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Abstract

Background: The role of pretreatment Epstein-Barr virus DNA (pre-DNA) for individualized induction chemotherapy
(IC) in locoregionally advanced nasopharyngeal carcinoma (LA-NPC) still remains unknown. We aimed to address
this clinical issue.

Methods: In total, data on 6218 patient with newly diagnosed LA-NPC receiving concurrent chemoradiotherapy
(CCRT) with or without IC were retrospectively reviewed. Receiver operating characteristics (ROC) curve was adopted to
calculate the cut-off value of pre-DNA based on disease-free survival (DFS). Propensity score matching (PSM) method
was adopted to balance prognostic factors and match patients. Survival outcomes between IC + CCRT and CCRT
groups were compared.

Results: Among the original cohort, no survival difference between IC + CCRT and CCRT groups was found. The cut-off
value of pre-DNA was 4650 copies/ml (area under curve [AUC], 0.620; sensitivity, 0.6224; specificity, 0.5673). For patients
with Pre-DNA≤ 4650 copies/ml, the IC + CCRT and CCRT groups also achieved comparable survival outcomes (P > 0.05
for all rates). However, IC + CCRT was associated with significantly improved 3-year DFS (78.6% vs. 74.8%, P = 0.
03), overall survival (OS; 91.4% vs. 87.5%, P = 0.002) and distant metastasis-free survival (DMFS; 86.0% vs. 82.2%,
P = 0.036) for patient with pre-DNA > 4650 copies/ml. Multivariate analysis also confirm that IC + CCRT was an
independent prognostic factor for DFS (HR, 0.817; 95% CI, 0.683–0.977; P = 0.027), OS (HR, 0.675; 95% CI, 0.
537–0.848; P = 0.001) and DMFS (HR, 0.782; 95% CI, 0.626–0.976; P = 0.03).

Conclusions: Pre-DNA may be a feasible and powerful consideration for individualized IC apart from other
baseline clinical characteristics in LA-NPC.
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DNA, Prognosis

Background
Nasopharyngeal carcinoma (NPC) is a malignancy aris-
ing from nasopharynx epithelia, and epidemic in South-
east and Eastern Asia. The highest incidence occurred in
Southeast China and is approximately 20–50 per
100,000 people [1, 2]. Radiation therapy (RT) is the pri-
mary and only curative treatment for non-disseminated
disease as a result of its complicate anatomy location
and sensitivity to irradiation. Concurrent chemoradio-
therapy (CCRT) is now the main treatment for locore-
gionally advanced NPC (LA-NPC) [3, 4]. However,
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prognosis of LA-NPC after radical radiotherapy still re-
mains poor [5] and distant metastasis is the main failure
pattern [6]. To further decrease risks of distant metasta-
sis and improve clinical outcomes, induction chemother-
apy (IC) additional to CCRT has been proven a feasible
and effective strategy [7–9]. Notably, there is increasing
data showing that IC additional to CCRT could not
bring therapeutic gain to patients with T3–4 N0–1 dis-
ease [10, 11], indicating that some patients with low risk
did not need IC. However, current risk stratification and
treatment delivery mainly refer to TNM staging system
which may be insufficient to identify the low-risk pa-
tients [12]. Therefore, it is urgently needed to identify
powerful factors to help risk stratification and treatment
strategy selection.
Plasma Epstein-Barr virus (EBV) DNA has been

proven an important factor in risk stratification and
prognosis prediction in NPC [13–15]. Moreover, plasma
EBV DNA could also play an important role in decision
making. For example, post-treatment EBV DNA could
act as an indicator for individualized adjuvant chemo-
therapy [16]. Recently, Guo et al. [17] and Peng et al.
[18] found that pre-treatment Epstein-Barr virus (pre--
DNA) could guide the selection of IC in LA-NPC. How-
ever, the sample size in these two studies was small.
Moreover, the treatment modality was also not uniform
since many patients did not received concurrent chemo-
therapy, which would subject the study to treatment-re-
lated bias. Therefore, it is necessary to further address
this question and provide robust evidence.
Based on this premise, we conducted this retrospective

study using a big-data, intelligence database platform to
identify and evaluate the value of pre-DNA for risk
stratification and treatment selection in LA-NPC.

Methods
Patient selection
In this study, we reviewed and identified patients with
newly diagnosed stage I-IVA NPC who were treated be-
tween November 2009 and February 2015 using the
big-data, intelligence platform at Sun Yat-sen University
Cancer Center [19]. Patients meeting the following cri-
teria were included for this study: (1) newly diagnosed
stage III-IVA NPC; (2) data on pre-DNA was available;
(3) receiving intensity-modulated radiotherapy (IMRT);
(4) age 18 years or older; (5) receiving CCRT with or
without IC; (6) the cycles of IC should be ≥2. Finally,
6218 patients were recruited for the current study. This
study was approved by the Research Ethics Committee
of our center. Informed consent was obtained from all
the patients. Study data was deposited at the Research
Data Deposit platform (http://www.researchdata.org.cn/,
RDDA2018000545).

Clinical staging
Before treatment, patients received physical examination
first. Then imaging methods were performed including
magnetic resonance imaging (MRI) of the neck and
nasopharynx, whole-body bone scan, abdominal sonog-
raphy or computed tomograph, chest radiography or
tomograph. Positron emission tomography (PET)-CT
would also be recommended if clinically indicated. Im-
aging data were reviewed by two radiologists (L-ZL and
LT) independently to stage all patients based on the 8th
edition of the International Union against Cancer/
American Joint Committee on Cancer (UICC/AJCC) sta-
ging system manual.

Real-time quantitative EBV DNA PCR
Pre-DNA concentration was detected using real-time
quantitative polymerase chain reaction (RT-PCR) which
was described previously [20]. The RT-PCR system was
developed and targeted the BamHI-W region of the EBV
genome using primers 5’-GCCAGAGGTAAGTGGAC
TTT-3′ and 5’-TACCACCTCCTCTTCTTGCT-3′. The
dual fluorescence-labeled oligomer 5′-(FAM) CACA
CCCAGGCACACACTACACAT (TAMRA)-3′ served as
a probe. Sequence data for the EBV genome were ob-
tained from the GeneBank sequence database.

Clinical treatment
All patients underwent radical IMRT. The prescribed ra-
diation doses were 66 Gy or greater to the primary
tumor and 60–70 Gy to the involved neck area. All po-
tential sites of local infiltration and bilateral cervical
lymphatics were irradiated to 50 Gy or greater. All pa-
tients were treated with 30–35 fractions with five daily
fractions per week for 6–7 weeks.
Since our study is retrospective and patients were

treated before 2016 when the role of IC has not been
well established. Therefore, the selection of IC and cor-
responding regimens mainly depended on clinicians’ ex-
perience and decisions because there was no consensus
in our center. IC regimens consist of platinum-based
agents including 5-fluorouracil with cisplatin (PF), doce-
taxel with cisplatin (TP) and triple of docetaxel with
5-fluorouracil and cisplatin (TPF). Concurrent chemo-
therapy consisted of weekly (30–40mg/m2 d1) or
tri-weekly (80–100 mg/m2 d1) cisplatin.

Follow-up strategy
Patients were followed by imaging methods every 3
months during first 2 years, 6 months during 3-5th year
and annually thereafter. Follow-up duration was mea-
sured from first day of pathological diagnosis to last visit
or death. The first endpoint is disease-free survival
(DFS, defined as the time to first event or death from
any cause). Other endpoints include overall survival (OS,
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time to death from any cause), distant metastasis-free
survival (DMFS, time to first distant failure) and locore-
gional relapse-free survival (LRRFS, time to first local or
regional recurrence or both).

Statistical method
Propensity score matching (PSM) using logistic re-
gression were adopted to balance factors and match
patients. The Chi-square test or Fisher’s exact test
were used to compare categorical variables and
non-parametric test for continuous variables. Re-
ceiver operation characteristic (ROC) curve was ap-
plied to calculate the cut-off value of pre-DNA for
DFS. Life-table estimation was performed using the
Kaplan-Meier method and survival difference was
compared by log-rank test. The multivariate Cox
proportional hazards model was used to estimate
hazard ratios (HRs) and 95% confidence intervals
(CIs) with following factors; gender, age, smoking,
drinking, family history of cancer, lactate dehydro-
genase (LDH), T category, N category, overall stage,
and treatment arms (IC + CCRT vs. CCRT). All tests
were two-sided; P < 0.05 was considered significant.
Statistical Package 12 (StataCorp LP, College Station,
TX, USA) was used for all analyses.

Results
Baseline characteristics
In total, 6218 patients with LA-NPC were included in
this study and baseline characteristics were summarized
in Additional file 1: Table S1. The whole cohort carried
a male-to-female ratio of 2.86, and the median age was
45 (range, 18–79) yeas-old. The median follow-up dur-
ation was 43.0 (range, 0.3–103.6) months. Overall, 3510
(56.4%) patients received IC + CCRT and 2708 (43.6%)
received CCRT alone. Specifically, 1460 (41.6%), 977
(27.8%) and 1073 (30.6%) patients received induction
TPF, PF and TP regimens, respectively. Obviously, the
IC + CCRT group had a higher percentage of T4, N3 and
stage IV disease (P < 0.001). Besides, host and tumor-re-
lated factors were also not balanced between these two
groups (P < 0.05).

Survival analysis within whole cohort
First, we compared the survival outcomes of IC +
CCRT with that of CCRT among the original cohort.
In total, 2241 pairs were selected by PSM from the
6218 patients (Table 1), and factors were well bal-
anced between the two groups. The 3-year DFS
(82.5% vs. 81.7%, P = 0.473), OS (92.3% vs. 91.6%, P =
0.263), DMFS (89.1% vs. 88.2%, P = 0.339) and LRRFS
(92.0% vs. 93.1%, P = 0.288) (Fig. 1) rates were com-
parable between IC + CCRT and CCRT groups. When
multivariate analysis performed, results were consisted

with that of univariate analysis and treatment arm
(IC + CCRT vs. CCRT) was not an independent prog-
nostic factor for DFS, OS, DMFS and LRRFS
(Table 2).

Table 1 Baseline characteristics of selected 2241 pairs with
locoregionally advanced nasopharyngeal carcinoma

Characteristics CCRT
(n = 2241)

IC + CCRT
(n = 2241)

P value

No. (%) No. (%)

Gender 0.838a

Male 585 (26.1) 579 (25.8)

Female 1656 (73.9) 1662 (74.2)

Age (years) 0.791b

Median (range) 44 (18–77) 45 (18–76)

Smoking 0.828a

Yes 819 (36.5) 812 (36.2)

No 1422 (63.5) 1429 (63.8)

Drinking 0.703a

Yes 321 (14.3) 330 (14.7)

No 1920 (85.7) 1911 (85.3)

Family History
of cancer

0.606a

Yes 572 (25.5) 557 (24.9)

No 1669 (74.5) 1684 (75.1)

T category c 0.208a

T1 107 (4.8) 136 (6.0)

T2 179 (8.0) 176 (7.9)

T3 1461 (65.2) 1416 (63.2)

T4 494 (22.0) 513 (22.9)

N category c 0.03a

N0 186 (8.3) 188 (8.4)

N1 1151 (51.4) 1138 (50.8)

N2 635 (28.3) 699 (31.2)

N3 269 (12.0) 216 (9.6)

Overall stage c 0.501a

III 1516 (67.6) 1537 (68.6)

IVA-B 725 (32.4) 704 (31.4)

LDH (U/L) 0.204b

Median
(range)

174 (67–1009) 176 (39–753)

EBV-DNA
(copies/ml)

0.141b

Median
(range)

6345 (0–13,100,000) 4610 (0–9,080,000)

Abbreviations: NPC nasopharyngeal carcinoma, CCRT concurrent
chemoradiotherapy, IC induction chemotherapy, LDH lactate dehydrogenase,
EBV-DNA Epstein-Barr virus DNA
aP values were calculated by Chi-square test
bP values were calculated by t test
cAccording to the 8th edition of UICC/AJCC staging system
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Cut-off value of pre-DNA
The median pre-DNA concentration for the 6218 pa-
tients was 3740 (range, 0–68,700,000) copies/ml.
Based on ROC analysis, the cut-off value of
pre-DNA is 4650 copies/ml (sensitivity = 0.6224, spe-
cificity = 0.5673, area under curve [AUC] = 0.620) for
DFS (Fig. 2), 4315 (sensitivity: 0.667; specificity:
0.545; AUC = 0.634) for OS, 4315 (sensitivity: 0.674;
specificity: 0.547; AUC = 0.649) for DMFS and 2055
(sensitivity: 0.680; specificity: 0.446; AUC = 0.568).
Then, 4650 copies/ml was used as the threshold. We
further evaluated whether this cut-off value could
subdivide patients into different risk groups. Un-
doubtedly, patients with pre-DNA > 4650 copies/ml
achieved significantly poorer survival compared with
those with pre-DNA ≤ 4650 copies/ml in both stage
III (Additional file 2: Figure S1) and stage IV (Add-
itional file 3: Figure S2) subgroups. Therefore, this
cut-off value is valid, and patients with pre-DNA ≤
4650 copies/ml were classified as low-DNA group
and those with pre-DNA > 4650 copies/ml as high-
DNA group.

Survival outcomes within low-DNA group
We further evaluated the survival difference between the
IC + CCRT and CCRT groups among patients with low-
DNA. In total, 3292 patients had a pre-DNA ≤ 4650 cop-
ies/ml (Additional file 4: Table S2). After matching, 1191

pairs were selected and baseline information was pre-
sented in Additional file 5: Table S3. The 3-year DFS,
OS, DMFS and LRRFS rates for IC + CCRT vs. CCRT
were 88.2% vs. 86.2% (P = 0.315), 95.0% vs. 94.7% (P
= 0.979), 93.0% vs. 92.5% (P = 0.859) and 93.8% vs.
93.9% (P = 0.743; Fig. 3), respectively. Multivariate
analysis also found that there was no significantly sur-
vival difference between IC + CCRT and CCRT groups
(P > 0.05 for all rates, Additional file 6: Table S4).
Therefore, IC + CCRT and CCRT achieved similar out-
comes in low-DNA group.

Survival outcomes within high-DNA group
Among the 2926 patients with pre-DNA > 4650 copies/
ml (Additional file 7: Table S5), 945 pairs were selected
by PSM and baseline characteristics were presented in
Additional file 8: Table S6. The 3-year DFS, OS, DMFS
and LRRFS rates for IC + CCRT vs. CCRT were 78.6%
vs. 74.8% (P = 0.03), 91.4% vs. 87.5% (P = 0.002), 86.0%
vs. 82.2% vs. (P = 0.036) and 90.4% vs. 91.4% (P = 0.691;
Fig. 4), respectively. When entered into multivariate ana-
lysis, treatment (IC + CCRT vs. CCRT) was identified as
an independent prognostic factor for DFS (HR, 0.817;
95% CI, 0.683–0.977; P = 0.027), OS (HR, 0.675; 95% CI,
0.537–0.848; P = 0.001) and DMFS (HR, 0.782; 95% CI,
0.626–0.976; P = 0.03; Table 3). Thus, IC + CCRT was
superior to CCRT among patients with high-DNA.

Fig. 1 Kaplan-Meier disease-free survival, overall survival, distant metastasis-free survival and locoregional relapse-free survival curves for
the selected 2241 pairs with stage III-IVA nasopharyngeal carcinoma receiving concurrent chemoradiotherapy with or without
induction chemotherapy
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Discussion
Our current study presented that patients with LA-NPC
and low pre-DNA (≤ 4650 copies/ml) could not benefit
from additional IC to CCRT while patients with high
pre-DNA (> 4650 copies/ml) could, indicating that
pre-DNA could act as an effective and powerful indica-
tor for the delivery of IC in LA-NPC. Notably, to avoid
extended follow-up and identify a cut-off value for earl-
ier individualized treatment, we therefore calculated the
cut-off value of pre-DNA based on DFS because it was a
feasible surrogate endpoint for OS [21, 22]. To the best
of our knowledge, this is the largest cohort study in
evaluating the role of pre-DNA for treatment strategies
selection.
In the era of IMRT, distant metastasis has emerged

as the predominant treatment failure pattern, espe-
cially for advanced disease [23, 24]. Additional cycles
of chemotherapy to CCRT are needed to reduce

distant metastasis and further improve survival. Adju-
vant chemotherapy (AC) was firstly considered as it
was proven effective by Intergroup 0099 study [3].
However, subsequent studies found that AC additional
to CCRT may be useless [25, 26]. Furthermore, the
severe toxicities of AC constrain its wide usage. Given
these concerns, other chemotherapy strategies with
better efficacy and compliance should be identified.
IC, delivered before radiotherapy, has caught a lot of
attention for its better compliance and early eradica-
tion of subclinical micro-metastasis. However, results
from previous clinical trials comparing IC + CCRT
with CCRT were controversial as the three achieved
positive outcomes [8, 27, 28] while the study by Tan
et al. [29] achieved negative results, indicating that
not all the patients with LA-NPC could benefit from
IC. Moreover, retrospective evidence showed that IC
could not produce therapeutic gain for patients with

Table 2 Results of multivariate analysis for the selected 2241 pairs

Endpoints Variable HR (95% CI) P value a

DFS Gender, female vs. male 0.799 (0.681–0.937) 0.006

Age, > 44 vs. ≤ 44y 1.191 (1.041–1.362) 0.011

LDH; > 245 vs. ≤ 245 U/L 1.596 (1.298–1.962) < 0.001

T category; T3–4 vs. T1–2 1.283 (1.043–1.578) 0.018

N category, N2–3 vs. N0–1 1.742 (1.506–2.015) < 0.001

Overall stage, IVA vs. III 1.867 (1.632–2.136) < 0.001

Treatment, IC + CCRT vs. CCRT 0.955 (0.837–1.090) 0.494

OS Gender; female vs. male 0.700 (0.562–0.871) 0.001

Age, > 44 vs. ≤ 44y 1.479 (1.238–1.768) < 0.001

LDH; > 245 vs. ≤ 245 U/L 1.734 (1.343–2.238) < 0.001

N category, N2–3 vs. N0–1 1.922 (1.589–2.323) < 0.001

Overall stage, IVA vs. III 2.140 (1.795–2.550) < 0.001

Treatment, IC + CCRT vs. CCRT 0.894 (0.752–1.063) 0.207

DMFS Gender; female vs. male 0.758 (0.616–0.932) 0.009

LDH; > 245 vs. ≤ 245 U/L 1.938 (1.519–2.473) < 0.001

N category, N2–3 vs. N0–1 1.959 (1.649–2.327) < 0.001

Overall stage, IVA vs. III 1.989 (1.678–2.357) < 0.001

Treatment, IC + CCRT vs. CCRT 0.926 (0.782–1.096) 0.369

LRRFS Smoking, yes vs. no 1.263 (1.024–1.557) 0.029

Age, > 44 vs. ≤ 44y 1.345 (1.088–1.662) 0.006

T category, T3–4 vs. T1–2 1.494 (1.062–2.103) 0.021

N category; N3 vs. N2 1.624 (1.297–2.033) < 0.001

Overall stage, IVA vs. III 1.654 (1.341–2.039) < 0.001

Treatment, IC + CCRT vs. CCRT 1.114 (0.906–1.369) 0.306

Abbreviations: DFS disease-free survival, OS overall survival, DMFS distant metastasis-free survival, LRRFS locoregional relapse-free survival, HR hazard ratio, CI
confidence interval, IC induction chemotherapy, CCRT concurrent chemoradiotherapy, LDH lactate dehydrogenase
aP-values were calculated using an adjusted Cox proportional hazards model with backward elimination and the following variables were included: gender
(female vs. male), age (> 44y vs. ≤ 44y), smoking (yes vs. no), drinking (yes vs. no), family history of cancer (yes vs. no), LDH (> 245 vs. ≤ 245 U/L), T category (T3–4
vs. T1–2), N category (N2–3 vs. N0–1), overall stage (IVA vs. III) and treatment (IC + CCRT vs. CCRT)
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Fig. 2 Receiver operation characteristic (ROC) curve analysis for identifying the cut-off value of pre-treatment Epstein-Barr virus DNA

Fig. 3 Kaplan-Meier disease-free survival, overall survival, distant metastasis-free survival and locoregional relapse-free survival curves for the
selected 1191 pairs with pre-DNA≤ 4650 copies/ml receiving concurrent chemoradiotherapy with or without induction chemotherapy. Pre-DNA,
pre-treatment Epstein-Barr virus DNA
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T3–4 N0–1 [10, 11], further revealing that great het-
erogeneity exists in patients with LA-NPC. Therefore,
effective factors should be identified to subdivide pa-
tients with different risk groups and then deliver IC.
Our study proved pre-DNA could act as that factor.
It is well known that NPC is an EBV-driven malig-

nancy [30, 31]. Our study selected pre-DNA as the only
indicator for IC because the prognostic role of EBV
DNA in NPC has been proven by numerous studies
[13, 32–34]. Possibly, EBV DNA has been the strongest
and most widely used factor in NPC so far. Although
many other prognostic factors like LDH [35, 36] and
tumor volume [37] have also been proven effective,
they were not been widely proven and evidence sup-
porting them were not too much. We therefore only se-
lected pre-DNA as the indicator. Notably, the cut-off
value of pre-DNA in our study was different from that
used in other studies [17, 38] because we calculate it
based on our data. The cut-off value of 4000 copies/ml
used in the two studies [17, 38] came from other litera-
tures and was not calculated based on their own data.
Thus, our results may be more credible and reflect in-
trinsic relationship of pre-DNA and IC. However, it
should be pointed out that common calibrators and
PCR master mix should be warranted to reduce vari-
ability in plasma EBV DNA numbers [39] before our
cut-off value could be applied widely and uniformly.

Among the original cohort without stratification by
pre-DNA, no significant survival difference between
IC + CCRT and CCRT groups was observed. One pos-
sible explanation may be that some patients with
low-risk could not benefit from IC and they counter-
act the benefit for high-risk patients, resulting in
non-significant difference. When stratified analysis ac-
cording to pre-DNA was performed, a different sce-
nario happened. Among patients with low-DNA, IC +
CCRT and CCRT achieved comparable survival out-
comes; while for those with high-DNA, IC + CCRT
group achieved significantly better DFS, OS and
DMFS than CCRT group. These results were consist-
ent with previous studies [17, 18, 38]. Undoubtedly,
patients with high-DNA had higher tumor burden
and risk of distant metastasis, therefore could benefit
from IC. Our findings together with previous studies
[17, 18, 38] further supported that pre-DNA could
act as a strong and reliable indicator for IC.
Compared with previous studies [17, 18, 38], our

study mainly had two advantages. First, all the pa-
tients received standard treatment (i.e., CCRT-based
regimen was delivered to all patients), thus reducing
treatment-related bias. Second, the sample size is
large, therefore achieving more powerfully statistical
results. By applying PSM and multivariate analysis,
we addressed the potential limitations of divergent

Fig. 4 Kaplan-Meier disease-free survival, overall survival, distant metastasis-free survival and locoregional relapse-free survival curves for the
selected 945 pairs with pre-DNA > 4650 copies/ml receiving concurrent chemoradiotherapy with or without induction chemotherapy. Pre-DNA,
pre-treatment Epstein-Barr virus DNA

Zhang et al. BMC Cancer         (2018) 18:1276 Page 7 of 10



confounders, treatment heterogeneity and selection
bias associated with retrospective analysis of obser-
vational data [40]. The limitations in this study
should also be acknowledged. First, our study is
retrospective, meaning potential bias may exist.
Moreover, the follow-up duration may not be long
enough which would produce few events and prevent
data from reach statistically significant. Therefore, a
longer follow-up length is necessary to further evalu-
ate the role of pre-DNA for IC. Finally, completion
of concurrent chemotherapy between IC + CCRT and
CCRT groups was not addressed in our study. As
shown by previous study, IC could affect the com-
pletion of tri-weekly cisplatin regimen (100 mg/m2)
[28]. However, the concurrent regimen used in our
study was different from that. Therefore, this issue
should be addressed in future study.

Conclusion
In summary, our study revealed that patients with
high pre-DNA could benefit from additional IC to

CCRT while those with low pre-DNA could not in
LA-NPC in the era of IMRT, indicating pre-DNA
may be a feasible and powerful consideration for in-
dividualized IC apart from other baseline clinical
characteristics. Future randomized clinical trials are
warranted to validate our findings.

Additional files

Additional file 1: Table S1.Baseline characteristics of 6218 patients with
locoregionally advanced nasopharyngeal carcinoma. (DOCX 16 kb)

Additional file 2: Figure S1.Kaplan-Meier disease-free survival, overall
survival, distant metastasis-free survival and locoregional relapse-free survival
curves stratified as pre-DNA≤ 4650 or > 4650 copies/ml for patients with
stage III nasopharyngeal carcinoma. Pre-DNA, pre-treatment Epstein-Barr
virus DNA. (TIF 417 kb)

Additional file 3: Figure S2.Kaplan-Meier disease-free survival, overall
survival, distant metastasis-free survival and locoregional relapse-free survival
curves stratified as pre-DNA≤ 4650 or > 4650 copies/ml for patients with
stage IVA nasopharyngeal carcinoma. Pre-DNA, pre-treatment Epstein-Barr
virus DNA. (TIF 426 kb)

Additional file 4: Table S2.Baseline characteristics of 3292 patients with
pre-treatment Epstein-Barr virus DNA ≤ 4650 copies/ml. (DOCX 16 kb)

Table 3 Results of multivariate analysis for the selected 945 pairs with pre-treatment Epstein-Barr virus DNA > 4650 copies/ml

Endpoints Variable HR (95% CI) P value a

DFS Gender, female vs. male 0.694 (0.559–0.862) 0.001

Family history of cancer, yes vs. no 1.273 (1.042–1.555) 0.018

LDH; > 245 vs. ≤ 245 U/L 1.345 (1.050–1.723) 0.019

N category, N2–3 vs. N0–1 1.693 (1.405–2.039) < 0.001

Overall stage, IVA vs. III 1.349 (1.125–1.617) 0.001

Treatment, IC + CCRT vs. CCRT 0.817 (0.683–0.977) 0.027

OS Gender, female vs. male 0.630 (0.472–0.841) 0.002

Age, > 44 vs. ≤ 44y 1.499 (1.188–1.892) 0.001

LDH; > 245 vs. ≤ 245 U/L 1.510 (1.118–2.039) 0.007

N category, N2–3 vs. N0–1 1.820 (1.437–2.305) < 0.001

Overall stage, IVA vs. III 1.396 (1.110–1.757) 0.004

Treatment, IC + CCRT vs. CCRT 0.675 (0.537–0.848) 0.001

DMFS Gender, female vs. male 0.674 (0.513–0.886) 0.005

LDH; > 245 vs. ≤ 245 U/L 1.658 (1.245–2.209) 0.001

N category, N2–3 vs. N0–1 1.874 (1.481–2.372) < 0.001

Overall stage, IVA vs. III 1.377 (1.100–1.725) 0.005

Treatment, IC + CCRT vs. CCRT 0.782 (0.626–0.976) 0.03

LRRFS Gender, female vs. male 0.598 (0.416–0.859) 0.005

Family history of cancer, yes vs. no 1.533 (1.128–2.083) 0.006

N category; N3 vs. N2 1.712 (1.274–2.301) < 0.001

Treatment, IC + CCRT vs. CCRT 1.063 (0.798–1.415) 0.677

Abbreviations: DFS disease-free survival, OS overall survival, DMFS distant metastasis-free survival, LRRFS locoregional relapse-free survival, HR hazard ratio, CI
confidence interval, IC induction chemotherapy, CCRT concurrent chemoradiotherapy, LDH lactate dehydrogenase
aP-values were calculated using an adjusted Cox proportional hazards model with backward elimination and the following variables were included: gender
(female vs. male), age (> 44y vs. ≤ 44y), smoking (yes vs. no), drinking (yes vs. no), family history of cancer (yes vs. no), LDH (> 245 vs. ≤ 245 U/L), T category (T3–4
vs. T1–2), N category (N2–3 vs. N0–1), overall stage (IVA vs. III) and treatment (IC + CCRT vs. CCRT)
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Additional file 5: Table S3.Baseline characteristics of selected 1191
pairs with pre-treatment Epstein-Barr virus DNA ≤ 4650 copies/ml.
(DOCX 16 kb)

Additional file 6: Table S4.Results of multivariate analysis for the
selected 1191 pairs with pre-treatment Epstein-Barr virus DNA ≤ 4650
copies/ml. (DOCX 15 kb)

Additional file 7: Table S5.Baseline characteristics of 2926 patients with
pre-treatment Epstein-Barr virus DNA > 4650 copies/ml. (DOCX 16 kb)

Additional file 8: Table S6.Baseline characteristics of selected 945 pairs
with pre-treatment Epstein-Barr virus DNA > 4650 copies/ml. (DOCX 16 kb)
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