apply this agnostic treatment of missing data to both the calculation of instance pair 

distances as well as for feature weight updates. This approach easily integrates with all 

RBAs, and all other data-type extensions. To the best of our knowledge this study is the first 

to implement and test a fully agnostic missing data approach in RBAs.

2.2. Evaluation

In the present study, we compare 13 feature selection approaches over an archive of 2280 

simulated datasets representing a variety of problem and data types. In addition to the 5 

ReBATE algorithms already reviewed or described above (ReliefF, SURF, SURF*, 

MultiSURF*, and MultiSURF) we examine 4 run settings for ReliefF as well as 5 

established non-RBA feature selection methods.

2.2.1. ReliefF Runs—The different ReliefF runs will be labeled in the results as: ReliefF 

10 NN (i.e. original ReliefF), ReliefF 100 NN, ReliefF 10% NN, and ReliefF 50% NN. The 

first two are ReliefF with a k of 10 or 100, respectively. The second two consider setting k in 

a dataset dependent manner, setting k based on a user defined percent of instances in the 

data. For example, if n were 1000 instances, ReliefF 10% NN would utilize 100 total 

instances, thus k = 50, i.e. 50 hits and 50 misses.

We explore these different settings of k in ReliefF to explore how the number of nearest 

neighbors impacts performance, as well as whether setting k based on a percentage of 

instances offers a potential alternative to threshold-based neighbor selection as used by 

SURF, SURF*, MultiSURF*, and MultiSURF.

2.2.2. Other Feature Selection Algorithms—We compare the ReBATE methods to a 

cross section of feature selection methods available in scikit-learn [36]. Specifically we 

compare to three established filter methods including the chi-squared test [59, 65, 20, 33, 

62], ANOVA F-value [15, 9, 19, 21], and mutual information (i.e. information gain) [18, 60, 

17]. Like most filter methods, these methods are myopic. Myopic methods evaluate features 

independently without considering the context of other features [26]. Thus, they are not be 
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expected to detect feature dependencies due to assumptions of variable independence. 

Notably, the chi-squared test is limited to problems with a discrete endpoint, and the 

ANOVA F-value was selected for its applicability to multi-class endpoints.

Further, we compare two wrapper methods, each based on a random forest of decision trees, 

i.e. (1) ExtraTrees, and (2) RFE ExtraTrees [10]. Random forests have been recognized as a 

powerful ensemble machine learning approach [28]. For both algorithms, we utilized 500 

estimators (i.e. number of trees in the forest), and left all other parameters to scikit-learn 

defaults. Feature importance scores output by either algorithm are used to rank features by 

potential relevance. RFE ExtraTrees is a random forest combined with a recursive feature 
elimination algorithm. We have run RFE ExtraTrees removing one feature each step (the 

most conservative setting). RFE ExtraTrees is an iterative approach, recalculating feature 

importance of the remaining features each iteration. We expect this algorithm to be, by far, 

the most computationally expensive of those evaluated. RFE ExtraTrees would be more 

fairly compared to iterative versions of RBAs including TuRF, but we include it here to 

emphasize the comparative power of core RBA methods.

2.2.3. Simulation Study—In previous comparisons of ReliefF, SURF, SURF*, and 

MultiSURF* these methods were evaluated on datasets with purely epistatic 2-way 

interactions (i.e. no main effects) with varying numbers of training instances (e.g. 200 to 

3200) as well as different heritabilities (e.g. 0.01 to 0.4) [13, 12, 11]. Heritability is a 

genetics term that indicates how much endpoint variation is due to the genetic features. In 

the present context, heritability can be viewed as the signal magnitude, where a heritability 

of 1 is a ‘clean’ dataset (i.e. with the correct model, endpoint values will always be correctly 

predicted based on feature values), and a heritability of 0 would be a completely noisy 

dataset with no meaningful endpoint associations. All features were simulated as single 

nucleotide polymorphisms (SNP) that could have have a discrete value of (0, 1, or 2) 

representing possible genotypes. In each dataset, two features were predictive (i.e. relevant) 

of a binary class while the remaining 998 features were randomly generated, based on 

genetic guidelines of expected genotype frequencies, yielding a total of 1000 features. 

Similarly, VLSRelief explored SNP simulations and 2-way epistasis varying heritability 

similar to the other studies, but fixing datasets to 1600 instances and simulating datasets 

with either 5000 or 100,000 total features [7]. It should be noted that most of these studies 

sought to compare core RBAs to respective iterative TuRF expansions, which is why larger 

feature spaces were simulated.

Simulation studies such as these facilitate proper evaluation and comparison of 

methodologies because a simulation study can be designed by systematically varying key 

experimental conditions, and the ground truth of the dataset is known i.e. we know which 

features are relevant vs. irrelevant, we know the pattern of association between relevant 

features and endpoint, and we know how much signal is in the dataset (so we know what 

testing accuracy should be achievable in downstream modeling). This allows us to perform 

power analyses over simulated dataset replicates to directly evaluate the success rate of our 

methodologies.
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For these reasons, we adopt the position that the best way to compare and evaluate machine 

learning methodologies is over a diverse panel of simulated datasets designed to ask 

generalizable questions about what a method can and cannot handle (e.g. 2-way epistatic 

interactions, missing data, high noise, a moderate sample size (800), etc.). Ultimately, it may 

not be very important that the same benchmark datasets are used across studies, but rather 

that simulation studies are designed to ask fundamental questions about generalizable 

methodological functionality.

Therefore in the present study we have designed and applied a simulation study that is 

inspired by, but goes well beyond, the other bioinformatic evaluations previously described. 

Broadly speaking, our simulation study is founded around a core set of pure 2-way 

interaction SNP datasets similar to those previously benchmarked, but we expand beyond 

these to include groups of SNP datasets with (1) a variety of simple main effects, (2) 3-way 

interactions, (3) genetic heterogeneity, (4) continuous-valued features, (5) a mix of discrete 

and continuous features, (6) multi-class endpoints, (7) continuous endpoints, (8) missing 

data, and (9) imbalanced data. Additionally, we include some clean toy benchmark datasets 

including the XOR problem (2-way to 5-way interactions) to explore higher order 

interactions, and the multiplexer problem (6-bit to 135 bit variations) to explore epistasis and 

heterogeneous associations simultaneously.

Table 1 breaks down the characteristics of each unique dataset group. Outside of the core 

datasets, most of the other dataset groups retain constraint settings known to be solvable 

among the core datasets. These include the inclusion of a 2-way interaction, 20 features, a 

heritability of 0.4, and 1600 training instances. This is done because it would be very 

computationally expensive to evaluate a full factorial set of dataset variations over all dataset 

constraints.

Any dataset group in Table 1 that simulates a 2-way pure epistatic interaction is marked by a 

‘*’. The left-most column describes the generalized pattern of association or data type that 

might reflect a strength or weakness we wish to assess. The ‘Configurations’ column 

indicates the number of unique dataset configurations that were included in the respective 

group. For example, the first group of ‘core datasets’ includes 32 configurations, i.e. 2 model 

difficulties * 4 heritabilities * 4 instance counts. The ‘Model Difficulty’ refers the model 

architecture of the underlying simulated genetic model [54]. To capture this dimension of 

dataset complexity, we select models generated at the extremes of model difficulty labeled 

here as ‘easy’ (E) and ‘hard’ (H). The ‘Config. Variation’ column is a catchall for 

configuration variations in a given group. The ‘Simulation Method’ refers to the strategy 

used to generate the datasets. Datasets simulated with the GAMETES complex genetic 

model and dataset generation software [55, 54] are labeled with ‘G’. Those generated by a 

custom script are labeled with ‘C’. Those generated by GAMETES but later modified (e.g. 

discrete values transformed into a range of continuous values) are labeled with ‘G+C’.

To clarify specific dataset groups, 2-feature additive effect includes two features with main 

effects that are additively combined to determine endpoint. The ratio 50:50 indicates that 

both features equally influenced endpoint, while 75:25, indicates that one had a 3 times the 

influence (and thus the relevance) of the other. Regarding 4-feature additive effect, all four 
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features contribute equally to endpoint. The group, 4-feature additive 2-way epistasis, 

additively combines two distinct 2-way pure epistatic interactions, where each pair has the 

respective ratio of influence. The group, 4-feature heterogeneous 2-way epistasis, generates 

a heterogeneous pattern of association between two independent 2-way pure epistatic 

interactions. This would be an example of simulated genetic heterogeneity since these are 

SNP datasets. The group, continuous endpoints is an example of a regression problem, often 

known in genetics as a quantitative trait endpoint. We apply the GAMETES software [55] to 

generate quantitative trait values around each pair-wise genotype combination with a 

standard deviation of either 0.2, 0.5, or 0.8. For these datasets, the effective heritability is 

degraded as the standard deviation setting increases. The group, continuous endpoint with a 

1-threshold model, refers to an alternative approach to generating continuous endpoint 

datasets. This approach takes a SNP dataset generated by GAMETES software and converts 

any instance with a class of 0 to a random value between 0 and 50, and any with a class of 1 

to a random value between 50 and 100. This creates a continuous endpoint scenario, where a 

meaningful quantitative threshold exists in the data (50 in this case). Notably, we use a 

similar approach to generate our continuous-valued features, and mixed discrete/continuous 

feature datasets. However for these, SNP values of 0, 1, or 2 are converted to random value 

between 0 and 50, 50 and 100, and 100 and 150, respectively. For missing data, different 

frequencies of ‘N/As’ are added to respective core datasets. For imbalanced data the given 

class imbalance ratios are simulated. For multi-class endpoint we simulated SNP datasets 

with a model similar to the XOR model, however each 2-way genotype combination is 

assigned either one of 3 classes or one of 9-classes. In both situations datasets are generated 

with impure epistatic interactions (meaning that individual features each also have some 

main effect).

Lastly, we have included six multiplexer problem datasets. Multiplexer problems are detailed 

in [52]. In summary, they are clean problems with binary feature values, and a binary 

endpoint that concurrently model a patterns of epistastis and heterogeneous associations. We 

set these datasets apart in the table, because each dataset has a unique set of characteristics. 

For instance, the 20-bit multiplexer has 20 total features, involves heterogeneous groups of 

5-way pure epistastic interactions, and includes a sample size of 2000. Notably in all 

multiplexer problems, all the features are technically predictive (in at least some subset of 

the training data). However, for any multiplexer problem, specific features known as 

‘address bits’ are predictive in every instance. We specify the number of address bits under 

the ‘Predictive Features’ column and the order of epistatic interaction in the ‘Model 

Difficulty’ column. Previously it was noted in [58] that properly prioritizing address bits 

over other features in feature weighting with MultiSURF* was key to solving the 135-bit 

multiplexer problem directly. Therefore, with respect to the multiplexer problems, we 

evaluate the ability of feature selection methods to rank address bits as predictive features 

above all others (regardless of the fact that all features are technically predictive).

In total we consider 76 unique dataset configurations, generating 30 randomly seeded 

replicate datsets for each configuration (76*30 = 2280 total datasets). We have made these 

datasets available for download5. There are certainly many other dataset variations that 

could be included in the future, but this proposed set represents the most diverse simulation 
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study of RBAs to date, offering a broad snapshot of the basic strengths and weaknesses of 

the feature selection methods evaluated in this study.

2.2.4. Analysis—The strategy for evaluating a feature selection approach can depend on 

whether it outputs a ranked feature list (i.e. individual evaluation filter approaches), or a 

specific feature subset (all methods can do this). Assuming a ranked feature list and a dataset 

where the ground truth is known ahead of time, it is most common to examine where all 

relevant features rank in the ordered feature score list (i.e. are they at the very top or among 

some top percentile?) [23, 8, 33, 7, 13, 12, 45, 11]. Ideally, relevant features will all have 

higher scores than irrelevant features as a best case scenario but it is most important that 

relevant features at least make it above the selected feature subset cutoff. Other metrics 

including separability and usability have also been proposed [43].

Alternatively, if the feature selection approach outputs a feature subset we can evaluate 

success by (1) examining the number of relevant and irrelevant features that comprise a 

selected feature subset (assuming ground truth is known) [1, 2], or (2) determining the 

testing accuracy of some induction algorithm model trained on that feature subset (if ground 

truth is not known) [47, 2]. The downside to the second approach is that it is difficult to 

separate the performance of the feature selection approach from the modeling of the 

induction algorithm. If we are dealing with an individual evaluation approach that has 

employed a selection cutoff to define a feature subset, then the downside to the first 

approach is that we are evaluating the feature weighting as well as the cutoff criteria (which 

can also be difficult to separate).

For individual evaluation filter approaches like RBAs, the best way to evaluate performance 

on simulation study data where the ground truth is known, is to identify where the relevant 

feature rank in the ordered feature score list over a number of dataset replicates. This offers 

the clearest analysis for interpretation and is consistent with previous evaluations of the 

selected ReBATE methods. Specifically we apply a power analysis, examining where the 

lowest scoring of the relevant features ranks in the ordered feature list. Power, i.e. success 

rate, is then calculated as the proportion of successes out of the 30 replicate datasets. In this 

study, we calculate and report the power of each algorithm to identify all predictive features 

within each percentile of the ranked feature list.

As mentioned in this study, we compare 13 feature selection approaches across 76 unique 

dataset configurations. We have generated heatmaps displaying feature selection power at 

each percentile of a respective feature list. As an example, see Figure 2. On the y-axis we 

have our 13 algorithms, along with the results of a negative control, labeled as ‘Random 

Shuffle’. This negative control represents shuffling the feature list randomly 30 different 

times and calculating power. In other words, this is the power expected by randomly ranking 

features. The 13 feature selection algorithms are ordered and delineated into groups. From 

the top down, the first group includes the myopic filter-based feature selection methods (i.e. 

chi-squared test, ANOVA F-value, and mutual information). The second group includes the 

random forest wrapper methods (i.e. ExtraTrees and RFE ExtraTrees). The third group 

5https://github.com/EpistasisLab/rebate-benchmark
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includes the ReliefF algorithm with different settings of the k parameter. The fourth group 

includes the set of recent RBAs that have eliminated the k parameter, and the last algorithm 

is MultiSURF, proposed in this study. We will use lines delineating these algorithm groups 

in some figures where the text of the algorithm names would be too small to read, but the 

order of these algorithms is preserved for all remaining power analysis figures.

The x-axis of Figure 2 gives the percentile of the ranked feature scores (e.g. 30% represents 

the top 30% of all feature scores). The zero percentile is marked as ‘optimal’. At optimal, all 

relevant features are scored above all irrelevant features. To the right of the figure is the key 

depicting increasing power with increasing color darkness. To facilitate interpretation, any 

measure of power at or above 0.8 (i.e. 80% power) is given as a shade of blue, rather than a 

shade of orange. While somewhat of an arbitrary selection, 80% power or above is often 

used as a significance cutoff for success rate. It is useful here to more quickly identify the 

lowest feature percentile within which all relevant features are ranked with significant rate of 

success (i.e. the threshold between orange and blue). For example, if we look at the power of 

RFE ExtraTrees in Figure 2, we can see that this algorithm successfully ranks all relevant 

features somewhere in the top 67% of features for at least 80% of the replicate datasets. An 

algorithm that performs perfectly will have dark blue band (100% power) over the entire 

percentile range (e.g. see ReliefF 10 NN in Figure 2). This indicates that the algorithm 

succeeded in scoring all relevant features above each irrelevant feature in every replicate 

dataset. Keep in mind that when it comes to selecting a feature subset from a ranked feature 

list, the minimum basis for success is whether all predictive features are included within that 

set, not whether all relevant features are ranked above every irrelevant feature. For example 

if we had decided to keep the top 25% of features in subset selection, then we would want to 

pick an algorithm that had reliable power at the 25th percentile. Lastly, notice that by the 

100th percentile, all algorithms will report 100% power. This is to be expected since we 

know that all relevant features will be found somewhere in the entire feature set. A Jupyter 

notebook including our analysis code and power analysis figure generation has been made 

available6.

3. Results

The results of this study are organized by major data configuration themes.

3.1. 2-way Epistasis

Figure 3 presents the results for the core set of 2-way pure epistastic interaction datasets. 

This figure assembles power plots over a range of heritabilities (left y-axis), number of 

instances (x-axis), and the two model architecture difficulties, E and H (right y-axis). Each 

of the 32 subplots represents a power analysis for one data configuration. They are arranged 

roughly so that the ‘easiest’ configurations are towards the upper right corner (e.g. 

heritability = 0.4, n = 1600, and architecture = E), and the most ‘difficult’ configurations are 

towards the lower left corner (e.g. heritability = 0.05, n = 200, and architecture = H).

6https://github.com/EpistasisLab/rebate-benchmark
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The most obvious observation from this analysis is that the three myopic filter algorithms 

(i.e. chi-squared test, ANOVA F-test, and mutual information) consistently fail to 

successfully rank relevant features with 2-way interactions, i.e. their performance is on par 

with the random shuffle negative control. Also notice that overall power of all other 

algorithms deteriorates as we go from the upper right plot to the lower left plot. This is 

consistent with the the expectation that power will degrade with decreasing heritability, 

training set size, and a ‘harder’ model architecture. Note how our simulation study design 

includes data configurations where our RBAs of interest completely succeed (upper right) as 

well as completely fail (lower left). These trends are consistent with previous evaluations of 

ReliefF (10 NN), SURF, SURF*, and MultiSURF* [13, 12, 11].

Focusing on the performance of ReliefF with different settings of k one observation stands 

out. Specifically ReliefF 100 NN, fails in all configurations where n = 200. For a k of 100 in 

a balanced dataset (such as this), ReliefF is using all other instances as neighbors. As we 

reviewed by Robnik-Sikonja et al. [40], this effectively removes the requirement that 

instances used in scoring be ‘near’ and turns ReliefF (using all neighbors) into a myopic 

algorithm, unable to handle 2-way interactions. This is verified empirically by these results. 

In contrast, examination of ReliefF 10 NN results (e.g. heritability = 0.05, n = 800 or n = 

1600, difficulty = E) in contrast to other RBAs suggests that increasing noise (i.e. lower 

heritability) is better handled by a somewhat larger k. This is consistent with previous 

observations [24, 13]. It should be noted the concept of a ‘low’ or ‘high’ k should always be 

considered with respect to n. For example, while k = 100 was detrimental in a sample size of 

200, this setting performed quite well when n was 400 to 1600.

Regarding the the ExtraTrees wrapper algorithms, we note that these random forest 

approaches were able to detect pure 2-way epistatic interactions (at least in datasets with 20 

features). Comparing them to RBAs we observe random forest performance to be more 

negatively impacted by increased noise and decreased n.

Focusing on SURF, SURF*, and MultiSURF*, the results in Figure 3 subtly but consistently 

support the previous findings that over a spectrum of 2-way pure epistatic interactions, 

SURF < SURF* < MultiSURF* with respect to power [13, 12, 11]. Lastly, examination of 

our proposed MultiSURF variant, suggests that its performance is generally competitive 

with other RBAs (on par with SURF [13]), but is slightly outperformed by SURF* and 

MultiSURF* (both methods that adopt far scoring) on 2-way epistasis problems with 

increased noise and decreased n. For a detailed discussion regarding why far scoring 

improves the detection of 2-way interactions, see Section 4.

3.2. Main Effects

Main effects (i.e. the effect of a single independent variable on a dependent variable) are 

generally understood to be easier and less computationally expensive to detect than 

interactions. It is likely for this reason that the RBAs in ReBATE had never been tested on 

simulations of single feature main effects or multiple feature additive main effects. Figure 

4A presents main effect results over increasing heritabilities (x-axis) and model difficulty (y-

axis). First, notice that all three myopic filter algorithms (i.e. chi-squared test, ANOVA F-

value, and mutual information) generally succeed at identifying the respective main effects. 
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Of the three, mutual information was least successful, particularly when heritability was low 

and the model was ‘hard’. A similar performance loss was observed in the random forest 

wrappers.

The most dramatic and unexpected finding in this analysis was the performance loss of 

SURF* and MultiSURF*, the only two algorithms utilizing ‘far’ scoring. Interestingly, this 

loss was even more significant in easy main effect models. This is in contrast with ReliefF, 

SURF, and our proposed MultiSURF algorithm that were completely successful here. 

Examination of additive multi-feature main effects in Figure 4B each with a heritability of 

0.4 and ‘E’ model, reveal similar performance losses for SURF* and MultiSURF*. Notably, 

for all main effect datasets, MultiSURF* has less of a performance loss than SURF*. For a 

detailed discussion regarding why far scoring hinders or eliminates the ability to detect main 

effects, see Section 4.

3.3. Genetic Heterogeneity

Figure 5 gives the power analysis results for data that models heterogeneous patterns of 

association between independent 2-way epistatic interactions. In other words, in one subset 

of training instances one 2-way interaction is relevant, and in the other a different pair of 

interacting features are relevant. The given ratio indicates the proportion of instances within 

which each interaction is relevant. Heterogeneous patterns of association have been 

commonly recognized in biomedical problems and are known to confound traditional 

machine learning approaches [37, 49, 57, 50]. Accounting for such patterns in feature 

selection is thus an important target. Figure 5 suggests that all tested RBAs can handle 

heterogeneity concurrently modeled with epistatic interactions, while all other methods fail, 

or fail to perform nearly as well, in the case of the random forest wrappers. With a more 

extreme ratio of 75:25, MultiSURF*, and MultiSURF appear to perform best with SURF* 

and ReliefF (with larger k settings) close behind. Overall, RBAs in general appear uniquely 

suited to detecting patterns of both heterogeneous association. To the best of our knowledge 

this is the first formal evaluation of RBAs on heterogeneous patterns of association.

3.4. 3-way Epistasis

Referring back to Figure 2 we provide the first evaluation of RBA performance on epistatic 

interactions with a dimmensionality higher than 2 (i.e. 3-way interactions). Due to 

mathematical constraints, the GAMETES epistasis dataset simulation software was unable 

to generate a 3-way SNP interaction dataset with a heritability of 0.4, so instead we 

simulated 3-way interaction SNP datasets with heritability=0.2. As expected, the myopic 

methods fail to perform well. This is also true for the ExtraTrees wrappers. Interestingly, the 

only RBAs that succeeded on this problem were those that utilized the smallest number of 

neighbors in scoring (i.e. ReliefF with 10 or 100 NN, ReliefF with 10% NN, and our 

proposed MultiSURF algorithm). This suggests that detecting higher order interactions is 

best achieved when the number of neighbors is low with respect to n. In this analysis the 

dataset included 1600 instances. ReliefF performed well with 10, 100, or 80 (0.1 * 1600/2) 

nearest hits and misses, but completely failed with 400 (0.5*1600/2) nearest hits and misses. 

We expect that MultiSURF < MultiSURF* < SURF < SURF* with respect to the number of 

instances involved in each scoring cycle, where SURF* utilizes all instances in scoring and 
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MultiSURF should utilize the least given that scoring only includes the inside of the dead-

band zone.

There is no evidence to suggest that ‘far’ scoring itself is helpful or harmful in this analysis. 

This is one prominent scenario where our proposed MultiSURF algorithm succeeds where 

other modern RBAs fail. While ReliefF performs slightly better, its success is dependent on 

setting k properly. It may be useful to track the number of instances involved in scoring in 

these algorithm in future investigations of RBAs detecting higher order interactions.

3.5. Number of Features

All of the results presented so far were run on datasets with a relatively small number of 

features to save computational time while asking basic questions about algorithm abilities. 

Figure 6 presents algorithm power over an increasing number of irrelevant features in 

datasets with 2-way epistatic interactions. We examined feature space sizes up to the 

maximum number of features investigated in a previous simulation study of an RBA (i.e 

100,000) [7]. Keep in mind that we don’t expect any of these core methods to perform 

particularly well in very large feature spaces without ultimately combining them with some 

iterative RBA approach. As usual, the myopic approaches fail to detect 2-way interactions. 

The next methods to fail in a feature space of increasing size are the random forest wrappers 

(at 1000 features). At 10,000 features, ReliefF with k = 10 begins to fail suggesting that a 

small number of neighbors performs less well in noisy problems, particularly as the feature 

space grows. At 10,000 features, MultiSURF* appears to perform slightly better than the 

rest, consistent with our previous findings in Figure 3. Lastly, as expected at 100,000 

features none of the methods perform particularly well on their own, but still certainly better 

than a random shuffle. Results for RFE ExtraTrees are missing because this iterative random 

forest approach did not finish running within a reasonable amount of time (i.e. over two 

days). Based on the results of RFE ExtraTrees in smaller feature sets, it is reasonable to 

assume it would have performed poorly at 100,000 features as well. Notably, most RBAs 

(with the exception of ReliefF 10 NN, 100 NN, and 10% NN) demonstrate high power (i.e. 

> 80%) to rank the predictive features above the 60th percentile, and MultiSURF* is the 

only method with significant power above the 50th percentile. Also of note, if we look for 

the percentile at which algorithms achieve full power, our experimental MultiSURF achieves 

the best percentile (i.e. approximately the 80th percentile). In combination with an iterative 

approach, for example TuRF, the lowest ranking features would be removed each iteration, 

improving the estimation of remaining feature scores in subsequent iterations. Therefore it is 

useful here to consider what proportion of underlying features could be removed in the first 

(and subsequent) iterations without losing any relevant features.

3.6. XOR Benchmarks

Here we examine clean benchmark datasets that further test epistatic patterns. Figure 7 

presents power analyses for increasingly higher order versions of the XOR problem 

simulated here as SNP data [55]. These XOR benchmark datasets have no noise and include 

pure epistatic interactions from 2-way up to 5-way interactions. While all non-myopic 

methods solve the 2-way XOR with little trouble, we observe a similar pattern of algorithm 

success for the 3-way XOR as we did with the noisy GAMETES generated 3-way dataset in 
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Figure 2. Specifically, RBAs that utilized fewer neighbors were successful, including 

ReliefF with 10 or 100 NN, ReliefF with 10% NN and our proposed MultiSURF algorithm. 

Differently, the ExtraTrees algorithms were equally successful in detecting the 3-way XOR 

as those RBAs. Another interesting observation for the 3-way XOR is that for RBAs that 

used a larger proportion of neighbors in scoring, relevant features were consistently ranked 

with the lowest overall scores. This was also true for some of the 4-way and 5-way analyses. 

This is interesting because if the methods were not detecting any difference between relevant 

and irrelevant features, we would expect to see results similar to the random shuffle negative 

control. Instead, in specific high-order interaction problems, relevant features are 

consistently being assigned the most negative score updates. There may be opportunity for 

future RBA improvement leveraging this observation. Currently this is a problem for those 

respective RBAs since users will assume the at features scoring at the bottom of the feature 

ranking should be eliminated from consideration. It is only because we know the ground 

truth of these simulated datsets that we can observe this pattern here.

Overall, the only method able to solve all XOR problems is the RFE ExtraTrees, however 

based on our previous findings we expect this success to quickly disappear if the feature 

space was larger than 20 features. The next best algorithm is ReliefF with 10 neighbors, 

followed by ExtraTrees and ReliefF with 10% (i.e 80 neighbors). Notably, the the 4-way and 

5-way XOR problems represent one situation in which our proposed MultiSURF algorithm 

fails to perform. It is clear that higher order interactions can be problematic for RBAs unless 

they apply few neighbors in scoring.

3.7. Multiplexer Benchmarks

Figure 8 presents power analyses for increasingly higher order versions of the multiplexer 

benchmark datasets including the 6-bit through the 135-bit versions. This power analysis 

should be interpreted somewhat differently from all others since in these datasets, 

technically all features are relevant (in at least some subset of training instances), and instead 

we evaluate the power to properly rank the address bits of the multiplexer problem (i.e. the 

features that are relevant for every instance in the dataset. We had previously observed in 

[58] that MultiSURF*’s ability to rank address bits over all others in feature weighting was 

one of the keys to solving the 135-bit multiplexer benchmark directly for the first time in the 

litterature.

Like the XOR problem, the multiplexer problems have no main effects. As a result, the 

myopic methods again fail to perform on these datasets. The only method to perform 

perfectly over all datasets was Relief 10% NN. MultiSURF* perfromed next best followed 

by SURF* and our MultiSURF method trailing close behind. These results are interesting 

but difficult to clearly interpret given that all features are technically predictive (particularly 

with respect to the 6-bit problem which is the ‘easiest’ to solve). However, this explains why 

feature weighting using MultiSURF* in ExSTraCS was facilitated solving the 135bit 

multiplexer. These results also emphasize the ability of RBAs in general to detect relevant 

features in the presence of both feature interactions and heterogeneous patterns of 

association.
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3.8. Data Types

We conclude our results section with power analyses for the different data type scenarios 

considered. This will demonstrate the functionality of our ReBATE algorithm data type 

extensions. Only power analyses yielding interesting differences are explicitly presented.

Figure 9 gives power results over four numerical endpoints configurations, each simulated 

with an underlying 2-way interaction. First, note that the chi-squared test is not applicable to 

data with continuous endpoints. As usual, the other myopic methods did not perform well 

with the exception of mutual information (on continuous endpoint data generated with a 

standard deviation of 0.2). It is possible that the strategy we employed to generate 

continuous endpoint SNP data from epistatic models introduced some small main effects at a 

low standard deviation that mutual information was able to pick up. Interestingly, the 

random forest methods performed slightly worse than the RBAs. Overall, the success of all 

RBAs implemented in ReBATE in these analyses suggests that our simpler and 

computationally less expensive proposed RBA regression approach offers a functional 

alternative to the one proposed in RReliefF [25, 41]. A comparison between the two is 

outside the scope of the current investigation but should be the focus of future study.

Most of our power analyses for the other data type configurations yielded the same 

successful results for all RBAs, thus results are not presented here. Specifically, both 

multiclass data configurations were solved by all feature selection methods, demonstrating 

the basic efficacy of the multi-class expansion for Relief introduced in [24] and adopted in 

ReBATE. This also indicated that our simulated multi-class datasets (with impure epistasis) 

had strong enough main effects to be successfully ranked by all myopic methods.

For datasets with only continuous features and an underlying 2-way interaction, all but the 

myopic methods ranked features ideally, reinforcing the functionality of the proposed diff 
function for continuous features originally introduced in [23]. The same was true for data 

with an imbalance of 0.6 (i.e. 60% class 0, 40% class 1), and for missing data with data 

randomly missing at a frequency of either 0.001, 0.01, or 0.1. Notably in the analyses of 

missing data, all 5 feature selection methods run with scikit-learn (i.e. chi-squared test, 

ANOVA F-test, mutual information, ExtraTrees, and RFE ExtraTrees) could not be 

completed since scikit-learn is not set up to handle missing data. Preprocessing such as 

removal of instances with missing values or imputation would instead be required.

Figure 10 presents all remaining results in which feature selection performance differences 

were observed. First off, for each, myopic approaches again failed to detect the underlying 

2-way interactions. For a class imbalance of 0.9 (i.e. 90% class 0, 10% class 1), we observe 

that ReliefF with a large number of neighbors (i.e. 50%) fails to perform, ReliefF with 100 

NN and SURF demonstrate slight deficits, but all other RBAs perform optimally. For 

missing data with a frequency of 0.5, we observe all ReliefF methods perform optimally 

with the exception of ReliefF 10 NN (the fewest neighbors in scoring). This suggests that 

having more neighbors in scoring makes these methods more resiliant to missing data, and 

also demonstrates that our proposed agnostic missing data strategy implemented in ReBATE 

is successful. A comparison between different missing data handling strategies is beyond the 

scope of this investigation, but should be examined in future study. Lastly, Figure 10 gives 
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the results for the data configuration with a mix of discrete and continuous features. For each 

of the 30 dataset replicates a random half of the features is re-encoded with a continuous 

value, and the rest are left as discrete values. Similar to previous observations regarding 

mixed feature types with Relief [26], none of the RBAs or feature selection methods in 

general handle this dataset configuration optimally. MultiSURF* works best followed by 

MultiSURF, SURF*, and ReliefF with 100 NN or 10% NN. Overall this suggests that mixed 

feature types are still an issue for RBAs, and worth further study and development in 

ReBATE. Future work should consider the proposed ramp function [16, 43, 26], as well as 

other approaches that do not require setting user parameters to address this issue.

4. Discussion

In this section we discuss why specific strengths and weaknesses were observed for 

respective methods under different data configurations.

4.1. 2-way Epistastis Performance Gains

From the results, one may wonder why is it that ‘far’ scoring in SURF* and MultiSURF* 

appears to enhance power to detect 2-way interactions? To help answer this question, Table 

2, offers a simple example 2-way epistasis dataset that we will use to walk through Relief 

scoring. In this example, A1 and A2 are relevant features with a pure interaction between 

them (i.e. no individual main effects). When they have opposing values, the class is one 

otherwise the class is zero. A3 is an irrelevant feature.

Table 3 breaks down how scoring would proceed over 8 cycles with each instance getting to 

be the respective target. To simplify this example, we only select one near or far instance for 

each RBA, focusing instead on the impact of scoring scheme. Notice that we will keep track 

of nearest hits and misses (and the corresponding features with a different value), as well as 

far instances used in scoring by SURF* and MultiSURF* (i.e. the farthest hit or miss, each 

with both the same and different feature value(s) identified between instances). For each 

target, we see what instance is the nearest or farthest hit and miss, as well as which feature 

has a different value between the instances (given in parentheses). Further, we see what 

feature has the same value between farthest instances (in grey). All of these will be relevant 

to scoring in at least one of the ReBATE algorithms. If there is a tie for nearest neighbor, 

both instances are listed with their respective different valued feature. For example, when R1 

is the target, its nearest hit is R2. The only feature with a different value between these two 

instances is A3. The nearest miss for R1 is a tie between R5 and R7 that have feature value 

differences at A1 and A2, respectively. The farthest miss for R1 is a tie between R6 and R8 

that have feature value differences at A1 and A3, and A2 and A3, respectively. Lastly, we 

keep track of the feature values that are the same between the farthest hits and misses (grey 

shaded cells). For the farthest hit, no feature values are the same since we already noted they 

were all different. For the farthest miss, we again have R6 and R8 that have feature value 

equalities at A2 and A1, respectively. Table 4 summarizes the resulting score contributions 

from Table 3. As before, when there is a tie between instances for nearest or farthest 

neighbor, we give each feature difference half credit since only one can contribute at a time. 

For example, since there are no same feature values for any of the farthest hits in Table 3 
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(shaded in grey), all three features get a zero score contribution under ‘Farthest Hit (same 

value)’ in Table 4.

As Table 4 depicts, all five scoring approaches assign positive scores to A1 and A2, and a 

negative score of −8 to A3. Thus, all of these methods can differentiating relevant from 

irrelevant features in the presence of a pure 2-way interaction. However ‘far’ scoring in 

SURF* and MultiSURF* make the score difference between a relevant and irrelevant feature 

score even greater. In the context of 2-way interactions, ‘far’ scoring serves to reinforce 

scores of interacting features by offering a larger ‘scoring sample size’, as originally 

intended in [12]. However as this example breakdown also indicates, the scoring approach 

does not explain performance differences between SURF* and MultiSURF* in detecting 2-

way interactions. That is likely the result of MultiSURF*’s target-centric threshold 

calculation and/or its application of a dead-band zone.

4.2. Main Effects Performance Losses

To understand why ‘far’ scoring in SURF* and MultiSURF* leads to main effect 

performance loss, we lay out a conceptual scenario in Table 5. This scenario assumes an 

example problem with binary features and endpoint. On the far left we have differently 

labeled instances including a hypothetical target instance (Ri), as well as every other 

possible type of instance from the perspective of the target instance Ri. Other instance types 

are differentiated based on properties such as ‘Distance’, (near or far), ‘Class’ (hits or 

misses), and if the relevant feature (i.e. with a main effect) has the same or different value as 

Ri (instance types with the same feature value are shaded in grey). For simplicity we will 

assume that all irrelevant features are expected to end up with a feature score of 

approximately zero as derived in [22].

The key to understanding this conceptual scenario is understanding where the expected 

frequencies of each instance type come from. To do that, first it’s important to define a few 

expectations of datasets that include a main effect: (1) irrelevant feature values will be 

randomly distributed, (2) instances that have a relevant feature with the same value between 

them will tend to be closer on average (assuming the first expectation), and (3) if at least one 

feature in the dataset is relevant, we expect instances with the same class to be closer on 

average (since the one relevant feature will typically have the same feature value between 

instances with the same class value). Based on these expectations we can describe ‘likely’ 

combinations of distance with class, and distance with feature value. These include the 

following; (1) near and same class, (2) near and same feature value, (3) far and different 

class, and (4) far and different feature value. All other combinations are less likely based on 

our expectations. Finally we estimate the frequency of an instance ‘type’ based on the 

number of ‘likely’ combinations it includes. Specifically, if it has two likely combinations it 

is ‘high’ frequency, if it has two unlikely combinations it is ‘low’ frequency, and if it has one 

of each it has ‘medium’ frequency.

With this in mind, Table 5 lays out the scoring scheme for each algorithm in the right hand 

columns. First we look at ReliefF, which incidentally has the same scoring scheme as SURF 

and MultiSURF in the context of this table. Based on the scoring scheme, the only instance 

types that will contribute to a feature score update are neighbors (i.e. near) with a different 

Urbanowicz et al. Page 25

J Biomed Inform. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



feature value than the target (Hit3 and Miss3), where hits receive −1 and misses receive +1 

every score update. Therefore over all training instance updates, what total score is 

expected? For simplicity lets assign our estimated frequencies a numerical value (i.e. high = 

3, medium = 2, and low = 1). Thus ReliefF scoring should yield a total of +1 for a main 

effect feature (i.e. medium - low). Since we expect irrelevant features to have a score of 

approximately 0, we expect ReliefF, as well as SURF and MultiSURF, to be able to 

distinguish relevant main effect features from irrelevant ones. However, SURF* adds far 

scoring such that far instances with different feature states also contribute to feature score 

updates (i.e. Hit4 and Miss4). If we add up the frequencies we get an estimated feature score 

of zero (i.e. medium + medium - high - low). Again assuming that irrelevant features will 

have a score of approximately 0, it makes sense that SURF* is having difficulty separating 

relevant from irrelevant features. The same issue occurs in MultiSURF* that similarly 

adopts far scoring. However, here ‘far’ instances with the same feature values contribute to 

scoring to save computational time (i.e. Hit2 and Miss2). If we add up these frequencies we 

again get an estimated feature score of zero (i.e. medium + low medium - low). This 

conceptual illustration explains our findings and we expect this trend to hold for continuous 

features and endpoints. Notably, it is possible that this far scoring performance loss may be 

less apparent when the number of irrelevant features becomes very large. When this 

happens, relevant features have a much smaller influence on the distance between instances. 

Regardless, we still always expect ReliefF, SURF, and MultiSURF to perform as good or 

better than SURF* or MultiSURF* with respect to detecting main effects.

Next, we will examine a specific example of a simple main effect datasets given in Table 6. 

This dataset has the same number of features and instances as given in Table 2. However in 

this dataset, A1 has a strong main effect relevant to class, while A2 and A3 are irrelevant. 

Table 7 breaks down nearest and farthest hits and misses in the same way as Table 3. Table 8 

presents the summary of the algorithm score contributions in the same way as Table 4. As 

demonstrated by the score totals in this example problem, the failure of ‘far’ scoring 

schemes in SURF* and MultiSURF* is the result of farthest miss (different value) or farthest 

hit (same value) negative score contributions, respectively. While not explicitly tested in this 

study we predict that the SWRF* [45] algorithm (a related RBA), would similarly suffer 

from main effect performance loss due to its adoption of ‘far’ scoring, but this should be 

explicitly tested in future work.

5. Conclusions and Future Study

This work has made a number of contributions with respect to feature selection and RBAs. 

Specifically we have (1) introduced ReBATE as an open source, user-friendly, and data-type 

flexible software package for applying a variety of RBAs, (2) designed and applied the most 

expansive simulation study of RBAs to date, (3) implemented and evaluated strategies to 

extend RBAs previously only designed for clean data with discrete features and endpoints to 

a variety of different dataset types, (4) compared the performance of select RBAs to other 

established feature selection algorithms, (5) identified known or suspected reasons for 

differences in algorithm performance to guide ongoing RBA development, and (6) 

introduced and evaluated the MultiSURF algorithm, identifying it to have significant, 

reliable power in the greatest diversity of dataset configurations.
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The results of this study support the following conclusions; (1) existing popular feature 

selection methods (i.e. chi-squared test, ANOVA, mutual information, Extra Trees, and RFE 

ExtraTrees) fail to perform, or perform as competitively on a variety of generalizable 

problem types (2) RBAs are proficient at detecting 2-way epistatic interactions, but 

MultiSURF* in particular performs best in this regard, (3) ‘far’ scoring in RBAs (i.e. SURF* 

and MultiSURF*) improves the detection of 2-way epistatic interactions (4) ‘far’ scoring 

deteriorates or even eliminates the ability of SURF* and MultiSURF* to detect simple main 

effects (5) RBAs function in the presence of patterns of heterogeneous association, (6) the 

number of neighbors used in RBA scoring is a critical and problem dependent factor with 

respect to algorithm success, (7) only RBAs that use fewer neighbors in scoring can detect 

3-way interactions (i.e. ReliefF 10 NN, and MultiSURF), (8) all implemented data-type 

expansions in ReBATE were successful, however performance losses are still observed in 

datasets with a mix of discrete and continuous features, (9) MultiSURF and ReliefF are the 

only examined methods that can detect all of the following; main effects, heterogeneity, and 

2 or 3-way interactions, (10) the main drawback of ReliefF is that the user has to specify a k 
parameter which our results indicate can dramatically impact success depending on the noise 

(e.g. heritability), number of training instances, size of the feature space, the heterogeneity 

ratio, the dimensionality of the interaction, and/or the amount of missing data, (11) the main 

drawback of MultiSURF is that it failed to detect 4-way and 5-way interactions, and (12) 

MultiSURF is the most generally flexible and successful method as well as being easier to 

apply successfully in contrast with ReliefF.

Furthermore, while the asymptotic time complexity of core RBAs is 𝒪 n2 ⋅ a , the complete 

time complexity of MultiSURF is slightly less than that for MultiSURF* which is the best 

RBA for detecting 2-way epistasis. MultiSURF also appears to scale competitively in feature 

spaces of increasing size. In Table 9 we translate the findings of this study into a set of 

general recommendations for the application of RBA feature selection.

Beyond MultiSURF, the results of this study strongly suggest that the RBA concept can be 

improved further. As such we have a number of suggested targets for future research; (1) 

explicitly compare alternate or novel strategies for handling missing data, regression, and 

mixed feature types, (2) alternative strategies to improve the performance of RBAs in 

detecting higher dimensional interactions (e.g. 4-way interactions and beyond), (3) given 

what we have learned in this study, evaluate the impact of instance pair distance weighted 

scoring similar to strategies proposed in SWRF* and some other core RBAs [41, 6, 47, 46, 

45], (4) consider alternate strategies to adapt neighbor selection in different problems as 

pioneered in McKinney et al. [31] or explore strategies to integrate collective feature 

selection as explored by Verma et al. [61], to maximize performance in detecting both main 

and interaction effects, and (5) integrate MultiSURF and other promising RBAs with 

iterative RBAs to determine the best combination(s) for scaling up to very large feature 

spaces and identify the practical feature space size boundaries at which we can expect RBA 

performance in detecting main or interaction effects to become unreliable. In future work we 

will also seek to expand the diversity of our simulation studies even further and we 

recommend that other feature selection investigations adopt similar approaches to evaluating 

and comparing methods.
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• Relief-based feature selection (RBAs) efficiently detects feature interactions

• They handle genetic heterogeneity, missing/imbalanced data, and more

• The new MultiSURF algorithm performs most consistently over different 

problems

• ReBATE software offers easy access to multiple, flexible RBAs

• RBAs handle genetic heterogeneity, missing/imbalanced data, quantitative 

traits

• SURF* and MultiSURF* are not suited to detecting main effects
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Figure 1: 
Illustration of the neighbor selection differences between Relief, ReliefF, SURF, SURF*, 

MultiSURF*, and MultiSURF. Differences include the number of nearest neighbors or the 

method for selecting ‘near’ or ‘far’ instances for feature scoring. Note that for ReliefF, a k of 

3 is chosen but a k of 10 is most common. These illustrations are conceptual and are not 

drawn to scale.
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Figure 2: 
This heatmap illustrates the power of different feature selection algorithms to rank all 

predictive features in the the top scoring ‘x’ percent of features in the dataset. Results for the 

noisy 3-way epistatic interaction.
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Figure 3: 
Results for all core 2-way epistatic interaction datasets. Keys relevant to all plots are given 

on the far right. Tick marks delineating algorithm groups are provided for each sub-plot.
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Figure 4: 
Results for detecting single feature main effects (A) and additive main effects (B). Keys 

relevant to all plots are given on the far right. Tick marks delineating algorithm groups are 

provided for each sub-plot.
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Figure 5: 
Results for detecting two independent heterogeneous 2-way epistatic interactions.
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Figure 6: 
Results for detecting 2-way epistatic interactions with an increasing number of irrelevant 

features in the datasets.
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Figure 7: 
Results for detecting 2-way, 3-way, 4-way, and 5-way epistatic interactions based on ‘clean’ 

XOR models.
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Figure 8: 
Results for detecting the address bits of different scalings of the Mulitplexer benchmark 

problem. Each problem is ‘clean’, epistatic, and heterogeneous. Note that all features in 

these datasets are predictive in at least one subset of the training instances, and power 

reflects the ability to rank the subset of features that are important in all training instances 

(address bits), from those that are important only in a given subset (register bits).
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Figure 9: 
Results for accommodating continuous (i.e. numerical) endpoints in datasets.
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Figure 10: 
Results for accommodating different ‘data type’ issues. Specifically this figure examines 

extreme examples of class imbalance, missing data, and the combination of discrete and 

continuous features within the same dataset.
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Algorithm 1

Pseudo-code for ReliefF algorithm as implemented in ReBATE

Require: for each training instance a vector of feature values and the class value

1: n ← number of training instances

2: a ← number of attributes (i.e. features)

3: Parameter: k ← number of nearest hits ‘H’ and misses ‘M’

4:

5: # STAGE 1

6: pre-process dataset {≈ a · n time complexity}

7: # STAGE 2

8: pre-compute distance array {≈ 0.5 · a · n2 time complexity}

9: # STAGE 3

10: initialize all feature weights W[A] := 0.0

11: for i:=1 to n do

12:     # IDENTIFY NEIGHBORS

13:     for j:=1 to n do

14:         identify k nearest hits and k nearest misses (using distance array)

15:     end for

16:     # FEATURE WEIGHT UPDATE

17:     for all hits and misses do

18:         for A:= to a do

19:             W[A] := W[A] − diff (A,Ri,H)/(n · k) + diff (A,Ri,M)/(n · k)

20:         end for

21:     end for

22: end for

23: return the vector W of feature scores that estimate the quality of features
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Algorithm 2

Pseudo-code for the proposed MultiSURF algorithm in ReBATE

Require: for each training instance a vector of feature values and the class value

1: n ← number of training instances

2:a← number of attributes (i.e. features)

3:

4: # STAGE 1

5: pre-process dataset {≈ a · n2 time complexity}

6: # STAGE 2

7: pre-compute distance array {≈ 0.5 · a · n2 time complexity}

8: for i:=1 to n do

9:     set Ti to mean distances between instance i and all others

10:     set σi to standard deviation of those distances

11: end for

12: # STAGE 3

13: initialize all feature weights W[A] := 0.0

14: for i:=1 to n do

15:     # IDENTIFY NEIGHBORS

16:     initialize hit and miss counters h := 0.0 and m := 0.0

17:     for j:=1 to n do

18:         if distance between i and j is < Ti - σi/2 (using distance array) then

19:             if j is a hit then

20:                 h+ = 1 {and identify instance as hit}

21:             else if j is a miss then

22:                 m+ = 1 {and identify instance as miss}

23:             end if

24:         end if

25:     end for

26:     # FEATURE WEIGHT UPDATE

27:     for all hits and misses do

28:         for A:= to a do

29:             W[A] := W[A] − diff (A,Ri,H)/(n · h) + diff (A,Ri,M)/(n · m)

30:         end for

31:     end for

32: end for

33: return the vector W of feature scores that estimate the quality of features would be added and the summed miss term would be subtracted.
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Table 2:

Example dataset with interaction between A1 and A2. A3 is irrelevant. Adapted from Kononenko et al. [27].

Instances A1 A2 A3 C

R1 1 0 1 1

R2 1 0 0 1

R3 0 1 1 1

R4 0 1 0 1

R5 0 0 1 0

R6 0 0 0 0

R7 1 1 1 0

R8 1 1 0 0
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Table 3:

Breakdown of near/far, hit/miss, and features with different or same values for each target instance. Illustrates 

where feature scores come from for the 2-way epistasis dataset in Table 2.

Far (Same Value) Near (Different Value) Far (Different Value)

Target Hit Miss Hit Miss Hit Miss

R1 None R2(A2),R8(A1) R2(A3) R5(A1),R7(A2) R4(A1,A2,A3) R6(A1,A3),R8(A2,A3)

R2 None R1(A2),R7 (A1) R1(A3) R6(A1),R8(A2) R3(A1,A2,A3) R5(A1,A3),R7(A2,A3)

R3 None R4(A1),R8(A2) R4(A3) R5(A2),R7(A1) R2(A1,A2,A3) R6(A2,A3),R8(A1,A3)

R4 None R3(A1),R7 (A2) R3(A3) R6(A2),R8(A1) R1(A1,A2,A3) R5(A2,A3),R7(A1,A3)

R5 None R6(A2),R4(A1) R6(A3) R1(A1),R3(A2) R8(A1,A2,A3) R1(A1,A3),R4(A2,A3)

R6 None R5(A2),R3(A1) R5(A3) R2(A1),R4(A2) R7(A1,A2,A3) R1(A1,A3),R3(A2,A3)

R7 None R8(A1),R4(A2) R8(A3) R1(A2),R3(A1) R6(A1,A2,A3) R2(A2,A3),R4(A1,A3)

R8 None R1(A1),R3(A2) R7(A3) R2(A2),R4(A1) R5(A1,A2,A3) R1(A2,A3),R3(A1,A3)
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Table 4:

Summary of score contributions for 2-way epistasis dataset in Table 2 yielding ReliefF, SURF, SURF*, 

MultiSURF*, and MultiSURF scores. Illustrates why ‘far’ scoring improves 2-way interaction detection.

Features RBA Scoring Schemes

A1 A2 A3 RelielF SURF SURF* MultiSURF* MultiSURF

Farthest Hit (same value) 0 0 0 − 1

Farthest Miss (same value) 4 4 0 +1

Nearest Hit (different value) 0 0 8 − 1 − 1 − 1 − 1 − 1

Nearest Miss (different value) 4 4 0 +1 +1 +1 +1 +1

Farthest Hit (different value) 8 8 8 +1

Farthest Miss (different value) 4 4 8 − 1

RelielF Score Total 4 4 −8

SURF Score Total 4 4 −8

SURF* Score Total 8 8 −8

MultiSURF* Score Total 8 8 −8

MultiSURF Score Total 4 4 −8
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Table 6:

Simple example dataset with a relevant main effect in Ai. Features A2 and A3 are irrelevant.

Instances A1 A2 A3 C

R1 1 0 1 1

R2 1 1 0 1

R3 1 0 1 1

R4 1 1 0 1

R5 0 0 1 0

R6 0 1 0 0

R7 0 0 1 0

R8 0 1 0 0
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Table 7:

Breakdown of near/far, hit/miss, and features with different or same values for each target instance. Illustrates 

where feature scores come from for the main effect dataset in Table 6.

Far (same Value Near (Different Value) Far (Different Value)

Target Hit Miss Hit Miss Hit Miss

R1 R2(A1),R4(A1) None None R5(A1),R7(A1) R2(A2, A3),R4(A2, A3) R8(A1,A2,A3),R6(A1, A2,A3)

R2 R1(A1),R3(A1) None None R6(A1),R8(A1) R1(A2, A3),R3(A2, A3) R5(A1,A2,A3),R7(A1, A2,A3)

R3 R2(A1),R4(A1) None None R5(A1),R7(A1) R2(A2, A3),R4(A2, A3) R8(A1,A2,A3),R6(A1, A2,A3)

R4 R1(A1),R3(A1) None None R6(A1),R8(A1) R1(A2, A3),R3(A2, A3) R5(A1,A2,A3),R7(A1, A2,A3)

R5 R6(A1),R8(A1) None None R1(A1),R3(A1) R6(A2, A3),R8(A2, A3) R2(A1,A2,A3),R4(A1, A2,A3)

R6 R1(A1),R3(A1) None None R2(A1),R4(A1) R5(A2, A3),R7(A2, A3) R1(A1,A2,A3),R3(A1, A2,A3)

R7 R6(A1),R8(A1) None None R1(A1),R3(A1) R6(A2, A3),R8(A2, A3) R2(A1,A2,A3),R4(A1, A2,A3)

R8 R5(A1),R7(A1) None None R2(A1),R4(A1) R5(A2, A3),R7(A2, A3) R1(A1,A2,A3),R3(A1, A2,A3)
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Table 8:

Summary of score contributions for main effect dataset in Table 6 yielding ReliefF, SURF, SURF*, 

MultiSURF*, and MultiSURF scores. Illustrates why ‘far’ scoring hinders main effect detection.

Features RBA Scoring Schemes

A1 A2 A3 ReliefF SURF SURF* MultiSURF* MultiSURF

Farthest. Hit (same value) 8 0 0 − 1

Farthest Miss (same value) 0 0 0 +1

Nearest Hit (different value) 0 0 0 − 1 − 1 − 1 − 1 − 1

Nearest Miss (different value) 8 0 0 +1 +1 +1 +1 +1

Farthest Hit (different value) 0 8 8 +1

Farthest Miss (different value) 8 8 8 − 1

ReliefF Score Total 8 0 0

SURF Score Total 8 0 0

SURF* Score Total 0 0 0

MultiSURF* Score Total 0 0 0

MultiSURF Score Total 8 0 0
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Table 9:

General Recommendations for RBA Application

• RBAs in ReBATE can be applied to feature selection in any bioinformatics problem with potentially predictive features and a target outcome 
variable.

• Expect RBAs to impact downstream modeling by improving predictive accuracy and model simplicity/interpretability, particularly when 
complex patterns of association are present in data.

• If you want to detect feature interactions, but an exhaustive examination of all feature combinations is not feasible, an RBA offers a good 
alternative.

• RBAs do not remove redundant/correlated features. It may be most efficient to remove highly correlated features prior to RBA analysis based 
on the aims of an analysis. See the following for methods removing redundant features in RBA analyses [8, 14, 63, 29, 3].

• There is no single ‘best’ feature selection algorithm for all problems. ReliefF is still the most commonly applied RBA. For simplicity or when 
computational resources are limited, choose MultiSURF instead of ReliefF since it performs well on the greatest diversity of problems and it 
has no run parameters to be optimized.

• If possible, consider running multiple feature selection algorithms with different strengths, e.g. MultiSURF* for 2-way epistasis, ReliefF for 
higher order interactions, and a myopic method for main effects, and pass the top non-overlapping set of features returned from each onto 
modeling.

• Roughly, if you have more than 10,000 features, an iterative Relief approach such as TuRF [33] should be used with a core RBA to overcome 
the expected performance degradation in large feature spaces. Iterative RBAs are expected to improve RBA performance even in smaller feature 
spaces. Apply whenever computationally feasible.

• RBAs are well suited to detecting features involved in heterogeneous patterns of association such as genetic heterogeneity. This is important 
for disease subgroup identification.

• For data with both discrete and continuous features, be aware that continuous feature scores will be underestimated in mixed data. We have 
implemented our own custom ramp function inspired Hong [16] by into ReBATE to compensate for this observation.

• If detecting main effects is of singular interest, note that RBAs may be outperformed by traditional myopic methods (e.g. mutual information), 
particularly in very large feature spaces.
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